Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

Horse Domestication Story Gets a Surprising Rewrite

News Feed
Tuesday, November 19, 2024

The world we live in was built on horseback. Many people today rarely encounter horses, but this is a recent development. Only a few decades ago domestic horses formed the fabric of societies around the globe. Almost every aspect of daily life was linked to horses in an important way. Mail was delivered by postal riders, people traveled by horse-drawn carriage, merchants used horses to transport goods across continents, farmers cultivated their land with horsepower, and soldiers rode horses into battle.Scholars have long sought to understand how the unique partnership between humans and horses got its start. Until recently, the conventional wisdom was that horses were gradually domesticated by the Yamnaya people beginning more than 5,000 years ago in the grassy plains of western Asia and that this development allowed these people to populate Eurasia, carrying their early Indo-European language and cultural traditions with them.Now new kinds of archaeological evidence, in conjunction with interdisciplinary collaborations, are overturning some basic assumptions about when—and why—horses were first domesticated and how rapidly they spread across the globe. These insights dramatically change our understanding of not only horses but also people, who used this important relationship to their advantage in everything from herding to warfare. This revised view of the past also has lessons for us today as we consider the fate of endangered wild horses in the steppes. And it highlights the essential value of Indigenous knowledge in piecing together later chapters of the horse-human story, when domesticated horses moved from Eurasia into the rest of the world.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.The genus Equus, which includes horses, asses and zebras, originated around four million years ago in North America. Over the next few million years its members began dispersing across the Beringia land bridge between what is now Russia and Alaska and into Asia, Europe and Africa. Horses are among humanity’s oldest and most prized prey animals. Perhaps the first indisputable evidence for hunting with weapons by early members of the human family comes from horse-rich archaeological sites such as Schöningen in Germany, dating to some 300,000 years ago. The unique lakeshore environment there preserved not only the remains of a band of horses but also the immaculately crafted wood spears that humans used to dispatch them. For millennia wild horses remained a dietary staple for early Homo sapiens living in northern Eurasia. People were keen observers of these animals they depended on for food: horses featured prominently in Ice Age art, including in spectacular images rendered in charcoal on the limestone walls of France’s Chauvet Cave more than 30,000 years ago.Horses served as muses for Ice Age people, who captured their likenesses in spectacular works of art, such as the images in France’s Chauvet Cave that date to more than 30,000 years ago.Heritage Images/Getty ImagesTracking the transition from this ancient predator-prey connection to early domestication—which includes such activities as raising, herding, milking and riding horses—can be challenging. Researchers studying the deep past rarely have the luxury of written documents or detailed imagery to chronicle changing relationships between people and animals. This is especially true in the Eurasian steppes—the cold, dry, remote grasslands where scientists suspect that the first horse herders emerged, which stretch from eastern Europe nearly to the Pacific. In the steppes, cultures have long been highly mobile, moving herds to fresh pastures with the changing seasons. Their way of life left behind archaeological assemblages that can be shallow, poorly preserved and difficult to study. Indeed, much of what we know about the origins of horse domestication comes from a single, powerful scientific source: the bones of ancient horses themselves.But it wasn’t until much later that people domesticated horses, as evidenced by burials at sites such as Novoil’inovskiy in Russia dating to the early second millennium B.C.E.As an archaeozoologist, I seek to understand the origins of domestication through the study of horse bones from archaeological sites. In the early days of this kind of scientific inquiry into domestication, some researchers looked for patterns in the size, shape or frequency of these bones over time. The basic logic behind this approach is that if horses were living in close contact with people, their bones might have become more widespread or more variable in shape and size than in earlier periods, whether because people were breeding them for particular traits or because they were putting the horses to work in ways that altered the animals’ bodies over the course of their life, among other factors.Burials of horses and chariots establish that early domesticated horses were used for transport.But it turns out that looking for these types of patterns in the archaeological rec­ord is a little bit like reading tea leaves. Changes in the shape