Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

Horse Domestication Story Gets a Surprising Rewrite

News Feed
Tuesday, November 19, 2024

The world we live in was built on horseback. Many people today rarely encounter horses, but this is a recent development. Only a few decades ago domestic horses formed the fabric of societies around the globe. Almost every aspect of daily life was linked to horses in an important way. Mail was delivered by postal riders, people traveled by horse-drawn carriage, merchants used horses to transport goods across continents, farmers cultivated their land with horsepower, and soldiers rode horses into battle.Scholars have long sought to understand how the unique partnership between humans and horses got its start. Until recently, the conventional wisdom was that horses were gradually domesticated by the Yamnaya people beginning more than 5,000 years ago in the grassy plains of western Asia and that this development allowed these people to populate Eurasia, carrying their early Indo-European language and cultural traditions with them.Now new kinds of archaeological evidence, in conjunction with interdisciplinary collaborations, are overturning some basic assumptions about when—and why—horses were first domesticated and how rapidly they spread across the globe. These insights dramatically change our understanding of not only horses but also people, who used this important relationship to their advantage in everything from herding to warfare. This revised view of the past also has lessons for us today as we consider the fate of endangered wild horses in the steppes. And it highlights the essential value of Indigenous knowledge in piecing together later chapters of the horse-human story, when domesticated horses moved from Eurasia into the rest of the world.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.The genus Equus, which includes horses, asses and zebras, originated around four million years ago in North America. Over the next few million years its members began dispersing across the Beringia land bridge between what is now Russia and Alaska and into Asia, Europe and Africa. Horses are among humanity’s oldest and most prized prey animals. Perhaps the first indisputable evidence for hunting with weapons by early members of the human family comes from horse-rich archaeological sites such as Schöningen in Germany, dating to some 300,000 years ago. The unique lakeshore environment there preserved not only the remains of a band of horses but also the immaculately crafted wood spears that humans used to dispatch them. For millennia wild horses remained a dietary staple for early Homo sapiens living in northern Eurasia. People were keen observers of these animals they depended on for food: horses featured prominently in Ice Age art, including in spectacular images rendered in charcoal on the limestone walls of France’s Chauvet Cave more than 30,000 years ago.Horses served as muses for Ice Age people, who captured their likenesses in spectacular works of art, such as the images in France’s Chauvet Cave that date to more than 30,000 years ago.Heritage Images/Getty ImagesTracking the transition from this ancient predator-prey connection to early domestication—which includes such activities as raising, herding, milking and riding horses—can be challenging. Researchers studying the deep past rarely have the luxury of written documents or detailed imagery to chronicle changing relationships between people and animals. This is especially true in the Eurasian steppes—the cold, dry, remote grasslands where scientists suspect that the first horse herders emerged, which stretch from eastern Europe nearly to the Pacific. In the steppes, cultures have long been highly mobile, moving herds to fresh pastures with the changing seasons. Their way of life left behind archaeological assemblages that can be shallow, poorly preserved and difficult to study. Indeed, much of what we know about the origins of horse domestication comes from a single, powerful scientific source: the bones of ancient horses themselves.But it wasn’t until much later that people domesticated horses, as evidenced by burials at sites such as Novoil’inovskiy in Russia dating to the early second millennium B.C.E.As an archaeozoologist, I seek to understand the origins of domestication through the study of horse bones from archaeological sites. In the early days of this kind of scientific inquiry into domestication, some researchers looked for patterns in the size, shape or frequency of these bones over time. The basic logic behind this approach is that if horses were living in close contact with people, their bones might have become more widespread or more variable in shape and size than in earlier periods, whether because people were breeding them for particular traits or because they were putting the horses to work in ways that altered the animals’ bodies over the course of their life, among other factors.Burials of horses and chariots establish that early domesticated horses were used for transport.But it turns out that looking for these types of patterns in the archaeological rec­ord is a little bit like reading tea leaves. Changes in the shape or number of horse bones found at ancient sites could be caused by any number of other things, from environmental change to shifting human diets or even sampling errors. At best, these indicators give us only an indirect way to trace the origin of herding or riding.A stronger, more scientific understanding of horse domestication began to take shape in the 1990s. Building on the work of some earlier scholars, archaeologist David Anthony of Hartwick College in New York State and his colleagues identified direct evidence for domestication in horse remains, publishing their findings in Scientific American. When horses are used by people for transportation, they sometimes develop a particular pattern of damage on their teeth from the equipment that is used to control them. This damage, known as bit wear, can often be seen on the lower second premolar of horses ridden with metal mouthpieces, or bits. Anthony and his colleagues found bit wear in an ancient horse from a Ukrainian site known as Deriyevka, which was thought to have been home to an archaeological culture known as the Yamnaya people. Although the Deriyevka horse had not been directly dated, its association with the Yamnaya culture suggested that herders in the Eurasian steppes might have been raising and riding domestic horses by the fourth millennium B.C.E. or even earlier.The Deriyevka horse seemed to tie together a number of loose threads in scientists’ understanding of ancient Eurasia. Beginning after 6,000 years ago, during a period called the Eneolithic (also sometimes known as the Copper Age), large human burial mounds known as kurgans appeared across much of eastern and central Europe and the western steppes. Over the years many archaeologists and scholars hypothesized a connection linking kurgans, the spread of Indo-European languages and the first horse domestication. Specifically, they proposed that the Yamnaya people tamed horses in the Black Sea steppes and then swept across Eurasia on horseback, bringing their burial customs and an early form of Indo-European language—which is believed to have given rise to many languages spoken today, including English. On the heels of Anthony’s discovery, this framework, known as the kurgan hypothesis, gained wide currency in academic literature and popular consciousness.Unfortunately, the Deriyevka horse was not what it seemed. A decade later direct radiocarbon dating of the remains showed that the animal wasn’t nearly as old as Anthony thought. Instead it had lived and died sometime in the early first millennium B.C.E., when domestic horses and horseback riding were already widespread and well documented. But rather than rejecting the kurgan hypothesis entirely, archaeologists continued to explore other animal-bone assemblages from the western steppes dating to around the same period, searching for horse bones to validate the idea. During this search one site in particular drew renewed interest: Botai, located in northern Kazakhstan.Botai sits some distance east of the Yamnaya homeland. Despite lacking any obvious cultural connections to the Yamnaya, Botai is also located in the western steppes, and like Deriyevka, it dates to the fourth millennium B.C.E. Most interesting, the animal-bone assemblage recovered from excavations at Botai contained huge numbers of horses. In fact, among thousands of animal bones from Botai, almost all were from horses. Working with these materials, archaeologists began to discuss the relevance of Botai’s horses to the question of early domestication.Early on, the Botai domestication debate was a spicy one. First Anthony and his colleagues suggested that the strange surface shape of some Botai teeth was also a form of bit wear, hinting that the Botai horses were ridden. Soon, though, Sandra Olsen, now at the University of Kansas, identified the same features in wild horses, meaning they could not be taken as proof of domestication on their own. Scholars also looked at contextual aspects of the Botai site, including the architectural layout, speculating that post holes and backfilled pit houses filled with organic material could be leftover traces of corrals and corral cleaning.Still, other scientists remained skeptical—for good reason. Some Botai horses were found with harpoons directly embedded in their ribs, obviously killed by hunters. An even bigger problem with connecting Botai to domestication, though, was the age and sex patterns among the animals found at the site. In a managed herd of horses, those chosen for slaughter are either very young or very old because breeding-­age animals are needed to ensure the herd’s fertility and survival. Marsha Levine and her colleagues pointed out, however, that Botai’s bone assemblage consisted mainly of the remains of mostly healthy adults. Moreover, the site contained large numbers of breeding-age females, as well as some fetal and neonatal horses from pregnant mares. The slaughter of these animals would be devastating to the fertility of a domestic herd, but evidence of it is common in archaeological sites where wild animals were hunted for food.This healthy disagreement over domestication at Botai was temporarily quashed in 2009, when a high-­profile publication in the journal Science brought together new evidence apparently showing that people from Botai milked and rode horses. The authors looked at the shape of the bones of horses at Botai and argued they were similar to the modern domestic horse, Equus caballus. Using emerging techniques for the study of ancient biomolecules, scientists also analyzed ceramic shards from Botai and found residues that seemed to have come from ancient horse fats. These residues, though not diagnostic of milk on their own, had anomalous isotope values, suggesting they could have originated from milk.The most important new argument, though, was that some Botai horses displayed a different kind of tooth damage that the researchers said could be more securely linked to use of a bridle. With new results from Botai strengthening con­fidence in the idea of horse domestica­­tion during the fourth millennium B.C.E., the kurgan hypothesis returned to paradigm status.In the decade and a half since Botai revived the kurgan hypothesis, our archaeozoological tool kit for understanding ancient horses has grown by leaps and bounds. And one by one these new techniques and discoveries have begun to erode the connections between Botai and horse domestication. In a recent study, my colleagues and I analyzed dozens of wild horses from Ice Age sites across North America. Our research showed that the key features interpreted as evidence of bridle and bit use at Botai were probably the result of natural variation rather than horse riding or horse equipment.Moreover, we now know that many other aspects of horse riding can leave a recognizable signature in an animal’s teeth and bones. Halters, saddles and harnesses can make distinctive marks. And different activity patterns, from heavy exertion to confinement, also have identifiable impacts. For instance, the pressure from mounted riding or from pulling a carriage or chariot can each cause unique problems in a horse’s vertebral column or lower limbs. Even early veterinary practices such as dentistry are sometimes visible in the archaeological rec­ord. So far none of these more reliable indicators of domestication have been found in Botai horses.Horses from the site of Botai are now known to have belonged to a wild horse species, Przewalski’s horse, that was hunted for food. Conservation efforts are currently underway to restore this highly endangered species.Sven Zellner/Agentur Focus/ReduxWe can also look to DNA for clues. Improvements in ancient-DNA sequencing now allow scientists to reconstruct partial or whole genomic sequences from archaeological remains. Analysis