Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

Making agriculture more resilient to climate change

News Feed
Friday, November 1, 2024

As Earth’s temperature rises, agricultural practices will need to adapt. Droughts will likely become more frequent, and some land may no longer be arable. On top of that is the challenge of feeding an ever-growing population without expanding the production of fertilizer and other agrochemicals, which have a large carbon footprint that is contributing to the overall warming of the planet.Researchers across MIT are taking on these agricultural challenges from a variety of angles, from engineering plants that sound an alarm when they’re under stress to making seeds more resilient to drought. These types of technologies, and more yet to be devised, will be essential to feed the world’s population as the climate changes.“After water, the first thing we need is food. In terms of priority, there is water, food, and then everything else. As we are trying to find new strategies to support a world of 10 billion people, it will require us to invent new ways of making food,” says Benedetto Marelli, an associate professor of civil and environmental engineering at MIT.Marelli is the director of one of the six missions of the recently launched Climate Project at MIT, which focus on research areas such as decarbonizing industry and building resilient cities. Marelli directs the Wild Cards mission, which aims to identify unconventional solutions that are high-risk and high-reward.Drawing on expertise from a breadth of fields, MIT is well-positioned to tackle the challenges posed by climate change, Marelli says. “Bringing together our strengths across disciplines, including engineering, processing at scale, biological engineering, and infrastructure engineering, along with humanities, science, and economics, presents a great opportunity.”Protecting seeds from droughtMarelli, who began his career as a biomedical engineer working on regenerative medicine, is now developing ways to boost crop yields by helping seeds to survive and germinate during drought conditions, or in soil that has been depleted of nutrients. To achieve that, he has devised seed coatings, based on silk and other polymers, that can envelop and nourish seeds during the critical germination process.In healthy soil, plants have access to nitrogen, phosphates, and other nutrients that they need, many of which are supplied by microbes that live in the soil. However, in soil that has suffered from drought or overfarming, these nutrients are lacking. Marelli’s idea was to coat the seeds with a polymer that can be embedded with plant-growth-promoting bacteria that “fix” nitrogen by absorbing it from the air and making it available to plants. The microbes can also make other necessary nutrients available to plants.For the first generation of the seed coatings, he embedded these microbes in coatings made of silk — a material that he had previously shown can extend the shelf life of produce, meat, and other foods. In his lab at MIT, Marelli has shown that the seed coatings can help germinating plants survive drought, ultraviolet light exposure, and high salinity.Now, working with researchers at the Mohammed VI Polytechnic University in Morocco, he is adapting the approach to crops native to Morocco, a country that has experienced six consecutive years of drought due a drop in rainfall linked to climate change.For these studies, the researchers are using a biopolymer coating derived from food waste that can be easily obtained in Morocco, instead of silk.“We’re working with local communities to extract the biopolymers, to try to have a process that works at scale so that we make materials that work in that specific environment.” Marelli says. “We may come up with an idea here at MIT within a high-resource environment, but then to work there, we need to talk with the local communities, with local stakeholders, and use their own ingenuity and try to match our solution with something that could actually be applied in the local environment.”Microbes as fertilizersWhether they are experiencing drought or not, crops grow much better when synthetic fertilizers are applied. Although it’s essential to most farms, applying fertilizer is expensive and has environmental consequences. Most of the world’s fertilizer is produced using the Haber-Bosch process, which converts nitrogen and hydrogen to ammonia at high temperatures and pressures. This energy intensive process accounts for about 1.5 percent of the world’s greenhouse gas emissions, and the transportation required to deliver it to farms around the world adds even more emissions.Ariel Furst, the Paul M. Cook Career Development Assistant Professor of Chemical Engineering at MIT, is developing a microbial alternative to the Haber-Bosch process. Some farms have experimented with applying nitrogen-fixing bacteria directly to the roots of their crops, which has shown some success. However, the microbes are too delicate to be stored long-term or shipped anywhere, so they must be produced in a bioreactor on the farm.To overcome those challenges, Furst has developed a way to coat the microbes with a protective shell that prevents them from being destroyed by heat or other stresses. The coating also protects microbes from damage caused by freeze-drying — a process that would make them easier to transport.The coatings can vary in composition, but they all consist of two components. One is a metal such as iron, manganese, or zinc, and the other is a polyphenol — a type of plant-derived organic compound that includes tannins and other antioxidants. These two components self-assemble into a protective shell that encapsulates bacteria.“These microbes would be delivered with the seeds, so it would remove the need for fertilizing mid-growing. It also reduces the cost and provides more autonomy to the farmers and decreases carbon emissions associated with agriculture,” Furst says. “We think it’ll be a way to make agriculture completely regenerative, so to bring back soil health while also boosting crop yields and the nutrient density of the crops.”Furst has founded a company called Seia Bio, which is working on commercializing the coated microbes and has begun testing them on farms in Brazil. In her lab, Furst is also working on adapting the approach to coat microbes that can capture carbon dioxide from the atmosphere and turn it into limestone, which helps to raise the soil pH.“It can help change the pH of soil to stabilize it, while also being a way to effectively perform direct air capture of CO2,” she says. “Right now, farmers may truck in limestone to change the pH of soil, and so you’re creating a lot of emissions to bring something in that microbes can do on their own.”Distress sensors for plantsSeveral years ago, Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT, began to explore the idea of using plants themselves as sensors that could reveal when they’re in distress. When plants experience drought, attack by pests, or other kinds of stress, they produce hormones and other signaling molecules to defend themselves.Strano, whose lab specializes in developing tiny sensors for a variety of molecules, wondered if such sensors could be deployed inside plants to pick up those distress signals. To create their sensors, Strano’s lab takes advantage of the special properties of single-walled carbon nanotubes, which emit fluorescent light. By wrapping the tubes with different types of polymers, the sensors can be tuned to detect specific targets, giving off a fluorescent signal when the target is present.For use in plants, Strano and his colleagues created sensors that could detect signaling molecules such as salicylic acid and hydrogen peroxide. They then showed that these sensors could be inserted into the underside of plant leaves, without harming the plants. Once embedded in the mesophyll of the leaves, the sensors can pick up a variety of signals, which can be read with an infrared camera.These sensors can reveal, in real-time, whether a plant is experiencing a variety of stresses. Until now, there hasn’t been a way to get that information fast enough for farmers to act on it.“What we’re trying to do is make tools that get information into the hands of farmers very quickly, fast enough for them to make adaptive decisions that can increase yield,” Strano says. “We’re in the middle of a revolution of really understanding the way in which plants internally communicate and communicate with other plants.”This kind of sensing could be deployed in fields, where it could help farmers respond more quickly to drought and other stresses, or in greenhouses, vertical farms, and other types of indoor farms that use technology to grow crops in a controlled environment.Much of Strano’s work in this area has been conducted with the support of the U.S. Department of Agriculture (USDA) and as part of the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) program at the Singapore-MIT Alliance for Research and Technology (SMART), and sensors have been deployed in tests in crops at a controlled environment farm in Singapore called Growy.“The same basic kinds of tools can help detect problems in open field agriculture or in controlled environment agriculture,” Strano says. “They both suffer from the same problem, which is that the farmers get information too late to prevent yield loss.”Reducing pesticide usePesticides represent another huge financial expense for farmers: Worldwide, farmers spend about $60 billion per year on pesticides. Much of this pesticide ends up accumulating in water and soil, where it can harm many species, including humans. But, without using pesticides, farmers may lose more than half of their crops.Kripa Varanasi, an MIT professor of mechanical engineering, is working on tools that can help farmers measure how much pesticide is reaching their plants, as well as technologies that can help pesticides adhere to plants more efficiently, reducing the amount that runs off into soil and water.Varanasi, whose research focuses on interactions between liquid droplets and surfaces, began to think about applying his work to agriculture more than a decade ago, after attending a conference at the USDA. There, he was inspired to begin developing ways to improve the efficiency of pesticide application by optimizing the interactions that occur at leaf surfaces.“Billions of drops of pesticide are being sprayed on every acre of crop, and only a small fraction is ultimately reaching and staying on target. This seemed to me like a problem that we could help to solve,” he says.Varanasi and his students began exploring strategies to make drops of pesticide stick to leaves better, instead of bouncing off. They found that if they added polymers with positive and negative charges, the oppositely charged droplets would form a hydrophilic (water-attracting) coating on the leaf surface, which helps the next droplets applied to stick to the leaf.Later, they developed an easier-to-use technology in which a surfactant is added to the pesticide before spraying. When this mixture is sprayed through a special nozzle, it forms tiny droplets that are “cloaked” in surfactant. The surfactant helps the droplets to stick to the leaves within a few milliseconds, without bouncing off.In 2020, Varanasi and Vishnu Jayaprakash SM ’19, PhD ’22 founded a company called AgZen to commercialize their technologies and get them into the hands of farmers. They incorporated their ideas for improving pesticide adhesion into a product called EnhanceCoverage.During the testing for this product, they realized that there weren’t any good ways to measure how many of the droplets were staying on the plant. That led them to develop a product known as RealCoverage, which is based on machine vision. It can be attached to any pesticide sprayer and offer real-time feedback on what percentage of the pesticide droplets are sticking to and staying on every leaf.RealCoverage was used on 65,000 acres of farmland across the United States in 2024, from soybeans in Iowa to cotton in Georgia. Farmers who used the product were able to reduce their pesticide use by 30 to 50 percent, by using the data to optimize delivery and, in some cases, even change what chemicals were sprayed.He hopes that the EnhanceCoverage product, which is expected to become available in 2025, will help farmers further reduce their pesticide use.“Our mission here is to help farmers with savings while helping them achieve better yields. We have found a way to do all this while also reducing waste and the amount of chemicals that we put into our atmosphere and into our soils and into our water,” Varanasi says. “This is the MIT approach: to figure out what are the real issues and how to come up with solutions. Now we have a tool and I hope that it’s deployed everywhere and everyone gets the benefit from it.”