or number of horse bones found at ancient sites could be caused by any number of other things, from environmental change to shifting human diets or even sampling errors. At best, these indicators give us only an indirect way to trace the origin of herding or riding.A stronger, more scientific understanding of horse domestication began to take shape in the 1990s. Building on the work of some earlier scholars, archaeologist David Anthony of Hartwick College in New York State and his colleagues identified direct evidence for domestication in horse remains, publishing their findings in Scientific American. When horses are used by people for transportation, they sometimes develop a particular pattern of damage on their teeth from the equipment that is used to control them. This damage, known as bit wear, can often be seen on the lower second premolar of horses ridden with metal mouthpieces, or bits. Anthony and his colleagues found bit wear in an ancient horse from a Ukrainian site known as Deriyevka, which was thought to have been home to an archaeological culture known as the Yamnaya people. Although the Deriyevka horse had not been directly dated, its association with the Yamnaya culture suggested that herders in the Eurasian steppes might have been raising and riding domestic horses by the fourth millennium B.C.E. or even earlier.The Deriyevka horse seemed to tie together a number of loose threads in scientists’ understanding of ancient Eurasia. Beginning after 6,000 years ago, during a period called the Eneolithic (also sometimes known as the Copper Age), large human burial mounds known as kurgans appeared across much of eastern and central Europe and the western steppes. Over the years many archaeologists and scholars hypothesized a connection linking kurgans, the spread of Indo-European languages and the first horse domestication. Specifically, they proposed that the Yamnaya people tamed horses in the Black Sea steppes and then swept across Eurasia on horseback, bringing their burial customs and an early form of Indo-European language—which is believed to have given rise to many languages spoken today, including English. On the heels of Anthony’s discovery, this framework, known as the kurgan hypothesis, gained wide currency in academic literature and popular consciousness.Unfortunately, the Deriyevka horse was not what it seemed. A decade later direct radiocarbon dating of the remains showed that the animal wasn’t nearly as old as Anthony thought. Instead it had lived and died sometime in the early first millennium B.C.E., when domestic horses and horseback riding were already widespread and well documented. But rather than rejecting the kurgan hypothesis entirely, archaeologists continued to explore other animal-bone assemblages from the western steppes dating to around the same period, searching for horse bones to validate the idea. During this search one site in particular drew renewed interest: Botai, located in northern Kazakhstan.Botai sits some distance east of the Yamnaya homeland. Despite lacking any obvious cultural connections to the Yamnaya, Botai is also located in the western steppes, and like Deriyevka, it dates to the fourth millennium B.C.E. Most interesting, the animal-bone assemblage recovered from excavations at Botai contained huge numbers of horses. In fact, among thousands of animal bones from Botai, almost all were from horses. Working with these materials, archaeologists began to discuss the relevance of Botai’s horses to the question of early domestication.Early on, the Botai domestication debate was a spicy one. First Anthony and his colleagues suggested that the strange surface shape of some Botai teeth was also a form of bit wear, hinting that the Botai horses were ridden. Soon, though, Sandra Olsen, now at the University of Kansas, identified the same features in wild horses, meaning they could not be taken as proof of domestication on their own. Scholars also looked at contextual aspects of the Botai site, including the architectural layout, speculating that post holes and backfilled pit houses filled with organic material could be leftover traces of corrals and corral cleaning.Still, other scientists remained skeptical—for good reason. Some Botai horses were found with harpoons directly embedded in their ribs, obviously killed by hunters. An even bigger problem with connecting Botai to domestication, though, was the age and sex patterns among the animals found at the site. In a managed herd of horses, those chosen for slaughter are either very young or very old because breeding-­age animals are needed to ensure the herd’s fertility and survival. Marsha Levine and her colleagues pointed out, however, that Botai’s bone assemblage consisted mainly of the remains of mostly healthy adults. Moreover, the site contained large numbers of breeding-age females, as well as some fetal and neonatal horses from pregnant mares. The slaughter of these animals would be devastating to the fertility of a domestic herd, but evidence of it is common in archaeological sites where wild animals were hunted for food.This healthy disagreement over domestication at Botai was temporarily quashed in 2009, when a high-­profile