of DNA from ancient people and animals has yielded some rather remarkable findings, documenting, for example, the migration of Yamnaya people from eastern Europe as far east as Siberia and Mongolia during the late fourth millennium B.C.E. These same techniques have shown no evidence of interaction between Yamnaya people and Botai, however.Likewise, new techniques for recovering ancient proteins from human dental plaque have shown no evidence of horse milk in the diet of the people who lived at Botai. In fact, horse milk apparently didn’t become widespread in western Asia until the first millennium B.C.E., 3,000 years after the Yamnaya and Botai.The most devastating blow to the kurgan hypothesis came accidentally from a 2018 genomic study by Charleen Gaunitz of the University of Copenhagen, Ludovic Orlando of the Center of Anthropobiology and Genomics of Toulouse in France and their colleagues that showed Botai horses were not the ancestors of domestic horses at all. Rather they were members of another horse species that still survives today, known as Przewalski’s horse. Przewalski’s horse is a close relative of domestic horses but one that has never been managed as a domestic animal in recorded history.Recent archaeological and genetic insights into horse domestication have relevance for understanding the horse human relationship today. Discoveries of an ancient saddle and other tack in Mongolia show that steppe cultures helped to invent technology that is still in use.Some scientists remain convinced that Botai has some connection to early domestication but now suggest that the site represents an earlier, failed effort at taming and control of Przewalski’s horse. In their 2018 study, Gaunitz and her colleagues went so far as to argue that modern Prze­walski’s horses might be the escaped descendants of domesticated Botai horses, a conclusion that many others in the scientific community felt was unsupported.The Botai debate has had important real-­world impacts for Przewalski’s horse. In the 20th century Przewalski’s horses went extinct in the wild, and zoo populations dwindled almost to the single digits. In recent decades these horses have returned from the brink through a careful captive-breeding program, and they have been reintroduced into some areas of Central Asia. This past June a new band of Przewalski’s horses from the Prague Zoo was released into the grasslands of central Kazakhstan, marking the first return of this species to the region in two centuries.In the long term, the success and funding of such conservation projects may hinge heavily on public support, making it imperative to get the story straight. Media attention around Botai has sometimes generated headlines suggesting that Przewalski’s horses “aren’t wild after all” and are instead domestic escapees. Narratives like these are no longer supported by the archaeological data and can imperil ongoing protection, conservation and restoration of habitat for this highly endangered species.Despite some lingering controversy over Botai, the available data emerging from new scientific approaches to studying the past paint a much clearer picture of horse domestication than we’ve ever had before. The recent spate of genomic sequencing and radiocarbon dating of horse bones from across Eurasia has all but disproved the kurgan hypothesis. Such data show us that important cultural developments in the fourth millennium B.C.E.—including the Yamnaya migration and the dissemination of kurgans and Indo-­European culture—probably took place many centuries before the first horses were domesticated, aided by the spread of other livestock such as sheep, goats and cattle and the use of cattle to pull wagons. Meanwhile many steppe people still hunted wild horses for meat.New genomic analyses led by Pablo Librado of the Institute of Evolutionary Biology in Barcelona and Orlando indicate that the ancestors of modern domestic horses originated in the Black Sea steppes around 2200 B.C.E., nearly 2,000 years later than previously thought. Although we do not yet know exactly the details of their initial domestication, it is clear based on the timing that these horses belonged to post-Yamnaya culture. Patterns in the ancient genomes suggest that in the early centuries of domestication, the horse cultures of the western steppe were selectively breeding these animals for traits such as strength and docility.Horses have figured prominently in the traditions and values of the Lakota and many other Native Nations across the Great Plains and Rockies.Courtesy of the Global Institute for Traditional SciencesThis revised timeline for horse domestication is part of a growing body of evidence that casts the Yamnaya legacy in a new light. Early Indo-European cultures such as the Yamnaya are sometimes portrayed in popular culture in a nationalist manner, with links drawn between their supposed domestication of the horse, impressive transcontinental migrations, and cultural dominance. Now science indicates that the Yamnaya probably didn’t domesticate horses at all, and their migrations were not necessarily heroic conquests. For example, new genomic data show that by around 5,000 years ago Yamnaya migrants reached as far as central Mongolia, where they are known as the Afa­nasievo culture. Although these migrants may have helped spread sheep, goats and cattle into East Asia, initially it seems their impact was limited to a few mountain regions of the eastern steppe. After the Yamnaya arrival, it would be almost 2,000 years before horses showed up in the region. And genomic analyses suggest that their Afanasievo descendants had little lasting genetic effect on later populations.The revelation that people domesticated horses much later than previously thought resolves what was always a nagging problem with the kurgan hypothesis. If horses were domesticated in the Eneolithic, why did it take centuries for much of their impact to show up in the archaeological record? Under the kurgan model, researchers often framed horse domestication as a gradual development to explain why it took so long for horses to move beyond the steppes and revolutionize trade and conflicts, for instance. When we look at our records of the past with this revised time frame for horse domestication in mind, there appears to be the rapid, disruptive and dynamic development we expected to see after all.In our new understanding it seems that almost as soon as people tamed horses, they began using them for transport. Some of the earliest robust archaeological evidence of horse domestication comes from burials of horses paired with chariots dated to around 2000 B.C.E. at sites associated with Russia’s Sintashta culture. Radiocarbon-dating and genetic records show that within only a few centuries domestic horses spread over huge swaths of the Eurasian continent. In some cases, their expansion was peaceful: as availability of horses grew across the steppes, new people incorporated horses, herding and transport into their way of life. In other instances, domesticated horses reached new locales through destructive conquests by marauding charioteers. Some cultures riding this wave of horse-drawn expansion were Indo-European; others weren’t.A nomadic family corrals livestock on horseback in Central Mongolia.Timothy Allen/Getty ImagesBy the middle of the second millennium B.C.E., horsepower had reached civilizations from Egypt and the Mediterranean to Scandinavia in the north and Mongolia and China in the east. In many cases, the arrival of horses upended the balance of power. For example, when horses first arrived in China during the late Shang dynasty, around 3,200 years ago, they were mostly a novelty for the elite. But within little more than a century a rival power, the Western Zhou, was able to marshal its strength and skill in chariotry to bring a dramatic end to Shang rule. In very short order, horses went from being a steppe curiosity to the foundation of authority for one of the largest civilizations of East Asia.In addition to clearing up these early chapters of the human-horse story, scientific archaeology has also uncovered connections between the horse cultures of the distant past and our world today. Archaeological discoveries and genomic data from the steppes and deserts of Central Asia are revealing the ways that horses and horseback riding helped humans form networks, trade routes and empires linking the ancient world in new ways.On horseback, people traveled steppe networks and the Silk Roads to move goods, plants, animals, ideas and even early pandemic diseases across Eurasia and beyond. These emerging transcontinental connections can be directly observed in the archaeological record. In Mongolia, a royal tomb from the early steppe kingdom of the Xiongnu dating to somewhere around 100 B.C.E. was found to contain a silver plate with a picture of the Greek demigod Hercules on it. Historical records document expeditions from China to Central Asia’s Ferghana Valley in search of horses, an early step in the formation of the Silk Roads trade routes, and during the height of the Tang Dynasty, a thriving trade sent horses from the Tibetan Plateau and the Himalaya to lowland China in exchange for tea. Recent DNA sequencing of the plague-­causing bacterium Yersinia pestis suggests that the earliest strains of the virus that devastated Europe first emerged deep in deserts, mountains and steppes of Central Asia before spreading along the horse-powered steppe corridors and Silk Roads in the early 14th century.The corridors and connections that ancient equestrians forged persist today: Ancient travel routes across the Mongolian steppe are now receiving makeovers with Chinese financing to serve as high-speed highways for motor vehicle transit. Even the state highway I take for my daily commute in Boulder, Colo., got its start as a 19th-century postal road.New archaeology discoveries show that steppe cultures helped to invent or spread important technologies that improved control over horses and are still used today. In Mongolia, my collaborators and I have discovered immaculately preserved ancient tack from some 1,600 years ago. This riding technology, which includes a wood frame saddle and iron stirrups, shows that steppe cultures helped to develop these equestrian devices, which gave riders greater seat stability and the ability to brace or stand in the saddle—significant advantages when it came to mounted warfare. These tools became a standard part of horse equipment in cultures all over the world, from the caliphates of Islam to the Viking explorers of the high Arctic.Archaeological science also allows us to trace the spread of domesticated horses out of Eurasia as people transported them to such places as the Sahel savanna of Africa, the Great Plains of North America, the Pampas of South America, and even island nations of Australasia and the Pacific, where horses shaped cultures across more recent periods. This work is showing some surprising results.Recently I worked with a large team of scientists, scholars and Indigenous knowledge keepers to see what archaeology, genomics and Indigenous knowledge systems could tell us about the history of domesticated horses in the U.S. The prevailing view among Western scientists was that Native American peoples did not begin caring for horses until after the Pueblo Revolt of 1680, when Pueblo people in what is now New Mexico overthrew Spanish colonizers. Through our collaboration we found that Native nations from across the Plains and Rockies adopted horses at least a century earlier than was ever chronicled in European historical records. This finding confirms perspectives preserved in some oral traditions and Tribal histories and mirrors our scholarship from similar archaeological contexts in Patagonia.Many Indigenous horse cultures, for whom a connection with horses is a source of strength, resilience and tradition, are now drawing on collaborative and interdisciplinary archaeological scholarship in their efforts to correct narratives, conserve traditional horse lineages and secure a place for horses in our changing world.In many ways, the disappearance of horses from daily life in the past century has been as rapid and jarring as their initial domestication 4,000 years ago. In most corners of the world speedy mechanization has replaced trails with pavement and horse transport with engine-powered or electric alternatives. These days, along the Front Range of the Rockies, people wearing jeans and cowboy hats once designed for life in the saddle are more likely to be found shopping at Whole Foods than slinging lassos.But the threads linking our ever changing present to the distant past are never far if you know where to look. Resolution of some of the most urgent problems of the 21st century—from saving endangered species to conserving cultural knowledge and traditions—will require a clear-headed and scientifically grounded understanding of the millennia-long relationship between human and horse.