Researchers across MIT are working on ways to boost food production and help crops survive drought.

As Earth’s temperature rises, agricultural practices will need to adapt. Droughts will likely become more frequent, and some land may no longer be arable. On top of that is the challenge of feeding an ever-growing population without expanding the production of fertilizer and other agrochemicals, which have a large carbon footprint that is contributing to the overall warming of the planet.

Researchers across MIT are taking on these agricultural challenges from a variety of angles, from engineering plants that sound an alarm when they’re under stress to making seeds more resilient to drought. These types of technologies, and more yet to be devised, will be essential to feed the world’s population as the climate changes.

“After water, the first thing we need is food. In terms of priority, there is water, food, and then everything else. As we are trying to find new strategies to support a world of 10 billion people, it will require us to invent new ways of making food,” says Benedetto Marelli, an associate professor of civil and environmental engineering at MIT.

Marelli is the director of one of the six missions of the recently launched Climate Project at MIT, which focus on research areas such as decarbonizing industry and building resilient cities. Marelli directs the Wild Cards mission, which aims to identify unconventional solutions that are high-risk and high-reward.

Drawing on expertise from a breadth of fields, MIT is well-positioned to tackle the challenges posed by climate change, Marelli says. “Bringing together our strengths across disciplines, including engineering, processing at scale, biological engineering, and infrastructure engineering, along with humanities, science, and economics, presents a great opportunity.”

Protecting seeds from drought

Marelli, who began his career as a biomedical engineer working on regenerative medicine, is now developing ways to boost crop yields by helping seeds to survive and germinate during drought conditions, or in soil that has been depleted of nutrients. To achieve that, he has devised seed coatings, based on silk and other polymers, that can envelop and nourish seeds during the critical germination process.

germinating seeds in special coating

In healthy soil, plants have access to nitrogen, phosphates, and other nutrients that they need, many of which are supplied by microbes that live in the soil. However, in soil that has suffered from drought or overfarming, these nutrients are lacking. Marelli’s idea was to coat the seeds with a polymer that can be embedded with plant-growth-promoting bacteria that “fix” nitrogen by absorbing it from the air and making it available to plants. The microbes can also make other necessary nutrients available to plants.

For the first generation of the seed coatings, he embedded these microbes in coatings made of silk — a material that he had previously shown can extend the shelf life of produce, meat, and other foods. In his lab at MIT, Marelli has shown that the seed coatings can help germinating plants survive drought, ultraviolet light exposure, and high salinity.

Now, working with researchers at the Mohammed VI Polytechnic University in Morocco, he is adapting the approach to crops native to Morocco, a country that has experienced six consecutive years of drought due a drop in rainfall linked to climate change.

For these studies, the researchers are using a biopolymer coating derived from food waste that can be easily obtained in Morocco, instead of silk.