publication in the journal Science brought together new evidence apparently showing that people from Botai milked and rode horses. The authors looked at the shape of the bones of horses at Botai and argued they were similar to the modern domestic horse, Equus caballus. Using emerging techniques for the study of ancient biomolecules, scientists also analyzed ceramic shards from Botai and found residues that seemed to have come from ancient horse fats. These residues, though not diagnostic of milk on their own, had anomalous isotope values, suggesting they could have originated from milk.The most important new argument, though, was that some Botai horses displayed a different kind of tooth damage that the researchers said could be more securely linked to use of a bridle. With new results from Botai strengthening con­fidence in the idea of horse domestica­­tion during the fourth millennium B.C.E., the kurgan hypothesis returned to paradigm status.In the decade and a half since Botai revived the kurgan hypothesis, our archaeozoological tool kit for understanding ancient horses has grown by leaps and bounds. And one by one these new techniques and discoveries have begun to erode the connections between Botai and horse domestication. In a recent study, my colleagues and I analyzed dozens of wild horses from Ice Age sites across North America. Our research showed that the key features interpreted as evidence of bridle and bit use at Botai were probably the result of natural variation rather than horse riding or horse equipment.Moreover, we now know that many other aspects of horse riding can leave a recognizable signature in an animal’s teeth and bones. Halters, saddles and harnesses can make distinctive marks. And different activity patterns, from heavy exertion to confinement, also have identifiable impacts. For instance, the pressure from mounted riding or from pulling a carriage or chariot can each cause unique problems in a horse’s vertebral column or lower limbs. Even early veterinary practices such as dentistry are sometimes visible in the archaeological rec­ord. So far none of these more reliable indicators of domestication have been found in Botai horses.Horses from the site of Botai are now known to have belonged to a wild horse species, Przewalski’s horse, that was hunted for food. Conservation efforts are currently underway to restore this highly endangered species.Sven Zellner/Agentur Focus/ReduxWe can also look to DNA for clues. Improvements in ancient-DNA sequencing now allow scientists to reconstruct partial or whole genomic sequences from archaeological remains. Analysis of DNA from ancient people and animals has yielded some rather remarkable findings, documenting, for example, the migration of Yamnaya people from eastern Europe as far east as Siberia and Mongolia during the late fourth millennium B.C.E. These same techniques have shown no evidence of interaction between Yamnaya people and Botai, however.Likewise, new techniques for recovering ancient proteins from human dental plaque have shown no evidence of horse milk in the diet of the people who lived at Botai. In fact, horse milk apparently didn’t become widespread in western Asia until the first millennium B.C.E., 3,000 years after the Yamnaya and Botai.The most devastating blow to the kurgan hypothesis came accidentally from a 2018 genomic study by Charleen Gaunitz of the University of Copenhagen, Ludovic Orlando of the Center of Anthropobiology and Genomics of Toulouse in France and their colleagues that showed Botai horses were not the ancestors of domestic horses at all. Rather they were members of another horse species that still survives today, known as Przewalski’s horse. Przewalski’s horse is a close relative of domestic horses but one that has never been managed as a domestic animal in recorded history.Recent archaeological and genetic insights into horse domestication have relevance for understanding the horse human relationship today. Discoveries of an ancient saddle and other tack in Mongolia show that steppe cultures helped to invent technology that is still in use.Some scientists remain convinced that Botai has some connection to early domestication but now suggest that the site represents an earlier, failed effort at taming and control of Przewalski’s horse. In their 2018 study, Gaunitz and her colleagues went so far as to argue that modern Prze­walski’s horses might be the escaped descendants of domesticated Botai horses, a conclusion that many others in the scientific community felt was unsupported.The Botai debate has had important real-­world impacts for Przewalski’s horse. In the 20th century Przewalski’s horses went extinct in the wild, and zoo populations dwindled almost to the single digits. In recent decades these horses have returned from the brink through a careful captive-breeding program, and they have been reintroduced into some areas of Central Asia. This past June a new band of Przewalski’s horses from the Prague Zoo was released into the grasslands of central Kazakhstan, marking the first return of this species to the region in two centuries.In the long term, the success and funding of such conservation projects may hinge heavily on public