Archaeological and genetic discoveries topple long-standing ideas about the domestication of equines

The world we live in was built on horseback. Many people today rarely encounter horses, but this is a recent development. Only a few decades ago domestic horses formed the fabric of societies around the globe. Almost every aspect of daily life was linked to horses in an important way. Mail was delivered by postal riders, people traveled by horse-drawn carriage, merchants used horses to transport goods across continents, farmers cultivated their land with horsepower, and soldiers rode horses into battle.

Scholars have long sought to understand how the unique partnership between humans and horses got its start. Until recently, the conventional wisdom was that horses were gradually domesticated by the Yamnaya people beginning more than 5,000 years ago in the grassy plains of western Asia and that this development allowed these people to populate Eurasia, carrying their early Indo-European language and cultural traditions with them.

Now new kinds of archaeological evidence, in conjunction with interdisciplinary collaborations, are overturning some basic assumptions about when—and why—horses were first domesticated and how rapidly they spread across the globe. These insights dramatically change our understanding of not only horses but also people, who used this important relationship to their advantage in everything from herding to warfare. This revised view of the past also has lessons for us today as we consider the fate of endangered wild horses in the steppes. And it highlights the essential value of Indigenous knowledge in piecing together later chapters of the horse-human story, when domesticated horses moved from Eurasia into the rest of the world.


On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.



The genus Equus, which includes horses, asses and zebras, originated around four million years ago in North America. Over the next few million years its members began dispersing across the Beringia land bridge between what is now Russia and Alaska and into Asia, Europe and Africa. Horses are among humanity’s oldest and most prized prey animals. Perhaps the first indisputable evidence for hunting with weapons by early members of the human family comes from horse-rich archaeological sites such as Schöningen in Germany, dating to some 300,000 years ago. The unique lakeshore environment there preserved not only the remains of a band of horses but also the immaculately crafted wood spears that humans used to dispatch them. For millennia wild horses remained a dietary staple for early Homo sapiens living in northern Eurasia. People were keen observers of these animals they depended on for food: horses featured prominently in Ice Age art, including in spectacular images rendered in charcoal on the limestone walls of France’s Chauvet Cave more than 30,000 years ago.

Illustrations/images in France’s Chauvet Cave of horses

Horses served as muses for Ice Age people, who captured their likenesses in spectacular works of art, such as the images in France’s Chauvet Cave that date to more than 30,000 years ago.

Heritage Images/Getty Images

Tracking the transition from this ancient predator-prey connection to early domestication—which includes such activities as raising, herding, milking and riding horses—can be challenging. Researchers studying the deep past rarely have the luxury of written documents or detailed imagery to chronicle changing relationships between people and animals. This is especially true in the Eurasian steppes—the cold, dry, remote grasslands where scientists suspect that the first horse herders emerged, which stretch from eastern Europe nearly to the Pacific. In the steppes, cultures have long been highly mobile, moving herds to fresh pastures with the changing seasons. Their way of life left behind archaeological assemblages that can be shallow, poorly preserved and difficult to study. Indeed, much of what we know about the origins of horse domestication comes from a single, powerful scientific source: the bones of ancient horses themselves.

Bones in a burial site

But it wasn’t until much later that people domesticated horses, as evidenced by burials at sites such as Novoil’inovskiy in Russia dating to the early second millennium B.C.E.

As an archaeozoologist, I seek to understand the origins of domestication through the study of horse bones from archaeological sites. In the early days of this kind of scientific inquiry into domestication, some researchers looked for patterns in the size, shape or frequency of these bones over time. The basic logic behind this approach is that if horses were living in close contact with people, their bones might have become more widespread or more variable in shape and size than in earlier periods, whether because people were breeding them for particular traits or because they were putting the horses to work in ways that altered the animals’ bodies over the course of their life, among other factors.

Burials of horses and chariots

Burials of horses and chariots establish that early domesticated horses were used for transport.

But it turns out that looking for these types of patterns in the archaeological rec­ord is a little bit like reading tea leaves. Changes in the shape or number of horse bones found at ancient sites could be caused by any number of other things, from environmental change to shifting human diets or even sampling errors. At best, these indicators give us only an indirect way to trace the origin of herding or riding.

A stronger, more scientific understanding of horse domestication began to take shape in the 1990s. Building on the work of some earlier scholars, archaeologist David Anthony of Hartwick College in New York State and his colleagues identified direct evidence for domestication in horse remains, publishing their findings in Scientific American. When horses are used by people for transportation, they sometimes develop a particular pattern of damage on their teeth from the equipment that is used to control them. This damage, known as bit wear, can often be seen on the lower second premolar of horses ridden with metal mouthpieces, or bits. Anthony and his colleagues found bit wear in an ancient horse from a Ukrainian site known as Deriyevka, which was thought to have been home to an archaeological culture known as the Yamnaya people. Although the Deriyevka horse had not been directly dated, its association with the Yamnaya culture suggested that herders in the Eurasian steppes might have been raising and riding domestic horses by the fourth millennium B.C.E. or even earlier.

The Deriyevka horse seemed to tie together a number of loose threads in scientists’ understanding of ancient Eurasia. Beginning after 6,000 years ago, during a period called the Eneolithic (also sometimes known as the Copper Age), large human burial mounds known as kurgans appeared across much of eastern and central Europe and the western steppes. Over the years many archaeologists and scholars hypothesized a connection linking kurgans, the spread of Indo-European languages and the first horse domestication. Specifically, they proposed that the Yamnaya people tamed horses in the Black Sea steppes and then swept across Eurasia on horseback, bringing their burial customs and an early form of Indo-European language—which is believed to have given rise to many languages spoken today, including English. On the heels of Anthony’s discovery, this framework, known as the kurgan hypothesis, gained wide currency in academic literature and popular consciousness.

Unfortunately, the Deriyevka horse was not what it seemed. A decade later direct radiocarbon dating of the remains showed that the animal wasn’t nearly as old as Anthony thought. Instead it had lived and died sometime in the early first millennium B.C.E., when domestic horses and horseback riding were already widespread and well documented. But rather than rejecting the kurgan hypothesis entirely, archaeologists continued to explore other animal-bone assemblages from the western steppes dating to around the same period, searching for horse bones to validate the idea. During this search one site in particular drew renewed interest: Botai, located in northern Kazakhstan.