“We’re working with local communities to extract the biopolymers, to try to have a process that works at scale so that we make materials that work in that specific environment.” Marelli says. “We may come up with an idea here at MIT within a high-resource environment, but then to work there, we need to talk with the local communities, with local stakeholders, and use their own ingenuity and try to match our solution with something that could actually be applied in the local environment.”

Microbes as fertilizers

Whether they are experiencing drought or not, crops grow much better when synthetic fertilizers are applied. Although it’s essential to most farms, applying fertilizer is expensive and has environmental consequences. Most of the world’s fertilizer is produced using the Haber-Bosch process, which converts nitrogen and hydrogen to ammonia at high temperatures and pressures. This energy intensive process accounts for about 1.5 percent of the world’s greenhouse gas emissions, and the transportation required to deliver it to farms around the world adds even more emissions.

Ariel Furst, the Paul M. Cook Career Development Assistant Professor of Chemical Engineering at MIT, is developing a microbial alternative to the Haber-Bosch process. Some farms have experimented with applying nitrogen-fixing bacteria directly to the roots of their crops, which has shown some success. However, the microbes are too delicate to be stored long-term or shipped anywhere, so they must be produced in a bioreactor on the farm.

Illustration of a thriving plant and its roots in the ground that are surrounded by microbes. Two insets are shown: At left, a larger version of a blue microbe with white triangular formations. To the left of that, a larger version of one of those formations reveals a lattice made from molecular components.

To overcome those challenges, Furst has developed a way to coat the microbes with a protective shell that prevents them from being destroyed by heat or other stresses. The coating also protects microbes from damage caused by freeze-drying — a process that would make them easier to transport.

The coatings can vary in composition, but they all consist of two components. One is a metal such as iron, manganese, or zinc, and the other is a polyphenol — a type of plant-derived organic compound that includes tannins and other antioxidants. These two components self-assemble into a protective shell that encapsulates bacteria.

“These microbes would be delivered with the seeds, so it would remove the need for fertilizing mid-growing. It also reduces the cost and provides more autonomy to the farmers and decreases carbon emissions associated with agriculture,” Furst says. “We think it’ll be a way to make agriculture completely regenerative, so to bring back soil health while also boosting crop yields and the nutrient density of the crops.”

Furst has founded a company called Seia Bio, which is working on commercializing the coated microbes and has begun testing them on farms in Brazil. In her lab, Furst is also working on adapting the approach to coat microbes that can capture carbon dioxide from the atmosphere and turn it into limestone, which helps to raise the soil pH.

“It can help change the pH of soil to stabilize it, while also being a way to effectively perform direct air capture of CO2,” she says. “Right now, farmers may truck in limestone to change the pH of soil, and so you’re creating a lot of emissions to bring something in that microbes can do on their own.”

Distress sensors for plants

Several years ago, Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT, began to explore the idea of using plants themselves as sensors that could reveal when they’re in distress. When plants experience drought, attack by pests, or other kinds of stress, they produce hormones and other signaling molecules to defend themselves.

Strano, whose lab specializes in developing tiny sensors for a variety of molecules, wondered if such sensors could be deployed inside plants to pick up those distress signals. To create their sensors, Strano’s lab takes advantage of the special properties of single-walled carbon nanotubes, which emit fluorescent light. By wrapping the tubes with different types of polymers, the sensors can be tuned to detect specific targets, giving off a fluorescent signal when the target is present.

For use in plants, Strano and his colleagues created sensors that could detect signaling molecules such as salicylic acid and hydrogen peroxide. They then showed that these sensors could be inserted into the underside of plant leaves, without harming the plants. Once embedded in the mesophyll of the leaves, the sensors can pick up a variety of signals, which can be read with an infrared camera.

Illustration of bok choy has, on left, leaves being attacked by aphids, and on right, leaves burned by the sun’s heat. Two word balloons show the plant is responding with alarm: “!!!”

These sensors can reveal, in real-time, whether a plant is experiencing a variety of stresses. Until now, there hasn’t been a way to get that information fast enough for farmers to act on it.

“What we’re trying to do is make tools that get information into the hands of farmers very quickly, fast enough for them to make adaptive decisions that can increase yield,” Strano says. “We’re in the middle of a revolution of really understanding the way in which plants internally communicate and communicate with other plants.”

This kind of sensing could be deployed in fields, where it could help farmers respond more quickly to drought and other stresses, or in greenhouses, vertical farms, and other types of indoor farms that use technology to grow crops in a controlled environment.

Much of Strano’s work in this area has been conducted with the support of the U.S. Department of Agriculture (USDA) and as part of the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) program at the Singapore-MIT Alliance for Research and Technology (SMART), and sensors have been deployed in tests in crops at a controlled environment farm in Singapore called Growy.

“The same basic kinds of tools can help detect problems in open field agriculture or in controlled environment agriculture,” Strano says. “They both suffer from the same problem, which is that the farmers get information too late to prevent yield loss.”

Reducing pesticide use

Pesticides represent another huge financial expense for farmers: Worldwide, farmers spend about $60 billion per year on pesticides. Much of this pesticide ends up accumulating in water and soil, where it can harm many species, including humans. But, without using pesticides, farmers may lose more than half of their crops.

Kripa Varanasi, an MIT professor of mechanical engineering, is working on tools that can help farmers measure how much pesticide is reaching their plants, as well as technologies that can help pesticides adhere to plants more efficiently, reducing the amount that runs off into soil and water.

Varanasi, whose research focuses on interactions between liquid droplets and surfaces, began to think about applying his work to agriculture more than a decade ago, after attending a conference at the USDA. There, he was inspired to begin developing ways to improve the efficiency of pesticide application by optimizing the interactions that occur at leaf surfaces.

“Billions of drops of pesticide are being sprayed on every acre of crop, and only a small fraction is ultimately reaching and staying on target. This seemed to me like a problem that we could help to solve,” he says.

Varanasi and his students began exploring strategies to make drops of pesticide stick to leaves better, instead of bouncing off. They found that if they added polymers with positive and negative charges, the oppositely charged droplets would form a hydrophilic (water-attracting) coating on the leaf surface, which helps the next droplets applied to stick to the leaf.

 A team of researchers, including graduate student Maher Damak (left) and associate professor of mechanical engineering Kripa K. Varanasi, have found a way to drastically cut down on the amount of pesticide liquid that bounces off plants.

Later, they developed an easier-to-use technology in which a surfactant is added to the pesticide before spraying. When this mixture is sprayed through a special nozzle, it forms tiny droplets that are “cloaked” in surfactant. The surfactant helps the droplets to stick to the leaves within a few milliseconds, without bouncing off.