support, making it imperative to get the story straight. Media attention around Botai has sometimes generated headlines suggesting that Przewalski’s horses “aren’t wild after all” and are instead domestic escapees. Narratives like these are no longer supported by the archaeological data and can imperil ongoing protection, conservation and restoration of habitat for this highly endangered species.Despite some lingering controversy over Botai, the available data emerging from new scientific approaches to studying the past paint a much clearer picture of horse domestication than we’ve ever had before. The recent spate of genomic sequencing and radiocarbon dating of horse bones from across Eurasia has all but disproved the kurgan hypothesis. Such data show us that important cultural developments in the fourth millennium B.C.E.—including the Yamnaya migration and the dissemination of kurgans and Indo-­European culture—probably took place many centuries before the first horses were domesticated, aided by the spread of other livestock such as sheep, goats and cattle and the use of cattle to pull wagons. Meanwhile many steppe people still hunted wild horses for meat.New genomic analyses led by Pablo Librado of the Institute of Evolutionary Biology in Barcelona and Orlando indicate that the ancestors of modern domestic horses originated in the Black Sea steppes around 2200 B.C.E., nearly 2,000 years later than previously thought. Although we do not yet know exactly the details of their initial domestication, it is clear based on the timing that these horses belonged to post-Yamnaya culture. Patterns in the ancient genomes suggest that in the early centuries of domestication, the horse cultures of the western steppe were selectively breeding these animals for traits such as strength and docility.Horses have figured prominently in the traditions and values of the Lakota and many other Native Nations across the Great Plains and Rockies.Courtesy of the Global Institute for Traditional SciencesThis revised timeline for horse domestication is part of a growing body of evidence that casts the Yamnaya legacy in a new light. Early Indo-European cultures such as the Yamnaya are sometimes portrayed in popular culture in a nationalist manner, with links drawn between their supposed domestication of the horse, impressive transcontinental migrations, and cultural dominance. Now science indicates that the Yamnaya probably didn’t domesticate horses at all, and their migrations were not necessarily heroic conquests. For example, new genomic data show that by around 5,000 years ago Yamnaya migrants reached as far as central Mongolia, where they are known as the Afa­nasievo culture. Although these migrants may have helped spread sheep, goats and cattle into East Asia, initially it seems their impact was limited to a few mountain regions of the eastern steppe. After the Yamnaya arrival, it would be almost 2,000 years before horses showed up in the region. And genomic analyses suggest that their Afanasievo descendants had little lasting genetic effect on later populations.The revelation that people domesticated horses much later than previously thought resolves what was always a nagging problem with the kurgan hypothesis. If horses were domesticated in the Eneolithic, why did it take centuries for much of their impact to show up in the archaeological record? Under the kurgan model, researchers often framed horse domestication as a gradual development to explain why it took so long for horses to move beyond the steppes and revolutionize trade and conflicts, for instance. When we look at our records of the past with this revised time frame for horse domestication in mind, there appears to be the rapid, disruptive and dynamic development we expected to see after all.In our new understanding it seems that almost as soon as people tamed horses, they began using them for transport. Some of the earliest robust archaeological evidence of horse domestication comes from burials of horses paired with chariots dated to around 2000 B.C.E. at sites associated with Russia’s Sintashta culture. Radiocarbon-dating and genetic records show that within only a few centuries domestic horses spread over huge swaths of the Eurasian continent. In some cases, their expansion was peaceful: as availability of horses grew across the steppes, new people incorporated horses, herding and transport into their way of life. In other instances, domesticated horses reached new locales through destructive conquests by marauding charioteers. Some cultures riding this wave of horse-drawn expansion were Indo-European; others weren’t.A nomadic family corrals livestock on horseback in Central Mongolia.Timothy Allen/Getty ImagesBy the middle of the second millennium B.C.E., horsepower had reached civilizations from Egypt and the Mediterranean to Scandinavia in the north and Mongolia and China in the east. In many cases, the arrival of horses upended the balance of power. For example, when horses first arrived in China during the late Shang dynasty, around 3,200 years ago, they were mostly a novelty for the elite. But within little more than a century a rival power, the Western Zhou, was able to marshal its