Maps show wild horse dispersal from North America, domestication and initial waves of domestic horse dispersal from the Black Sea Steppe, and continued global dispersal by land and sea.

Botai sits some distance east of the Yamnaya homeland. Despite lacking any obvious cultural connections to the Yamnaya, Botai is also located in the western steppes, and like Deriyevka, it dates to the fourth millennium B.C.E. Most interesting, the animal-bone assemblage recovered from excavations at Botai contained huge numbers of horses. In fact, among thousands of animal bones from Botai, almost all were from horses. Working with these materials, archaeologists began to discuss the relevance of Botai’s horses to the question of early domestication.

Early on, the Botai domestication debate was a spicy one. First Anthony and his colleagues suggested that the strange surface shape of some Botai teeth was also a form of bit wear, hinting that the Botai horses were ridden. Soon, though, Sandra Olsen, now at the University of Kansas, identified the same features in wild horses, meaning they could not be taken as proof of domestication on their own. Scholars also looked at contextual aspects of the Botai site, including the architectural layout, speculating that post holes and backfilled pit houses filled with organic material could be leftover traces of corrals and corral cleaning.

Still, other scientists remained skeptical—for good reason. Some Botai horses were found with harpoons directly embedded in their ribs, obviously killed by hunters. An even bigger problem with connecting Botai to domestication, though, was the age and sex patterns among the animals found at the site. In a managed herd of horses, those chosen for slaughter are either very young or very old because breeding-­age animals are needed to ensure the herd’s fertility and survival. Marsha Levine and her colleagues pointed out, however, that Botai’s bone assemblage consisted mainly of the remains of mostly healthy adults. Moreover, the site contained large numbers of breeding-age females, as well as some fetal and neonatal horses from pregnant mares. The slaughter of these animals would be devastating to the fertility of a domestic herd, but evidence of it is common in archaeological sites where wild animals were hunted for food.

This healthy disagreement over domestication at Botai was temporarily quashed in 2009, when a high-­profile publication in the journal Science brought together new evidence apparently showing that people from Botai milked and rode horses. The authors looked at the shape of the bones of horses at Botai and argued they were similar to the modern domestic horse, Equus caballus. Using emerging techniques for the study of ancient biomolecules, scientists also analyzed ceramic shards from Botai and found residues that seemed to have come from ancient horse fats. These residues, though not diagnostic of milk on their own, had anomalous isotope values, suggesting they could have originated from milk.

The most important new argument, though, was that some Botai horses displayed a different kind of tooth damage that the researchers said could be more securely linked to use of a bridle. With new results from Botai strengthening con­fidence in the idea of horse domestica­­tion during the fourth millennium B.C.E., the kurgan hypothesis returned to paradigm status.

In the decade and a half since Botai revived the kurgan hypothesis, our archaeozoological tool kit for understanding ancient horses has grown by leaps and bounds. And one by one these new techniques and discoveries have begun to erode the connections between Botai and horse domestication. In a recent study, my colleagues and I analyzed dozens of wild horses from Ice Age sites across North America. Our research showed that the key features interpreted as evidence of bridle and bit use at Botai were probably the result of natural variation rather than horse riding or horse equipment.

Moreover, we now know that many other aspects of horse riding can leave a recognizable signature in an animal’s teeth and bones. Halters, saddles and harnesses can make distinctive marks. And different activity patterns, from heavy exertion to confinement, also have identifiable impacts. For instance, the pressure from mounted riding or from pulling a carriage or chariot can each cause unique problems in a horse’s vertebral column or lower limbs. Even early veterinary practices such as dentistry are sometimes visible in the archaeological rec­ord. So far none of these more reliable indicators of domestication have been found in Botai horses.

A group of horses grazing in a field

Horses from the site of Botai are now known to have belonged to a wild horse species, Przewalski’s horse, that was hunted for food. Conservation efforts are currently underway to restore this highly endangered species.

Sven Zellner/Agentur Focus/Redux

We can also look to DNA for clues. Improvements in ancient-DNA sequencing now allow scientists to reconstruct partial or whole genomic sequences from archaeological remains. Analysis of DNA from ancient people and animals has yielded some rather remarkable findings, documenting, for example, the migration of Yamnaya people from eastern Europe as far east as Siberia and Mongolia during the late fourth millennium B.C.E. These same techniques have shown no evidence of interaction between Yamnaya people and Botai, however.

Likewise, new techniques for recovering ancient proteins from human dental plaque have shown no evidence of horse milk in the diet of the people who lived at Botai. In fact, horse milk apparently didn’t become widespread in western Asia until the first millennium B.C.E., 3,000 years after the Yamnaya and Botai.

The most devastating blow to the kurgan hypothesis came accidentally from a 2018 genomic study by Charleen Gaunitz of the University of Copenhagen, Ludovic Orlando of the Center of Anthropobiology and Genomics of Toulouse in France and their colleagues that showed Botai horses were not the ancestors of domestic horses at all. Rather they were members of another horse species that still survives today, known as Przewalski’s horse. Przewalski’s horse is a close relative of domestic horses but one that has never been managed as a domestic animal in recorded history.

Photograph of an ancient saddle

Recent archaeological and genetic insights into horse domestication have relevance for understanding the horse human relationship today. Discoveries of an ancient saddle and other tack in Mongolia show that steppe cultures helped to invent technology that is still in use.

Some scientists remain convinced that Botai has some connection to early domestication but now suggest that the site represents an earlier, failed effort at taming and control of Przewalski’s horse. In their 2018 study, Gaunitz and her colleagues went so far as to argue that modern Prze­walski’s horses might be the escaped descendants of domesticated Botai horses, a conclusion that many others in the scientific community felt was unsupported.

The Botai debate has had important real-­world impacts for Przewalski’s horse. In the 20th century Przewalski’s horses went extinct in the wild, and zoo populations dwindled almost to the single digits. In recent decades these horses have returned from the brink through a careful captive-breeding program, and they have been reintroduced into some areas of Central Asia. This past June a new band of Przewalski’s horses from the Prague Zoo was released into the grasslands of central Kazakhstan, marking the first return of this species to the region in two centuries.

In the long term, the success and funding of such conservation projects may hinge heavily on public support, making it imperative to get the story straight. Media attention around Botai has sometimes generated headlines suggesting that Przewalski’s horses “aren’t wild after all” and are instead domestic escapees. Narratives like these are no longer supported by the archaeological data and can imperil ongoing protection, conservation and restoration of habitat for this highly endangered species.


Despite some lingering controversy over Botai, the available data emerging from new scientific approaches to studying the past paint a much clearer picture of horse domestication than we’ve ever had before. The recent spate of genomic sequencing and radiocarbon dating of horse bones from across Eurasia has all but disproved the kurgan hypothesis. Such data show us that important cultural developments in the fourth millennium B.C.E.—including the Yamnaya migration and the dissemination of kurgans and Indo-­European culture—probably took place many centuries before the first horses were domesticated, aided by the spread of other livestock such as sheep, goats and cattle and the use of cattle to pull wagons. Meanwhile many steppe people still hunted wild horses for meat.

New genomic analyses led by Pablo Librado of the Institute of Evolutionary Biology in Barcelona and Orlando indicate that the ancestors of modern domestic horses originated in the Black Sea steppes around 2200 B.C.E., nearly 2,000 years later than previously thought. Although we do not yet know exactly the details of their initial domestication, it is clear based on the timing that these horses belonged to post-Yamnaya culture. Patterns in the ancient genomes suggest that in the early centuries of domestication, the horse cultures of the western steppe were selectively breeding these animals for traits such as strength and docility.

A Native American woman petting a horse outdoors

Horses have figured prominently in the traditions and values of the Lakota and many other Native Nations across the Great Plains and Rockies.

Courtesy of the Global Institute for Traditional Sciences

This revised timeline for horse domestication is part of a growing body of evidence that casts the Yamnaya legacy in a new light. Early Indo-European cultures such as the Yamnaya are sometimes portrayed in popular culture in a nationalist manner, with links drawn between their supposed domestication of the horse, impressive transcontinental migrations, and cultural dominance. Now science indicates that the Yamnaya probably didn’t domesticate horses at all, and their migrations were not necessarily heroic conquests. For example, new genomic data show that by around 5,000 years ago Yamnaya migrants reached as far as central Mongolia, where they are known as the Afa­nasievo culture. Although these migrants may have helped spread sheep, goats and cattle into East Asia, initially it seems their impact was limited to a few mountain regions of the eastern steppe. After the Yamnaya arrival, it would be almost 2,000 years before horses showed up in the region. And genomic analyses suggest that their Afanasievo descendants had little lasting genetic effect on later populations.

The revelation that people domesticated horses much later than previously thought resolves what was always a nagging problem with the kurgan hypothesis. If horses were domesticated in the Eneolithic, why did it take centuries for much of their impact to show up in the archaeological record? Under the kurgan model, researchers often framed horse domestication as a gradual development to explain why it took so long for horses to move beyond the steppes and revolutionize trade and conflicts, for instance. When we look at our records of the past with this revised time frame for horse domestication in mind, there appears to be the rapid, disruptive and dynamic development we expected to see after all.