In 2020, Varanasi and Vishnu Jayaprakash SM ’19, PhD ’22 founded a company called AgZen to commercialize their technologies and get them into the hands of farmers. They incorporated their ideas for improving pesticide adhesion into a product called EnhanceCoverage.

During the testing for this product, they realized that there weren’t any good ways to measure how many of the droplets were staying on the plant. That led them to develop a product known as RealCoverage, which is based on machine vision. It can be attached to any pesticide sprayer and offer real-time feedback on what percentage of the pesticide droplets are sticking to and staying on every leaf.

RealCoverage was used on 65,000 acres of farmland across the United States in 2024, from soybeans in Iowa to cotton in Georgia. Farmers who used the product were able to reduce their pesticide use by 30 to 50 percent, by using the data to optimize delivery and, in some cases, even change what chemicals were sprayed.

He hopes that the EnhanceCoverage product, which is expected to become available in 2025, will help farmers further reduce their pesticide use.

“Our mission here is to help farmers with savings while helping them achieve better yields. We have found a way to do all this while also reducing waste and the amount of chemicals that we put into our atmosphere and into our soils and into our water,” Varanasi says. “This is the MIT approach: to figure out what are the real issues and how to come up with solutions. Now we have a tool and I hope that it’s deployed everywhere and everyone gets the benefit from it.”

Read the full story here.
Photos courtesy of

Chesapeake Bay’s oysters make a steady comeback

The Maryland mollusks have survived decades of overharvesting, disease and drought.

For the fifth year in a row, the oyster population in the Chesapeake Bay is doing well after decades of combating drought, disease, loss of habitat and overharvesting.The Maryland Department of Natural Resources said in March that its annual fall oyster survey showed that the “spatfall intensity index” — a measure of how well oysters reproduced and their potential population growth — again hit above a 40-year median.“We seem to be making some headway,” said Lynn Waller Fegley, director of fishing and boating services for the Maryland Department of Natural Resources. “With the work we’ve done to help restore oysters, and combined with the fact that we’ve been gifted with some really favorable environmental conditions, we’ve seen the oyster population trend upward.”Oyster-processing companies, oystermen, conservation groups and local fish and wildlife departments in the region have spent years trying to boost the population of oysters, which serve an important role as “filter feeders,” sifting sediment and pollutants such as nitrogen out of the water.The cleaner water in turn spurs underwater grasses to grow, while oyster reefs create habitats for fish, crabs and dozens of other species. Adult oysters can filter up to two gallons of water per hour, making them the bay’s “most effective water filtration system,” according to experts at the Chesapeake Bay Foundation, a nonprofit organization that advocates for the health of the bay.Oysters thrive in brackish water — a mix of saltwater and freshwater. They attach and grow on hard surfaces such as rocks, piers or old shells. Too much rain lowers the salinity, while drought makes water too salty. Both situations can create conditions in which oysters can become vulnerable to disease or unable to reproduce as well.Before the 1880s, the oyster population was so healthy it could filter in a week a volume of water equal to that of the entire bay — about 19 trillion gallons — according to the bay foundation. But now it would take the vastly smaller oyster population more than a year to do the same amount.This fall, biologists in Maryland collected more than 300 oyster samples from the bay and tributaries, including the Potomac River, for their annual survey. The results were promising, experts said, given that 2023 was an unusual year for oysters because drought conditions raised the salinity in the bay.There are several other encouraging signs, experts said. The mortality rate of oysters has stabilized, their “biomass index,” which shows how oyster populations are doing over time, has been increasing for the past 14 years, and an analysis of their habitat showed continued improvements.“They’ve been hit by a pretty severe drought, then got pretty decimated by disease,” Fegley said. “They’ve been cycling back, and we’re now in a state of grace.”Another sign oysters are doing better is their “spat sets” — the process of the tiny larvae (spat) attaching to a hard surface so they can grow into mature oysters. A high number of spat equals successful reproduction. A low number means there are fewer young oysters that will grow into adults.Fegley said last year, the bay’s oysters had “epic, generational spat sets.”“Not only were there a lot of young oysters, which is a good sign of health, but they were distributed through the bay in a way that we had not seen in many years where they were farther up tributaries,” Fegley said. “We’ve had years where the conditions in the bay were just right — with a good balance of salinity levels, no disease and good reproduction.”The success of oysters is also due in part to Maryland and Virginia working over the past few years to build more oyster reefs along the bottom of the bay so oysters could grow successfully, according to Allison Colden, executive director of Maryland for the Chesapeake Bay Foundation. In recent years, she said, more than 1,300 acres of oyster reefs have been replenished in both states.In the past decade, Virginia has also tried to boost its oyster population with aquaculture farms that raise oysters in cages and return their spat to natural waters. The commonwealth increased its number of oyster farms to more than 130 in 2018, up from 60 in 2013, according to the U.S. Department of Agriculture.Last season, Virginia harvested 700,000 bushels of oysters, one of the highest annual harvests since the late 1980s, according to Adam Kenyon, chief of the shellfish management division at the Virginia Marine Resources Commission.Those efforts, plus Mother Nature, have helped create the delicate combination oysters need to survive.“In the last five years, we’ve seen a rebound,” Colden said. “Reproduction has been higher than the long-term average, and we’re seeing more consistency in how they’re doing year-to-year, and that’s a positive sign.”For Jeff Harrison, a fifth-generation waterman who serves as president of the Talbot County Watermen Association, the changes have been like a roller coaster over the 47 years he has made a living off the bay. He’s seen diseases hit, oyster-harvesting seasons shortened, prices fluctuate and many other watermen leave the business because they couldn’t turn a profit.“I’ve seen some of the worst seasons in oystering,” he said. “We’d always have ups and downs. Now we’re seeing a steady up, and we’re hoping we have turned the corner.”

These communities are unaware they’ve lived near toxic gas for decades. Why has no action been taken?

Five facilities near schools and houses in LA County fumigate produce shipped from overseas with methyl bromide. But the air agency doesn’t plan to monitor the air or take any immediate steps to protect people from the gas, which can damage lungs and cause neurological effects.