strength and skill in chariotry to bring a dramatic end to Shang rule. In very short order, horses went from being a steppe curiosity to the foundation of authority for one of the largest civilizations of East Asia.In addition to clearing up these early chapters of the human-horse story, scientific archaeology has also uncovered connections between the horse cultures of the distant past and our world today. Archaeological discoveries and genomic data from the steppes and deserts of Central Asia are revealing the ways that horses and horseback riding helped humans form networks, trade routes and empires linking the ancient world in new ways.On horseback, people traveled steppe networks and the Silk Roads to move goods, plants, animals, ideas and even early pandemic diseases across Eurasia and beyond. These emerging transcontinental connections can be directly observed in the archaeological record. In Mongolia, a royal tomb from the early steppe kingdom of the Xiongnu dating to somewhere around 100 B.C.E. was found to contain a silver plate with a picture of the Greek demigod Hercules on it. Historical records document expeditions from China to Central Asia’s Ferghana Valley in search of horses, an early step in the formation of the Silk Roads trade routes, and during the height of the Tang Dynasty, a thriving trade sent horses from the Tibetan Plateau and the Himalaya to lowland China in exchange for tea. Recent DNA sequencing of the plague-­causing bacterium Yersinia pestis suggests that the earliest strains of the virus that devastated Europe first emerged deep in deserts, mountains and steppes of Central Asia before spreading along the horse-powered steppe corridors and Silk Roads in the early 14th century.The corridors and connections that ancient equestrians forged persist today: Ancient travel routes across the Mongolian steppe are now receiving makeovers with Chinese financing to serve as high-speed highways for motor vehicle transit. Even the state highway I take for my daily commute in Boulder, Colo., got its start as a 19th-century postal road.New archaeology discoveries show that steppe cultures helped to invent or spread important technologies that improved control over horses and are still used today. In Mongolia, my collaborators and I have discovered immaculately preserved ancient tack from some 1,600 years ago. This riding technology, which includes a wood frame saddle and iron stirrups, shows that steppe cultures helped to develop these equestrian devices, which gave riders greater seat stability and the ability to brace or stand in the saddle—significant advantages when it came to mounted warfare. These tools became a standard part of horse equipment in cultures all over the world, from the caliphates of Islam to the Viking explorers of the high Arctic.Archaeological science also allows us to trace the spread of domesticated horses out of Eurasia as people transported them to such places as the Sahel savanna of Africa, the Great Plains of North America, the Pampas of South America, and even island nations of Australasia and the Pacific, where horses shaped cultures across more recent periods. This work is showing some surprising results.Recently I worked with a large team of scientists, scholars and Indigenous knowledge keepers to see what archaeology, genomics and Indigenous knowledge systems could tell us about the history of domesticated horses in the U.S. The prevailing view among Western scientists was that Native American peoples did not begin caring for horses until after the Pueblo Revolt of 1680, when Pueblo people in what is now New Mexico overthrew Spanish colonizers. Through our collaboration we found that Native nations from across the Plains and Rockies adopted horses at least a century earlier than was ever chronicled in European historical records. This finding confirms perspectives preserved in some oral traditions and Tribal histories and mirrors our scholarship from similar archaeological contexts in Patagonia.Many Indigenous horse cultures, for whom a connection with horses is a source of strength, resilience and tradition, are now drawing on collaborative and interdisciplinary archaeological scholarship in their efforts to correct narratives, conserve traditional horse lineages and secure a place for horses in our changing world.In many ways, the disappearance of horses from daily life in the past century has been as rapid and jarring as their initial domestication 4,000 years ago. In most corners of the world speedy mechanization has replaced trails with pavement and horse transport with engine-powered or electric alternatives. These days, along the Front Range of the Rockies, people wearing jeans and cowboy hats once designed for life in the saddle are more likely to be found shopping at Whole Foods than slinging lassos.But the threads linking our ever changing present to the distant past are never far if you know where to look. Resolution of some of the most urgent problems of the 21st century—from saving endangered species to conserving cultural knowledge and traditions—will require a clear-headed and scientifically grounded understanding of the millennia-long relationship between human and horse.