In our new understanding it seems that almost as soon as people tamed horses, they began using them for transport. Some of the earliest robust archaeological evidence of horse domestication comes from burials of horses paired with chariots dated to around 2000 B.C.E. at sites associated with Russia’s Sintashta culture. Radiocarbon-dating and genetic records show that within only a few centuries domestic horses spread over huge swaths of the Eurasian continent. In some cases, their expansion was peaceful: as availability of horses grew across the steppes, new people incorporated horses, herding and transport into their way of life. In other instances, domesticated horses reached new locales through destructive conquests by marauding charioteers. Some cultures riding this wave of horse-drawn expansion were Indo-European; others weren’t.

Photograph of a nomadic family corrals livestock on horseback

A nomadic family corrals livestock on horseback in Central Mongolia.

Timothy Allen/Getty Images

By the middle of the second millennium B.C.E., horsepower had reached civilizations from Egypt and the Mediterranean to Scandinavia in the north and Mongolia and China in the east. In many cases, the arrival of horses upended the balance of power. For example, when horses first arrived in China during the late Shang dynasty, around 3,200 years ago, they were mostly a novelty for the elite. But within little more than a century a rival power, the Western Zhou, was able to marshal its strength and skill in chariotry to bring a dramatic end to Shang rule. In very short order, horses went from being a steppe curiosity to the foundation of authority for one of the largest civilizations of East Asia.

In addition to clearing up these early chapters of the human-horse story, scientific archaeology has also uncovered connections between the horse cultures of the distant past and our world today. Archaeological discoveries and genomic data from the steppes and deserts of Central Asia are revealing the ways that horses and horseback riding helped humans form networks, trade routes and empires linking the ancient world in new ways.

On horseback, people traveled steppe networks and the Silk Roads to move goods, plants, animals, ideas and even early pandemic diseases across Eurasia and beyond. These emerging transcontinental connections can be directly observed in the archaeological record. In Mongolia, a royal tomb from the early steppe kingdom of the Xiongnu dating to somewhere around 100 B.C.E. was found to contain a silver plate with a picture of the Greek demigod Hercules on it. Historical records document expeditions from China to Central Asia’s Ferghana Valley in search of horses, an early step in the formation of the Silk Roads trade routes, and during the height of the Tang Dynasty, a thriving trade sent horses from the Tibetan Plateau and the Himalaya to lowland China in exchange for tea. Recent DNA sequencing of the plague-­causing bacterium Yersinia pestis suggests that the earliest strains of the virus that devastated Europe first emerged deep in deserts, mountains and steppes of Central Asia before spreading along the horse-powered steppe corridors and Silk Roads in the early 14th century.

The corridors and connections that ancient equestrians forged persist today: Ancient travel routes across the Mongolian steppe are now receiving makeovers with Chinese financing to serve as high-speed highways for motor vehicle transit. Even the state highway I take for my daily commute in Boulder, Colo., got its start as a 19th-century postal road.

New archaeology discoveries show that steppe cultures helped to invent or spread important technologies that improved control over horses and are still used today. In Mongolia, my collaborators and I have discovered immaculately preserved ancient tack from some 1,600 years ago. This riding technology, which includes a wood frame saddle and iron stirrups, shows that steppe cultures helped to develop these equestrian devices, which gave riders greater seat stability and the ability to brace or stand in the saddle—significant advantages when it came to mounted warfare. These tools became a standard part of horse equipment in cultures all over the world, from the caliphates of Islam to the Viking explorers of the high Arctic.

Archaeological science also allows us to trace the spread of domesticated horses out of Eurasia as people transported them to such places as the Sahel savanna of Africa, the Great Plains of North America, the Pampas of South America, and even island nations of Australasia and the Pacific, where horses shaped cultures across more recent periods. This work is showing some surprising results.

Recently I worked with a large team of scientists, scholars and Indigenous knowledge keepers to see what archaeology, genomics and Indigenous knowledge systems could tell us about the history of domesticated horses in the U.S. The prevailing view among Western scientists was that Native American peoples did not begin caring for horses until after the Pueblo Revolt of 1680, when Pueblo people in what is now New Mexico overthrew Spanish colonizers. Through our collaboration we found that Native nations from across the Plains and Rockies adopted horses at least a century earlier than was ever chronicled in European historical records. This finding confirms perspectives preserved in some oral traditions and Tribal histories and mirrors our scholarship from similar archaeological contexts in Patagonia.

Many Indigenous horse cultures, for whom a connection with horses is a source of strength, resilience and tradition, are now drawing on collaborative and interdisciplinary archaeological scholarship in their efforts to correct narratives, conserve traditional horse lineages and secure a place for horses in our changing world.

In many ways, the disappearance of horses from daily life in the past century has been as rapid and jarring as their initial domestication 4,000 years ago. In most corners of the world speedy mechanization has replaced trails with pavement and horse transport with engine-powered or electric alternatives. These days, along the Front Range of the Rockies, people wearing jeans and cowboy hats once designed for life in the saddle are more likely to be found shopping at Whole Foods than slinging lassos.

But the threads linking our ever changing present to the distant past are never far if you know where to look. Resolution of some of the most urgent problems of the 21st century—from saving endangered species to conserving cultural knowledge and traditions—will require a clear-headed and scientifically grounded understanding of the millennia-long relationship between human and horse.

Read the full story here.
Photos courtesy of

Changes to polar bear DNA could help them adapt to global heating, study finds

Scientists say bears in southern Greenland differ genetically to those in the north, suggesting they could adjustChanges in polar bear DNA that could help the animals adapt to warmer climates have been detected by researchers, in a study thought to be the first time a statistically significant link has been found between rising temperatures and changing DNA in a wild mammal species.Climate breakdown is threatening the survival of polar bears. Two-thirds of them are expected to have disappeared by 2050 as their icy habitat melts and the weather becomes hotter. Continue reading...

Changes in polar bear DNA that could help the animals adapt to warmer climates have been detected by researchers, in a study thought to be the first time a statistically significant link has been found between rising temperatures and changing DNA in a wild mammal species.Climate breakdown is threatening the survival of polar bears. Two-thirds of them are expected to have disappeared by 2050 as their icy habitat melts and the weather becomes hotter.Now scientists at the University of East Anglia have found that some genes related to heat stress, ageing and metabolism are behaving differently in polar bears living in south-east Greenland, suggesting they may be adjusting to warmer conditions.The researchers analysed blood samples taken from polar bears in two regions of Greenland and compared “jumping genes”: small, mobile pieces of the genome that can influence how other genes work. Scientists looked at the genes in relation to temperatures in the two regions and at the associated changes in gene expression.“DNA is the instruction book inside every cell, guiding how an organism grows and develops,” said the lead researcher, Dr Alice Godden. “By comparing these bears’ active genes to local climate data, we found that rising temperatures appear to be driving a dramatic increase in the activity of jumping genes within the south-east Greenland bears’ DNA.”As local climates and diets evolve as a result of changes in habitat and prey forced by global heating, the genetics of the bears appear to be adapting, with the group of bears in the warmest part of the country showing more changes than the communities farther north. The authors of the study have said these changes could help us understand how polar bears might survive in a warming world, inform understanding of which populations are most at risk and guide future conservation efforts.This is because the findings, published on Friday in the journal Mobile DNA, suggest the genes that are changing play a crucial role in how different polar bear populations are evolving.Godden said: “This finding is important because it shows, for the first time, that a unique group of polar bears in the warmest part of Greenland are using ‘jumping genes’ to rapidly rewrite their own DNA, which might be a desperate survival mechanism against melting sea ice.”Temperatures in north-east Greenland are colder and less variable, while in the south-east there is a much warmer and less icy environment, with steep temperature fluctuations.DNA sequences in animals change over time, but this process can be accelerated by environmental stress such as a rapidly heating climate.There were some interesting DNA changes, such as in areas linked to fat processing, that could help polar bears survive when food is scarce. Bears in warmer regions had more rough, plant-based diets compared with the fatty, seal-based diets of northern bears, and the DNA of south-eastern bears seemed to be adapting to this.Godden said: “We identified several genetic hotspots where these jumping genes were highly active, with some located in the protein-coding regions of the genome, suggesting that the bears are undergoing rapid, fundamental genetic changes as they adapt to their disappearing sea ice habitat.”The next step will be to look at other polar bear populations, of which there are 20 around the world, to see if similar changes are happening to their DNA.This research could help protect the bears from extinction. But the scientists said it was crucial to stop temperature rises accelerating by reducing the burning of fossil fuels.Godden said: “We cannot be complacent, this offers some hope but does not mean that polar bears are at any less risk of extinction. We still need to be doing everything we can to reduce global carbon emissions and slow temperature increases.”