In summary Five facilities near schools and houses in LA County fumigate produce shipped from overseas with methyl bromide. But the air agency doesn’t plan to monitor the air or take any immediate steps to protect people from the gas, which can damage lungs and cause neurological effects. In a quiet Compton neighborhood near the 710 freeway, children on a recent afternoon chased each other at Kelly Park after school. Parents watched their kids play, unaware of a potential threat to their health.  On the other side of the freeway, just blocks from the park and Kelly Elementary School, a fumigation company uses a highly toxic pesticide to spray fruits and vegetables.  The facility, Global Pest Management, has been emitting methyl bromide, which can cause lung damage and neurological health effects, into the air near the neighborhood for several decades.  Earlier this year, the South Coast Air Quality Management District asked the company — along with four other fumigation facilities in San Pedro and Long Beach — to provide data on their methyl bromide usage. But the air quality agency does not plan to install monitors in the communities that would tell residents exactly what is in their air, or hold community meetings to notify them of potential risks. Instead, the South Coast district has launched a preliminary screening of the five facilities to determine if a full assessment of health risks in the neighborhoods is necessary. But even if that analysis is conducted, the agency won’t require the companies to reduce emissions unless they reach concentrations three times higher than the amounts deemed a health risk under state guidelines, said Scott Epstein, the district’s planning and rules manager. Piedad Delgado, a mother picking up her daughter from the Compton school, said she “didn’t even know” that the hazardous chemical was being used nearby. When a CalMatters reporter told her about the fumigation plant, Delgado wondered if it was causing her daughter’s recent, mysterious bouts of headaches and nausea. “It’s concerning. We may be getting sick but we don’t know why,” she said. For about the past 30 years, the companies have sprayed methyl bromide on imported produce arriving at the ports of Los Angeles and Long Beach to kill harmful pests. Adults and children are shown after school at Kelly Elementary School in Compton, which is near a facility that uses a highly toxic fumigant, methyl bromide. Photo by Joel Angel Juarez for CalMatters Methyl bromide, which was widely used to treat soil on farm fields, has been banned worldwide for most uses since 2005 under a United Nations treaty that protects the Earth’s ozone layer. Exemptions are granted for fumigation of produce shipped from overseas. While little to no residue remains on the food, the gas is vented into the air where it is sprayed. State health officials have classified methyl bromide as a reproductive toxicant, which means it can harm babies exposed in the womb. With acute exposure, high levels can cause headaches, dizziness, nausea and difficulty breathing, while chronic exposure over a year or longer could cause more serious neurological effects, such as learning and memory problems, according to the California Air Resources Board. “It’s concerning. We may be getting sick but we don’t know why.”Piedad Delgado, Compton Resident State and local air quality officials are responsible for enforcing laws and regulations that protect communities from toxic air contaminants such as methyl bromide, while the Los Angeles County Agricultural Commissioner issues the permits to the fumigation companies. After CalMatters reported about the facilities last month, members of Congress representing the communities demanded “greater monitoring, transparency and oversight surrounding these fumigation facilities and their toxic emissions.” “We have serious concerns about the prevalent use of methyl bromide, a toxic pesticide, by container fumigation facilities in Los Angeles County,” U.S. Reps. Nanette Barragán, Maxine Waters and Robert Garcia wrote in an April 11 letter to state and local air regulators and county and federal agricultural officials.  “Several of these fumigation facilities are located close to homes, schools, parks, and other public spaces. Our communities deserve a greater understanding of the levels of toxic emissions from these facilities, the health risks from exposure to such emissions, and the oversight processes in place to ensure all protocols are maintained at these sites,” they wrote. “Our communities deserve a greater understanding of the levels of toxic emissions from these facilities, the health risks from exposure to such emissions, and the oversight processes in place.”U.S. Reps. Nanette Barragán, Maxine Waters and Robert Garcia Even though the San Pedro facility at the Port of Los Angeles and the Compton plant use the largest volumes of methyl bromide — a combined 52,000 pounds a year — the air in nearby communities has never been tested.  The two Long Beach facilities use much less, yet state tests in 2023 and 2024 detected potentially dangerous levels in a neighborhood near an elementary school. South Coast district officials said although certain levels of methyl bromide in the air could cause health effects, it doesn’t necessarily mean immediate action is necessary.  “We don’t want to go out and unnecessarily concern folks if there isn’t (a health concern), but we are actively investigating this right now,” said Sarah Rees, the South Coast district’s deputy executive office for planning, rule development and implementation.   Global Pest Management, which fumigates in Compton and Terminal Island, did not return calls from CalMatters. An employee at the facility declined to comment. A general manager at SPF Terminals in Long Beach also declined to comment.  Greg Augustine, owner of Harbor Fumigation in San Pedro, said his company has been permitted for more than 30 years and complies with all requirements. “To protect the health of our community, the air district establishes permit conditions and we comply with all of those permit conditions,” he said. “Those are vetted by the air district…and they’re all designed to protect the health of our community.”  “To protect the health of our community, the air district establishes permit conditions and we comply with all of those permit conditions.” Greg Augustine, owner of Harbor Fumigation in San Pedro Daniel McCarrel, an attorney representing AG-Fume Services, which fumigates at facilities in Long Beach and San Pedro, did not respond to questions but previously told CalMatters last month that the company is adhering to all of its permit conditions.  High levels found in Long Beach  Back in 2019, during regionwide testing, South Coast district officials detected methyl bromide in the air near the two West Long Beach facilities close to concentrations that could cause long-term health effects. The South Coast district took no action at the time — other than to publish a large study online of all toxic air contaminants throughout the four-county LA basin. Then, several years later, the state Air Resources Board found that the two facilities — SPF Terminals and AG-Fume Services — spewed high concentrations of methyl bromide at various times throughout the year. The state’s air monitor near Hudson Elementary School in West Long Beach — which is just about 1,000 feet from the two facilities — detected an average of 2.1 parts per billion in 2023 through part of 2024. Exposure to as little as 1 ppb for a year or more can cause serious nervous system effects as well as developmental effects on fetuses, according to state health guidelines. Spikes of methyl bromide were as high as 983 and 966 ppb in February and March of 2024. Short-term exposure to 1,000 ppb can cause acute health effects such as nausea, headaches and dizziness.  But state and district air-quality officials didn’t inform nearby residents about any of the monitoring data for longer than a year — not until three months ago, in a community meeting held in Long Beach.  First: Edvin Hernandez, right, waits to pick up his son at Kelly Elementary School in Compton, which is near a fumigation plant. Last: SPF Terminals in Long Beach uses methyl bromide. High levels of the gas were found near an elementary school in West Long Beach. Photos by Joel Angel Juarez and J.W. Hendricks for CalMatters Upon learning of the test results, the Los Angeles County Agricultural Commissioner a few months ago added new permit conditions for SPF Terminals and AG-Fume Services, including shutting doors, installing taller smokestacks and prohibiting fumigation during school hours, according to permits obtained by CalMatters. But the county permits for the three San Pedro and Compton facilities, which use much larger volumes of methyl bromide, remain unchanged, with none of the protections added to the Long Beach permits. And officials still have not held any community meetings there. The agricultural commissioner’s office declined to comment on the facilities. A complex web of ‘hot spots’ rules for methyl bromide About 38% of the methyl bromide used in California for commodity fumigation is in LA County, according to Department of Pesticide Regulation data for 2022. After many Long Beach residents expressed concerns, the South Coast district assessed all nine facilities permitted to use the chemical in the region and determined that five could pose a risk to residents.  