Archaeological and genetic discoveries topple long-standing ideas about the domestication of equines

The world we live in was built on horseback. Many people today rarely encounter horses, but this is a recent development. Only a few decades ago domestic horses formed the fabric of societies around the globe. Almost every aspect of daily life was linked to horses in an important way. Mail was delivered by postal riders, people traveled by horse-drawn carriage, merchants used horses to transport goods across continents, farmers cultivated their land with horsepower, and soldiers rode horses into battle.

Scholars have long sought to understand how the unique partnership between humans and horses got its start. Until recently, the conventional wisdom was that horses were gradually domesticated by the Yamnaya people beginning more than 5,000 years ago in the grassy plains of western Asia and that this development allowed these people to populate Eurasia, carrying their early Indo-European language and cultural traditions with them.

Now new kinds of archaeological evidence, in conjunction with interdisciplinary collaborations, are overturning some basic assumptions about when—and why—horses were first domesticated and how rapidly they spread across the globe. These insights dramatically change our understanding of not only horses but also people, who used this important relationship to their advantage in everything from herding to warfare. This revised view of the past also has lessons for us today as we consider the fate of endangered wild horses in the steppes. And it highlights the essential value of Indigenous knowledge in piecing together later chapters of the horse-human story, when domesticated horses moved from Eurasia into the rest of the world.


On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.



The genus Equus, which includes horses, asses and zebras, originated around four million years ago in North America. Over the next few million years its members began dispersing across the Beringia land bridge between what is now Russia and Alaska and into Asia, Europe and Africa. Horses are among humanity’s oldest and most prized prey animals. Perhaps the first indisputable evidence for hunting with weapons by early members of the human family comes from horse-rich archaeological sites such as Schöningen in Germany, dating to some 300,000 years ago. The unique lakeshore environment there preserved not only the remains of a band of horses but also the immaculately crafted wood spears that humans used to dispatch them. For millennia wild horses remained a dietary staple for early Homo sapiens living in northern Eurasia. People were keen observers of these animals they depended on for food: horses featured prominently in Ice Age art, including in spectacular images rendered in charcoal on the limestone walls of France’s Chauvet Cave more than 30,000 years ago.

Illustrations/images in France’s Chauvet Cave of horses

Horses served as muses for Ice Age people, who captured their likenesses in spectacular works of art, such as the images in France’s Chauvet Cave that date to more than 30,000 years ago.

Heritage Images/Getty Images

Tracking the transition from this ancient predator-prey connection to early domestication—which includes such activities as raising, herding, milking and riding horses—can be challenging. Researchers studying the deep past rarely have the luxury of written documents or detailed imagery to chronicle changing relationships between people and animals. This is especially true in the Eurasian steppes—the cold, dry, remote grasslands where scientists suspect that the first horse herders emerged, which stretch from eastern Europe nearly to the Pacific. In the steppes, cultures have long been highly mobile, moving herds to fresh pastures with the changing seasons. Their way of life left behind archaeological assemblages that can be shallow, poorly preserved and difficult to study. Indeed, much of what we know about the origins of horse domestication comes from a single, powerful scientific source: the bones of ancient horses themselves.

Bones in a burial site

But it wasn’t until much later that people domesticated horses, as evidenced by burials at sites such as Novoil’inovskiy in Russia dating to the early second millennium B.C.E.

As an archaeozoologist, I seek to understand the origins of domestication through the study of horse bones from archaeological sites. In the early days of this kind of scientific inquiry into domestication, some researchers looked for patterns in the size, shape or frequency of these bones over time. The basic logic behind this approach is that if horses were living in close contact with people, their bones might have become more widespread or more variable in shape and size than in earlier periods, whether because people were breeding them for particular traits or because they were putting the horses to work in ways that altered the animals’ bodies over the course of their life, among other factors.

Burials of horses and chariots

Burials of horses and chariots establish that early domesticated horses were used for transport.