A Deadly Pathogen Decimated Sunflower Sea Stars. Look Inside the Lab Working to Bring Them Back by Freezing and Thawing Their Larvae

For the first time, scientists have cryopreserved and revived the larvae of a sea star species. The breakthrough, made with the giant pink star, gives hope the technique could be repeated to save the imperiled predator

A Deadly Pathogen Decimated Sunflower Sea Stars. Look Inside the Lab Working to Bring Them Back by Freezing and Thawing Their Larvae For the first time, scientists have cryopreserved and revived the larvae of a sea star species. The breakthrough, made with the giant pink star, gives hope the technique could be repeated to save the imperiled predator Juvenile sunflower sea stars at the Sunflower Star Laboratory in Moss Landing, California. At this phase, each is less than an inch wide, but they can grow to be more than three feet across as adults. Avery Schuyler Nunn Key takeaways: Recovering sunflower sea stars by freezing them in time Ravaged by infectious bacteria, sunflower sea stars literally wasted away across the Pacific coast of North America—and their resulting population crash destabilized kelp forest ecosystems. Scientists pioneered a cryopreservation technique on the closely related giant pink star, raising hopes that a bank of frozen sunflower star larvae could one day be thawed in the same way and released into the wild. Along a working California harbor, where gulls wheel over weathered pilings and the old Western Flyer—the ship John Steinbeck once sailed to the Sea of Cortez—sits restored in its berth, researchers buzz about in a modest lab tucked between warehouses and boatyards. Inside, amid the hiss of pumps and the faint smell of brine from seawater tables, a scientist lifts a small vial from a plume of liquid nitrogen, its frosted casing holding the tiniest flicker of hope for a species on the brink. Each of the 18 vials contains between 500 and 700 larval giant pink sea stars. At this stage, they are tiny specks suspended in seawater, invisible to the naked eye. These particular larvae have been cryopreserved and stored at roughly minus 180 degrees Celsius since March. At the Sunflower Star Laboratory (SSL) in Moss Landing, California, scientists thawed the larval pink sea stars and coaxed them to successfully develop into juveniles this summer—a first for any sea star species. In October, the scientists thawed another batch of larvae from the same cohort to test larval growth and survival under different freezing conditions and thawing protocols. The breakthrough, however, isn’t really about the giant pink star, a species that’s common in the wild. Instead, these larvae serve as a crucial stand-in for the far more imperiled sunflower sea star (Pycnopodia helianthoides)—a vanishing species for which larvae are precious, limited and increasingly difficult to obtain. Perfecting cryopreservation methods on pink stars—ensuring they can survive freezing, resume feeding and grow into juveniles—lays the scientific groundwork for facilitating a return of Pycnopodia. The contents of a thawed vial are placed under a microscope to assess viability of the larvae. Avery Schuyler Nunn The discovery arrives at a precarious time, as sunflower stars have disappeared at a pace rarely seen in marine ecosystems. As a mysterious pathogen ravaged their population along the western shores of North America beginning in 2013, the creatures collapsed from an estimated six billion individuals to functional extinction in parts of their range—all within just a few years. Their loss left kelp forests with dramatically fewer predators, destabilizing ecosystems across the Pacific coast and allowing urchins to proliferate and graze formerly lush underwater canopies into barren rock. Now, scientists hope that “freezing” their larvae will offer a new avenue for bringing the species back. “Cryopreservation is particularly important on the population level when thinking about recovery for this endangered species, because it had major population losses,” says Marissa Baskett, an environmental scientist at the University of California, Davis, who was not involved in the project. The process lets scientists preserve the sea stars’ existing genetic diversity for future reintroduction to the wild, she adds. “Especially given the uncertainty about different disease outbreaks, having that stock to return to is incredibly valuable.” A mysterious and “complete collapse” Sunflower sea stars have long lived in abundance up and down the rugged Pacific coast—from Alaskan archipelagoes to Baja California. The 24-limbed echinoderms sprawled across the seafloor in shades of ochre, crimson and violet. Among the fastest-moving and largest of all sea stars—capable of stretching nearly three feet across—these radiant predators coursed through kelp forests, voraciously hunting purple sea urchins and preventing them from over-grazing on the holdfasts that root towering golden canopies of kelp. An adult sunflower sea star has 24 limbs and can be more than three feet wide. This one was photographed off Point Dume State Beach near Los Angeles. Brent Durand via Getty Images “In Northern California and Oregon, there historically would have been multiple keystone predators within the kelp forest ecosystem who are punching on purple urchins and keeping their population in check,” says Reuven Bank, board chair of SSL. “But the southern sea otter was extirpated across its historic range, so we were left with sunflower stars being the last major keystone predator of purple urchins across over 100 miles of coastline.” “And sunflower stars didn’t just eat urchins, they scared them,” Bank adds. “Urchins can smell a sunflower star approaching, and in healthy kelp forests they hide more and graze less. Even without consuming them, sunflower stars helped keep urchin behavior, and therefore kelp forests, in balance.” Then, in June 2013, tidepool monitors along Washington’s Olympic Peninsula documented an unprecedented sight. The once-sturdy sea stars had turned soft, pale and contorted, their arms curling and detaching from their bodies. By late summer, the same mysterious affliction had surfaced in British Columbia, and it began sweeping both north and south with startling speed. The emerging epidemic, which caused the invertebrates to literally disintegrate, would soon be known as sea star wasting disease. An infamous marine heatwave—nicknamed “The Blob”—had settled over the Pacific by 2014, thrusting the coast into a fever. Ocean temperatures spiked, likely speeding up the disease progression in already stressed sea stars and leading to higher mortality. In the warm, stagnant water, infected sunflower stars dissolved at an eerily rapid pace, leaving behind ghost-white films of bacterial mass where the vibrant predators had been just days before. “You’d have apparently healthy stars basically melt away into puddles of goo within 48 hours,” says Andrew Kim, lab manager at SSL. “It happened so quickly, and I don’t think folks were prepared for the ensuing ecosystem shift. You don’t often expect diseases to come through and totally reshape ecosystem dynamics within such a short period. But that’s what we saw.” Without sunflower sea stars to keep those spiny purple urchins in check, the balance began to falter, setting the stage for an unprecedented chain reaction. Urchin populations skyrocketed, grazing on kelp without limits, and once-thriving underwater forests collapsed into barren rock. A dense group of purple sea urchins, which exploded in population after the sunflower sea stars disappeared, photographed near Mendocino Headlands State Park, north of San Francisco. Brent Durand via Getty Images In California, with 99 percent loss, sunflower sea stars are now considered functionally extinct. “Even though there may be a few remnant individuals left, they can no longer fulfill their historic role in the ecosystem,” Bank says. As sunflower stars unraveled in the wild, another species—its thick-armed cousin, the giant pink star—offered an unexpected foothold for hope. The pink stars share a nearly identical geographic range and life history with sunflower stars, and crucially, their larvae can be raised in aquaria. If scientists could learn to freeze and revive the pink star in its early life stages, they wondered, could that knowledge become a lifeline for the sunflower star? That’s where the small team in Moss Landing stepped in. Freezing sea stars for the future What these scientists did was something no one had ever pulled off with a sea star. Working with giant pink stars, researchers spawned adults at the Aquarium of the Pacific in Long Beach, California, fertilized their gametes to produce thousands of larvae, and shipped those microscopic bodies to the Frozen Zoo—a cryopreserved archive of creatures operated by the San Diego Zoo Wildlife Alliance. There, reproductive scientists plunged the larvae into liquid nitrogen, cooling them to extremely low temperatures and pausing their cells’ biological activity. The larvae, essentially frozen in time, were shielded from ice crystal damage with special cryoprotectant mixtures. Sunflower Star Laboratory researchers remove a vial of pink star larvae from an insulated cooler at around minus 180 degrees Celsius in preparation for thawing. Avery Schuyler Nunn After months in this suspended state, the larvae were sent to the Sunflower Star Laboratory where Carly Young, a San Diego Zoo Wildlife Alliance scientist who advances cryopreservation and reproductive-rescue tools, led the team in thawing the vials. She had fine-tuned the ideal way to keep the larvae alive as they returned to real-world temperatures, carefully testing more than 100 “recipes” with various warming rates, cryoprotectant dilutions and rehydration steps. The pink star larvae not only survived thawing, but have thus far lived all the way through metamorphosis into juveniles. Scientists watched the little stars settle spontaneously along the bottom of their beakers just 19 days after revival. The success prompted the team to apply the same cryopreservation protocols to sunflower star larvae from the Alaska SeaLife Center. The larvae will be frozen in perpetuity, creating the first-ever cryopreserved archive of the species—like a seed bank, but for the baby sea stars. “A famous quote from the ’70s, when the Frozen Zoo in San Diego was established, was, ‘You must collect things for reasons you don’t yet understand,’” says Ashley Kidd, conservation project manager at SSL. “We don’t know when the other shoe is going to drop and what populations are going to look like as the planet changes. So, rather than chasing ghosts around the ocean floor, we really focused on what we can do with animals that are currently under human care somewhere.” While cryopreservation itself isn’t a ready-made restoration tool, it opens the door to conserving genetic diversity of a species and banking rare lineages for potential reintroduction to the wild. In the 1970s and 1990s, researchers began testing cryopreservation of marine invertebrates with sperm and larvae, establishing the basic protocols that this team could apply to sea stars. The breakthrough doesn’t restore kelp forests by itself, but the SSL scientists note that cryopreservation creates something the conservation community has desperately needed: time. Time to hold onto genetic diversity, time to refine captive rearing and time to prepare for future reintroduction at scales big enough to matter. The ultimate test, the researchers say, will be translating the thawing process to sunflower sea stars. Carly Young, at the Sunflower Star Laboratory, looks for movement in the young sea stars. Avery Schuyler Nunn Just this summer, scientists uncovered a piece of the puzzle that had eluded them for more than a decade: the pathogen behind sea star wasting disease. In a four-year international effort, researchers traced the outbreak to a strain of the marine bacterium Vibrio pectenicida. When cultured and injected into healthy sea stars, it reproduced the telltale symptoms—softening arms, rapid disintegration and death within days. The finding, published in Nature Ecology and Evolution in August, gives recovery teams a way to test for the pathogen in labs and hatcheries, tighten quarantine measures and understand disease risks before returning captive-bred sea stars to the Pacific. “It’s massively important to know what to look for, and the fact that we are now able to test for this disease is going to be critical in advancing our ability to move forward with reintroductions and continuing the research,” notes Kim. “We’ve already been able to take fluid samples from all of our stars and get them analyzed for the presence of Vibrio pectenicida, so we’ve mobilized very quickly on the heels of development.” Paired with this new diagnostic clarity, advances in cryopreservation offer a second front in the effort to save the species. Frozen larvae can be stored for decades and offer flexibility for selective breeding of disease-tolerant traits, notes the team. Cryopreservation adds another tool to the scientists’ toolbox as they fight to prevent the species—and, in turn, its ecosystem—from wasting away. “Bringing back sunflower stars,” Bank says, “is the single-most important step we can take toward restoring kelp forest balance.” Get the latest Science stories in your inbox.