Now the agency is going through a complex process outlined under the state’s Air Toxics “Hot Spots” law, enacted in 1987. Usage data, weather patterns and proximity to neighborhoods will be used to calculate a “priority score” for each of the five facilities. If a facility’s score is high enough, then the company will be required to conduct a full health risk assessment to examine the dangers to the community. None of the scores have been released yet. Risk assessments under the air district’s rules are a complicated, multi-step process likely to take many months. Smokestacks are shown at a facility that fumigates imported produce at the Port of Los Angeles in San Pedro. AG-Fume Services and Harbor Fumigation operate at this facility. Photo by Joel Angel Juarez for CalMatters And these health assessments may not trigger any changes at the facilities. It all depends on whether certain thresholds for hazards are crossed. The state Office of Environmental Health Hazard Assessment has set guidelines, called reference exposure levels, for concentrations of methyl bromide that could cause the long-term or short-term health effects, such as respiratory and neurological damage, nausea and fetal effects, based on human and animal studies. But South Coast district officials said action isn’t triggered if methyl bromide exceeds these reference levels. Instead, the district uses a state-created “hazard index” based on them. If a facility’s hazard index reaches one — which means concentrations outside the facility have reached the reference dose and could cause harm — the company must notify the public, under a South Coast district regulation. However, the facilities will only be required to take steps to reduce emissions if the hazard index reaches three — three times the reference level that indicates potential harm, according to that regulation. Expedited action is required under the rule if the index is five times higher.   “Just because it’s above the (reference level), it doesn’t mean it’s going to cause health impacts,” said Ian MacMillan, assistant deputy executive officer at the South Coast air district. He said the reference level indicates “there’s a possibility that there could be health impacts.”  The series of escalating thresholds is designed as a balancing act between regulating facilities and protecting the public, officials said. MacMillan also said methyl bromide emissions must be considered in the context of overall air quality in the region — the entire LA basin has an average hazard index of 5.5 when considering all sources of toxic air pollutants from industries and vehicles, he said. When told about the fumigation plants and lack of air testing and risk assessments, residents contacted by CalMatters were outraged. “There’s no interest from the government to protect our health,” said Edvin Hernandez, a father picking up his 9-year-old son from Kelly Elementary School in Compton. “We’re surviving by the hand of God.” The members of Congress — Barragán, Waters and Garcia — asked air regulators to install monitors near all Los Angeles County fumigation facilities, compile inspection records, conduct health assessments in the communities and provide all of the results on a public website.  “It is egregious that communities in California are still being impacted by this harmful and unnecessary chemical,” said Alison Hahm, a staff attorney with the Natural Resources Defense Council, which is working with community members. “In addition to stopping this ongoing public health threat in West Long Beach and Los Angeles, residents are demanding accountability and remedies for the harm endured.” The methyl bromide facilities in L.A. County are subjected to a different permitting process than elsewhere in California.  That’s because in 1996, the South Coast air district and the Los Angeles County Agricultural Commissioner agreed to share responsibility for regulating fumigating facilities. The agricultural office is tasked with issuing permits and the air agency is in charge of setting emissions limits and enforcing them.   In the Bay Area, the local air district has a similar agreement with agricultural departments that originated in 1997. However, the district decided that agreement is out of date so it is now issuing permits, too. One facility in the Bay Area uses the pesticide, Impact Transportation of Oakland. In 2019, the air district assessed the health risks of that facility and modeled how the fumes spread.   In the San Joaquin Valley, new facilities or those changing their methyl bromide use are subject to a health risk evaluation before a permit is issued. Facilities permitted before the air district was established in 1992 are subject to a review like the one that the South Coast district is now launching in San Pedro and Compton. The Los Angeles Agriculture Commissioner’s office, when asked whether it conducts a risk assessment before issuing permits, declined to answer any questions. CalMatters filed a public records request seeking risk assessments, but they said they had no records matching the request.   South Coast air regulators said they and the commissioner are now considering if any changes to their agreement should be made.  Allowed to use up to a half-ton of methyl bromide a day  Fumigation of produce using methyl bromide occurs within an enclosed facility, and the produce is covered by a tarp when sprayed. The fumes are then released into the atmosphere through tall smokestacks, a process called aeration. CalMatters filed a public records request with the county agricultural office and received the five facilities’ permits for 2023 through 2025. The permits show that the two Long Beach companies are now required to take an array of new precautions to limit fumes emitted into communities that the three Compton and San Pedro families are not — even though the Long Beach ones use much smaller volumes of methyl bromide. The San Pedro and Compton plants are allowed to use up to 1,000 pounds of methyl bromide in a 24-hour period. In contrast, the Long Beach plants can use up to 200 pounds in 24 hours, and in Oakland, Impact Transportation’s permit allows only 108 pounds.  First: Pallets of produce are piled up at the outer berths at the Port of Los Angeles in San Pedro. Last: A tarped area holds a tank that contains a hazardous gas, most likely methyl bromide. A fan and roof vents ventilated the area while garage doors were left open on April 8, 2025. AG-Fume Services and Harbor Fumigation operate at this location. Photos by Joel Angel Juarez for CalMatters The San Pedro and Compton facilities release fumes into the atmosphere during the daytime, except when they use an exhaust stack meeting certain height requirements, according to their permits. The two Long Beach facilities, SPF Terminals and AG Fume Services, have new, additional requirements this year: Fumigation can’t occur between 8:30 a.m. and 3:30 p.m. when a school is within 1,000 feet. And by the end of this month, they must replace their smokestacks with taller ones that are at least 55 feet tall, which disperse the fumes better. All doors must be closed during fumigation and aeration and fans must be used in the aeration process.  ‘We don’t have a choice’ At a ballpark on a recent day in San Pedro, Eastview Little League players took the field.  When a 13-year-old boy on the Pirates team was up to bat, his mom, Amy Shannon, cheered him on.  “Let’s go D! Deep breath boy, you got it!” she shouted.  Then she paused. Maybe she shouldn’t be encouraging her son to take a deep breath, she said. Shannon had just learned from CalMatters about the fumigation facility across the street from the baseball field. Amy Shannon, left, and Roxanne Gasparo, right, attend their children’s Little League game at Bloch Field near the Port of Los Angeles in San Pedro on April 8, 2025. Both women were unaware that a fumigation facility nearby has been using a toxic gas for about 30 years. Photo by Joel Angel Juarez for CalMatters At the facility where AG Fume and Harbor Fumigation operate, located at 2200 Miner Street, it was business as usual that day. A ship was docked on one side of the Los Angeles Port berth. On the other side, hundreds of stacks of fruits and vegetables were visible through several large garage doors.  Some of the stacks were covered with plastic. A tank containing a fumigant — labeled with a hazard sign depicting a skull — was hooked up outside. Yellow smokestacks protruded from the facility.  An AG-Fume Services truck was parked near one of the garage doors. Workers wearing yellow vests and sun-protective hats closed the garage doors, but left them slightly open at the bottom.  At the baseball field, Shannon watched the game with a friend, Roxanne Gasparo. Both women grew up in San Pedro. Gasparo said she wasn’t at all surprised to learn that a dangerous gas could be in their air.   “Because it’s a port town, unfortunately, we’re used to pollution. We have the port, obviously, and all the refineries next to us,” Gasparo said. “There’s really no way to get out of it unless you leave the city, and because most of the families here are blue collar families that rely on the unions, we kind of don’t have a choice,” she added. “We just deal with it and raise our kids the best we can.” More about air pollution in port communities ‘We should be in crisis mode’: Toxic fumigant could be seeping into these communities March 21, 2025March 26, 2025 Polluted communities hold their breath as companies struggle with California’s diesel truck ban December 10, 2024December 10, 2024

Costa Rica Ghost Net Cleanup Saves Marine Life in Puntarenas

For the Oceans Foundation successfully completed the first stage of its ghost net rescue campaign in Costa de Pájaros, Puntarenas, removing approximately 15 tons of abandoned fishing nets from the seabed, enough to nearly fill a 20-ton truck, according to social media reports and foundation statements. The initiative aims to eliminate these silent killers that […] The post Costa Rica Ghost Net Cleanup Saves Marine Life in Puntarenas appeared first on The Tico Times | Costa Rica News | Travel | Real Estate.

For the Oceans Foundation successfully completed the first stage of its ghost net rescue campaign in Costa de Pájaros, Puntarenas, removing approximately 15 tons of abandoned fishing nets from the seabed, enough to nearly fill a 20-ton truck, according to social media reports and foundation statements. The initiative aims to eliminate these silent killers that harm marine life and promote sustainable fishing practices in Costa Rica’s coastal communities, a critical step toward preserving ourcountry’s rich biodiversity. Ghost nets are abandoned, lost, or discarded fishing gear that continue to trap marine life, such as fish, sea turtles, dolphins, and sharks, while damaging coral reefs and seagrass beds. Globally, an estimated 640,000 tons of ghost gear pollute the oceans, contributing to 10% of oceanic litter, according to the Food and Agriculture Organization. In Costa Rica, these nets threaten iconic species like the hawksbill turtle and disrupt artisanal fishing livelihoods, exacerbating ocean pollution and habitat loss. The cleanup effort united 20 artisanal fishing families, professional rescue divers, and more than 60 volunteers, showcasing community-driven conservation. The operation was led by Captain Gabriel Ramírez of UDIVE 506, with eight fishing boats navigating the Gulf of Nicoya’s challenging currents. Reportedly, organizations including the Parlamento Cívico Ambiental, ACEPESA, Coast Guard, Red Cross, IPSA, REX Cargo, and Cervecería y Bebidas San Roque provided logistical support, transportation, hydration, and assistance with sorting and processing the recovered nets. Marine Biology students from the National University (UNA) played a key role by preparing the nets for recycling, ensuring minimal environmental impact. “Each of us can contribute to the environment. This is not for me or for you—it’s for Costa Rica, for the planet, and for marine life,” said Jorge Serendero, Director of Fundación For the Oceans. This cleanup builds on Costa Rica’s leadership in marine conservation, with over 30% of its territorial waters protected as of 2021, a global benchmark. The foundation reported a tense moment when a diver became entangled in a drifting net due to strong currents. Thanks to the quick action of his colleagues, he was freed unharmed, underscoring the risks of such operations. This campaign highlights the power of collective action in protecting marine ecosystems, a priority for Costa Rica as it expands marine protected areas like Cocos Island. Fundación For the Oceans plans additional cleanups in 2025 to address ghost nets across Costa Rica’s Pacific coast. Interested individuals can contact For the Oceans Foundation at info@fortheoceansfoundation.org or +506 8875-9393 to volunteer, donate, or learn about upcoming initiatives to safeguard the oceans. The post Costa Rica Ghost Net Cleanup Saves Marine Life in Puntarenas appeared first on The Tico Times | Costa Rica News | Travel | Real Estate.

Commercial salmon season is shut down — again. Will California’s iconic fish ever recover?

While it’s an unprecedented third year in a row for no commercially caught salmon, brief windows will be allowed for sportsfishing in California.