Archaeologists Are Unraveling the Mysteries Behind Deep Pits Found Near Stonehenge

Based on a comprehensive study, researchers are now convinced the shafts were human-made, likely dug during the Late Neolithic period roughly 4,000 years ago

Archaeologists Are Unraveling the Mysteries Behind Deep Pits Found Near Stonehenge Based on a comprehensive study, researchers are now convinced the shafts were human-made, likely dug during the Late Neolithic period roughly 4,000 years ago Sarah Kuta - Daily Correspondent December 10, 2025 9:59 a.m. The pits are evenly spaced around a large circle. University of Bradford In 2020, archaeologists in the United Kingdom made a surprising discovery. At Durrington Walls, a large Neolithic henge not far from Stonehenge, they found more than a dozen large, deep pits buried under layers of loose clay. The pits are mysterious. Each one measures roughly 30 feet wide by 15 feet deep, and together they form a mile-wide circle around Durrington Walls and neighboring Woodhenge. They also appear to be linked with the much older Larkhill causewayed enclosure, built more than 1,000 years before Durrington Walls. For the last few years, archaeologists have been puzzling over their origins: Were they dug intentionally by human hands? Were they naturally occurring structures, like sinkholes? Or is there some other possible explanation for the existence of these colossal shafts? Quick fact: The purpose of Durrington Walls While Stonehenge is thought to have been a sacred place for ceremonies, Durrington Walls was a place where people actually lived. In a new paper published in the journal Internet Archaeology, archaeologists report that they have a much better understanding of the pits’ purpose, chronology and environmental setting. And, now, they are confident the shafts were made by humans. “They can’t be occurring naturally,” says lead author Vincent Gaffney, an archaeologist at the University of Bradford, to the Guardian’s Steven Morris. “It just can’t happen. We think we’ve nailed it.” Chris Gaffney, an archaeologist at the at the University of Bradford, surveys the ground near Durrington Walls. University of Bradford For the study, researchers returned to the site in southern England and used several different methods to further analyze the unusual structures. They used a technique known as electrical resistance tomography to calculate the pits’ depths, and radar and magnetometry to suss out their shapes. They also took core samples of the sediment, then ran the soil through a variety of tests. For instance, they used optically stimulated luminescence to determine the last time each layer of soil had been exposed to the sun. They also looked for traces of animal or plant DNA. Astonishing' Stonehenge discovery offers new insights into Neolithic ancestors. Together, the results of these analyses indicate humans must have been involved, which suggests the pits could be “one of the largest prehistoric structures in Britain, if not the largest,” Gaffney tells the BBC’s Sophie Parker. Researchers suspect the circle pits were created by people living at the site over a short period of time during the Late Neolithic period roughly 4,000 years ago. They were not “simply dug and abandoned” but, rather, appear to have been part of a “structured, monumental landscape that speaks to the complexity and sophistication of Neolithic society,” Gaffney says in a statement. For example, the pits are fairly evenly spaced around the circle, which suggests their Neolithic creators were measuring the distances between them somehow. “The skill and effort that must have been required to not only dig the pits, but also to place them so precisely within the landscape is a marvel,” says study co-author Richard Bates, a geophysicist at the University of St Andrews, in a statement. “When you consider that the pits are spread over such a large distance, the fact they are located in a near perfect circular pattern is quite remarkable.” Researchers used multiple methods to investigate the pits at Durrington Walls. University of Bradford But who dug the pits? And, perhaps more importantly, why? Archaeologists are still trying to definitively answer those questions, but they suspect the shafts were created to serve as some sort of sacred boundary around Durrington Walls. Their creators may also have been trying to connect with the underworld, per the Guardian. “They’re inscribing something about their cosmology, their belief systems, into the earth itself in a very dramatic way,” Gaddney tells the BBC. Get the latest stories in your inbox every weekday.

Is red meat bad for you? Limited research robs us of a clear answer.

We’d all appreciate more definitive guidance. Eating a varied diet is a wise move while we wait.

Over and over, we ask the question: Is Food X good or bad for you? And, over and over, belief in the answer — whether it’s yes or no — is held with conviction totally out of proportion with the strength of the evidence.Today’s illustration: red meat. It has become one of the most-disputed issues in food. It’s so polarizing that some people decide to eat no meat at all, while others decide to eat only meat. It’s poison, or it’s the only true fuel.The latest salvo in the Meat Wars was kicked off by a new report that outlines the optimal diet for both people and planet. The EAT-Lancet Report comes down hard on red meat; its recommended daily intake is a mere 14 grams — that’s half an ounce.Read on, and the news gets worse: “Because intake of red meat is not essential and appears to be linearly related to higher total mortality and risks of other health outcomes in populations that have consumed it for many years, the optimal intake may be zero.”Note that word: “related.” It’s the source of the problem with the report and its recommendation.The EAT-Lancet report, by researchers from 17 countries, bases its recommendation solely on observational data. When you do that, meat comes out looking pretty bad. In study after study, people who report eating a lot of meat have worse health outcomes than people who eat little. Meat-eating correlates with increased risk of heart disease, some cancers and all-cause mortality.But, as always with observational research that attempts to connect the dots between diet and health, the key question is whether the meat itself, or something else associated with a meat-heavy lifestyle, is actually causing the bad outcomes.That’s a hard question to answer, but there are clues that people who eat a lot of meat are very different from people who eat a little.Let’s look at a study, published in JAMA Internal Medicine, cited by the EAT-Lancet report; it has a convenient demographic summary. According to it, people in the top one-fifth of meat eaters are different from people in the bottom fifth in a lot of important ways: They weigh more, they’re more likely to smoke, they’re not as well-educated, they get less exercise, and they report lower intakes of fruit, vegetables and fiber. On the plus side, they report drinking less alcohol. But other than that, we’re looking at a litany of markers for a lifestyle that’s not particularly health-conscious.So, to suss out whether it’s the meat that’s raising disease risk, you have to somehow correct for any of the differences on that list — and most of that information also comes from observational research, so even the confounders are confounded.Then there are the things you can’t correct for. Sleep quality, depression and screen time, for example, all correlate with some of the same diseases meat correlates with, but most studies have no information on those.All this confounding explains one of my all-time favorite findings from observational research. It comes from the same study the demographics came from (analyzed in a 2015 paper). Sure enough, the people who ate the most meat were more likely to die of cancer and heart disease, but they were also more likely to die in accidents. And the biggest difference came from the catchall category “all others,” which invariably includes causes of death that have nothing to do with meat.Basically, there’s a very simple problem with relying on observational research: People who eat a lot of meat are very different from people who eat less of it. The meat definitely isn’t causing the accidental deaths (unless, perhaps, they’re tragic backyard grill mishaps), and it isn’t causing at least some of the “all others” deaths, so we know that heavy and light meat-eaters are different in all kinds of ways.That’s where controlled trials come in.In a perfect world, we could figure this out by keeping a large group of people captive for a lifetime, feeding half of them meat, and seeing what happens. Okay, maybe that’s not a perfect world, but it would be the best solution to this particular problem.Instead, we have trials that are short-term (because of logistics and cost), and necessarily rely on markers for disease, rather than the disease itself. For that to be useful, you need a marker that’s a reliable indicator. For a lot of diseases — including cancer — those are hard to come by. For heart disease, we have a good one: low-density lipoprotein (LDL) cholesterol. So, most of the controlled trials of meat-eating focus on heart disease.If you spend some time reading those trials (and I did, so you don’t have to), you find that most of them show some increase in LDL cholesterol, although it’s generally small.A 2025 analysis of 44 controlled trials on meat found that the only ones showing positive cardiovascular outcomes had links to the meat industry, and even then, only about one in five came out positive. Of the independent studies, about three-quarters showed negative outcomes, and the remaining one-quarter was neutral.This isn’t surprising. Red meat contains saturated fat, and we have countless trials that demonstrate sat fat’s ability to raise LDL. But if the meat you eat is relatively lean, that effect is going to be small.The lesson here is that we don’t have a lot of good evidence on meat and health. The observational evidence is hopelessly confounded, and the evidence from clinical trials is woefully limited. There’s so much we simply don’t know. There may be other ways meat raises risk (leading to over-absorption of heme iron and stimulating the production of TMAO, or trimethylamine N-oxide), but there’s little definitive evidence for them. And, of course, there’s the question of what you eat instead. If you’re eating red meat instead of, say, instant ramen, that may be an improvement. If, instead, you’re cutting back on your lentils, not so much.As always, the single-most important thing to remember about nutrition is that what we know is absolutely dwarfed by what we don’t know. Which means that, if you’re making decisions based on what we do know, you could very well be wrong.So what’s an eater to do? Meat is a nutritious food. In fact, animal foods are the only natural sources of a vitamin we need — B12 — which is an indication that we evolved with meat and dairy as part of our diet. It’s very hard to know whether eating some lean meat leads to better outcomes than eating no meat, but I think some meat is a good hedge against all that uncertainty. (The ethical and environmental concerns are also important, but for today let’s focus on health.)But plant foods are also nutritious. And eating a wide variety of them is also a good hedge against uncertainty. Which means the carnivore diet — all meat, all the time! — is a pretty bad bet.Unfortunately, “uncertainty” is not a word that features prominently in the Meat Wars. Instead, we have an unappetizing combination of nastiness and sanctimony, with each camp convinced that the truth and the light are on their side.Not that this is a metaphor for our times or anything.

New Wildlife Books for Children and Teens (That Adults May Find Interesting Too)

These books for young readers will delight and encourage interest in mammals, insects, octopuses, and other creatures in our shared environment. The post New Wildlife Books for Children and Teens (That Adults May Find Interesting Too) appeared first on The Revelator.

Creating excitement about our amazing planet in young people has never been more important. A pack of new books make environmental science fun and fascinating, teaching children, teens, and even some adults just how diverse and rich our planet’s wildlife and their habitats are to behold. Reading them can encourage us all to become better guardians of the Earth. We’ve adapted the books’ official descriptions below and provided links to the publishers’ sites, but you should also be able to find these books in a variety of formats through your local bookstore or library. Insectopolis By Peter Kuper Award-winning cartoonist Peter Kuper transports readers through the 400-million-year history of insects and the remarkable entomologists who have studied them. This visually immersive work of graphic non-fiction dives into a world where ants, cicadas, bees, and butterflies visit a library exhibition that displays their stories and humanity’s connection to them throughout the ages. Layering history and science, color and design, it tells the remarkable tales of dung beetles navigating by the stars, hawk-size prehistoric dragonflies hunting prey, and mosquitoes changing the course of human history. Read our interview with Kuper. They Work: Honey Bees, Nature’s Pollinators By June Smalls and illustrator Yukari Mishima The newest addition to June Smalls’s nature series, this is a gorgeous nonfiction picture book about life for a hive of honeybees, complete with factoids. Readers learn about the beehive queen, who fights to be queen from the moment she breaks out of her cell. Her job is important, but a hive is only successful if many, many bees are working together. Experience the life cycle of the honeybee up close and personal with this striking picture book. Told in a poetic style along with fun facts on each page for older readers wanting a deeper dive, this book is a beautiful exploration of life inside a beehive — as well as the dangers and predators bees face in the world, including humans. Bison: Community Builders and Grassland Caretakers By Frances Backhouse Bison are North America’s largest land animals. Some 170,000 wood bison once roamed northern regions, while at least 30 million plains bison trekked across the rest of the continent. Almost driven to extinction in the 1800s by decades of slaughter and hunting, this ecological and cultural species supports biodiversity and strengthens the ecosystems around it. This book celebrates the traditions and teachings of Indigenous peoples and looks at how bison lovers of all backgrounds came together to save these iconic animals. Learn about the places where bison are regaining a hoof-hold and meet some of the young people welcoming them back home. Many Things Under a Rock: The Mysteries of Octopuses by David Scheel and Laurel ‘Yoyo’ Scheel This compelling middle-grade adaptation dives deep into the mysteries of one of our planet’s most enigmatic animals. Among all the ocean’s creatures, few are more captivating — or more elusive — than the octopus. Marine biologist David Scheel investigates these strange beings to answer long-held questions: How can we learn more about animals whose perfect camouflage and secretive habitats make them invisible to detection? How does an almost-boneless package of muscle and protein defeat sharks, eels, and other predators while also preying on the most heavily armored animals in the sea? How do octopuses’ bodies work? This fascinating book shows young readers how to embrace the wisdom of the unknown — even if it has more arms than expected. Animal Partnerships: Radical Relationships, Unlikely Alliances, and Other Animal Teams By Ben Hoare and Asia Orlando Discover partnerships from across the animal kingdom with unexpected animal teams around the world who thrive in the wild as they defend, feed, and plot with each other to survive. Friendly, informative explanations are paired with striking photographs and colorful illustrations to make every page captivate the imagination. This unique animal book for children offers impressive facts about previously unknown animal behaviors that are guaranteed to wow adults and children alike. Conker and the Monkey Trap By Hannah Peckham Deep in the jungle, a chameleon named Conker finds two animals in need of his help. Though he first wants to run and hide, he remembers what his mom taught him about being kind and helpful to others. Once Conker saves Sanjeet the lost lorikeet from a puddle, the two of them come across a monkey caught in a trap. Conker and his new friend work together to save the day. This sweet rhyming story will teach young readers the value of friendship and helping those in need. There are plenty of points for discussion and those are aided by the probing questions at the back of the book and the various activities. Mollusks By Kaitlyn Salvatore From the Discover More: Marine Wildlife Series. Not all marine wildlife lives completely underwater. While some mollusks do, other species live both above and below the water’s surface. As readers learn about the different classes of mollusks, they uncover how a mollusk’s body allows it to do amazing things, learning about the unique ways different mollusk species, from slugs to squid to clams, contribute to their environments. Their lifestyles, diet, and the threats to their survival come to life through vivid photographs and age-appropriate text. Becoming an Ecologist: Career Pathways in Science By John A. Wiens What influences a person’s decision to pursue a career in science? And what factors determine the many possible pathways a budding scientist chooses to follow? John A. Wiens traces his journeys through several subfields of ecology — and gives readers an inside look at how science works. He shares stories from his development as an ornithologist, community ecologist, landscape ecologist, and conservation scientist, recounting the serendipities, discoveries, and joys of this branching career. Wiens explores how an individual’s background and interests, life’s contingencies, the influences of key people, and the culture of a discipline can all shape a scientist’s trajectory. This book explores why ecologists ask the questions they do, how they go about answering them, and what they do when the answers are not what they expected. Bringing together personal narrative with practical guidance for aspiring ecologists, this book provides a window onto a dynamic scientific field — and inspiration for all readers interested in building a career by following their passion for the natural world, presented in an enticing way for young professionals and students. Enjoy these engaging reads and get young friends and family members involved with activities that support our environment and wildlife. We hope you and your children and grandchildren will be motivated to protect and reclaim our environment through these remarkable books. And there’s more to come: We’ll cover more books for young readers in the months ahead. For hundreds of additional environmental books — including many for kids of all ages — visit the Revelator Reads archives. The post New Wildlife Books for Children and Teens (That Adults May Find Interesting Too) appeared first on The Revelator.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.