In summary While it’s an unprecedented third year in a row for no commercially caught salmon, brief windows will be allowed for sportsfishing in California. Facing the continued collapse of Chinook salmon, officials today shut down California’s commercial salmon fishing season for an unprecedented third year in a row.  Under the decision by an interstate fisheries agency, recreational salmon fishing will be allowed in California for only brief windows of time this spring. This will be the first year that any sportfishing of Chinook has been allowed since 2022. Today’s decision by the Pacific Fishery Management Council means that no salmon caught off California can be sold to retail consumers and restaurants for at least another year. In Oregon and Washington, commercial salmon fishing will remain open, although limited. “From a salmon standpoint, it’s an environmental disaster. For the fishing industry, it’s a human tragedy, and it’s also an economic disaster,” said Scott Artis, executive director of the Golden State Salmon Association, an industry organization that has lobbied for river restoration and improved hatchery programs.  The decline of California’s salmon follows decades of deteriorating conditions in the waterways where the fish spawn each year, including the Sacramento and Klamath rivers. California’s salmon are an ecological icon and a valued source of food for Native American tribes. The shutdown also has an economic toll: It has already put hundreds of commercial fishers and sportfishing boat operators out of work and affected thousands of people in communities and industries reliant on processing, selling and serving locally caught salmon.  California’s commercial fishery has never been closed for three years in a row before.  Some experts fear the conditions in California have been so poor for so long that Chinook may never rebound to fishable levels. Others remain hopeful for major recovery if the amounts of water diverted to farms and cities are reduced and wetlands kept dry by flood-control levees are restored.  This year’s recreational season includes several brief windows for fishing, including a weekend in June and another in July, or a quota of 7,000 fish.   Jared Davis, owner and operator of the Salty Lady in Sausalito, one of dozens of party boats that take paying customers fishing, thinks it’s likely that this quota will be met on the first open weekend for recreational fishing, scheduled for June 7-8.   “Obviously, the pressure is going to be intense, so everybody and their mother is going to be out on the water on those days,” he said. “When they hit that quota, it’s done.” One member of the fishery council, Corey Ridings, voted against the proposed regulations after saying she was concerned that the first weekend would overshoot the 7,000-fish quota. Davis said such a miniscule recreational season won’t help boat owners like him recover from past closures, though it will carry symbolic meaning. “It might give California anglers a glimmer of hope and keep them from selling all their rods and buying golf clubs,” he said.  “It continues to be devastating. Salmon has been the cornerstone of many of our ports for a long time.”Sarah Bates, commercial fisher based in San Francisco Sarah Bates, a commercial fisher based at San Francisco’s Fisherman’s Wharf, said the ongoing closure has stripped many boat owners of most of their income.  “It continues to be devastating,” she said. “Salmon has been the cornerstone of many of our ports for a long time.” She said the shutdown also has trickle-down effects on a range of businesses that support the salmon fishery, such as fuel services, grocery stores and dockside ice machines. “We’re also seeing a sort of a third wave … the general seafood market for local products has tanked,” such as rockfish and halibut. She said that many buyers are turning to farmed and wild salmon delivered from other regions instead. Davis noted that federal emergency relief funds promised for the 2023 closure still have not arrived. “Nobody has seen a dime,” he said.  Fewer returning salmon Before the Gold Rush, several million Chinook spawned annually in the river systems of the Central Valley and the state’s northern coast. Through much of the 20th century, California’s salmon fishery formed the economic backbone of coastal fishing ports, with fishers using hook and line pulling in millions of pounds in good years.  But in 2024, just 99,274 fall-run Chinook — the most commercially viable of the Central Valley’s four subpopulations — returned to the Sacramento River and its tributaries, substantially lower than the numbers in 2023. In 2022, fewer than 70,000 returned, one of the lowest estimates ever. About 40,000 returned to the San Joaquin River. Fewer than 30,000 Chinook reached their spawning grounds in the Klamath River system, where the Hoopa, Yurok and Karuk tribes rely on the fish in years of abundance.  The decline of California’s salmon stems from nearly two centuries of damage inflicted on the rivers where salmon spend the first and final stages of their lives. Gold mining, logging and dam construction devastated watersheds. Levees constrained rivers, turning them into relatively sterile channels of fast-moving water while converting floodplains and wetlands into irrigated farmland.  Today, many of these impacts persist, along with water diversions, reduced flows and elevated river temperatures that frequently spell death for fertilized eggs and juvenile fish. The future of California salmon is murky Peter Moyle, a UC Davis fish biologist and professor emeritus, said recovery of self-sustaining populations may be possible in some tributaries of the Sacramento River.  “There are some opportunities for at least keeping runs going in parts of the Central Valley, but getting naturally spawning fish back in large numbers, I just can’t see it happening,” he said. Jacob Katz, a biologist with the group California Trout, holds out hope for a future of flourishing Sacramento River Chinook. “We could have vibrant fall-run populations in a decade,” he said.  That will require major habitat restoration involving dam removals, reconstruction of levee systems to revive wetlands and floodplains, and reduced water diversions for agriculture — all measures fraught with cost, regulatory constraints, and controversy.  “There are some opportunities for at least keeping (salmon) runs going in parts of the Central Valley, but getting naturally spawning fish back in large numbers, I just can’t see it happening.”Peter moyle, uc davis fish biologist State officials, recognizing the risk of extinction, have promoted salmon recovery as a policy goal for years. In early 2024, the Newsom administration released its California Salmon Strategy for a Hotter, Drier Future, a 37-page catalogue of proposed actions to mitigate environmental impacts and restore flows and habitat, all in the face of a warming environment.  Artis of Golden State Salmon Association said the state’s salmon strategy includes some important items but leaves out equally critical ones, like protecting minimum required flows for fish — what Artis said are threatened by proposed water projects endorsed by the Newsom administration. “It fails to include some of the upcoming salmon-killing projects that the governor is pushing like Sites Reservoir and the Delta tunnel, and it ignores the fact that the Voluntary Agreements are designed to allow massive diversions of water,” he said. Experts agree that an important key to rebuilding salmon runs is increasing the frequency and duration of shallow flooding in riverside riparian areas, or even fallow rice paddies — a program Katz has helped develop through his career.  On such seasonal floodplains, a shallow layer of water can help trigger an explosion of photosynthesis and food production, ultimately providing nutrition for juvenile salmon as they migrate out of the river system each spring.  Through meetings with farmers, urban water agencies and government officials, Rene Henery, California science director with Trout Unlimited, has helped draft an ambitious salmon recovery plan dubbed “Reorienting to Recovery.” Featuring habitat restoration, carefully managed harvests and generously enhanced river flows — especially in dry years — this framework, Henery said, could rebuild diminished Central Valley Chinook runs to more than 1.6 million adult fish per year over a 20-year period.  He said adversaries — often farmers and environmentalists — must shift from traditional feuds over water to more collaborative programs of restoring productive watersheds while maintaining productive agriculture. As the recovery needle for Chinook moves in the wrong direction, Katz said deliberate action is urgent.  “We’re balanced on the edge of losing these populations,” he said. “We have to go big now. We have no other option.” more about salmon ‘No way, not possible’: California has a plan for new water rules. Will it save salmon from extinction? by Alastair Bland December 16, 2024December 16, 2024 A third straight year with no California salmon fishing?  Early fish counts suggest it could happen by Alastair Bland October 30, 2024October 30, 2024

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.