But it turns out that looking for these types of patterns in the archaeological rec­ord is a little bit like reading tea leaves. Changes in the shape or number of horse bones found at ancient sites could be caused by any number of other things, from environmental change to shifting human diets or even sampling errors. At best, these indicators give us only an indirect way to trace the origin of herding or riding.

A stronger, more scientific understanding of horse domestication began to take shape in the 1990s. Building on the work of some earlier scholars, archaeologist David Anthony of Hartwick College in New York State and his colleagues identified direct evidence for domestication in horse remains, publishing their findings in Scientific American. When horses are used by people for transportation, they sometimes develop a particular pattern of damage on their teeth from the equipment that is used to control them. This damage, known as bit wear, can often be seen on the lower second premolar of horses ridden with metal mouthpieces, or bits. Anthony and his colleagues found bit wear in an ancient horse from a Ukrainian site known as Deriyevka, which was thought to have been home to an archaeological culture known as the Yamnaya people. Although the Deriyevka horse had not been directly dated, its association with the Yamnaya culture suggested that herders in the Eurasian steppes might have been raising and riding domestic horses by the fourth millennium B.C.E. or even earlier.

The Deriyevka horse seemed to tie together a number of loose threads in scientists’ understanding of ancient Eurasia. Beginning after 6,000 years ago, during a period called the Eneolithic (also sometimes known as the Copper Age), large human burial mounds known as kurgans appeared across much of eastern and central Europe and the western steppes. Over the years many archaeologists and scholars hypothesized a connection linking kurgans, the spread of Indo-European languages and the first horse domestication. Specifically, they proposed that the Yamnaya people tamed horses in the Black Sea steppes and then swept across Eurasia on horseback, bringing their burial customs and an early form of Indo-European language—which is believed to have given rise to many languages spoken today, including English. On the heels of Anthony’s discovery, this framework, known as the kurgan hypothesis, gained wide currency in academic literature and popular consciousness.

Unfortunately, the Deriyevka horse was not what it seemed. A decade later direct radiocarbon dating of the remains showed that the animal wasn’t nearly as old as Anthony thought. Instead it had lived and died sometime in the early first millennium B.C.E., when domestic horses and horseback riding were already widespread and well documented. But rather than rejecting the kurgan hypothesis entirely, archaeologists continued to explore other animal-bone assemblages from the western steppes dating to around the same period, searching for horse bones to validate the idea. During this search one site in particular drew renewed interest: Botai, located in northern Kazakhstan.

Maps show wild horse dispersal from North America, domestication and initial waves of domestic horse dispersal from the Black Sea Steppe, and continued global dispersal by land and sea.

Botai sits some distance east of the Yamnaya homeland. Despite lacking any obvious cultural connections to the Yamnaya, Botai is also located in the western steppes, and like Deriyevka, it dates to the fourth millennium B.C.E. Most interesting, the animal-bone assemblage recovered from excavations at Botai contained huge numbers of horses. In fact, among thousands of animal bones from Botai, almost all were from horses. Working with these materials, archaeologists began to discuss the relevance of Botai’s horses to the question of early domestication.

Early on, the Botai domestication debate was a spicy one. First Anthony and his colleagues suggested that the strange surface shape of some Botai teeth was also a form of bit wear, hinting that the Botai horses were ridden. Soon, though, Sandra Olsen, now at the University of Kansas, identified the same features in wild horses, meaning they could not be taken as proof of domestication on their own. Scholars also looked at contextual aspects of the Botai site, including the architectural layout, speculating that post holes and backfilled pit houses filled with organic material could be leftover traces of corrals and corral cleaning.

Still, other scientists remained skeptical—for good reason. Some Botai horses were found with harpoons directly embedded in their ribs, obviously killed by hunters. An even bigger problem with connecting Botai to domestication, though, was the age and sex patterns among the animals found at the site. In a managed herd of horses, those chosen for slaughter are either very young or very old because breeding-­age animals are needed to ensure the herd’s fertility and survival. Marsha Levine and her colleagues pointed out, however, that Botai’s bone assemblage consisted mainly of the remains of mostly healthy adults. Moreover, the site contained large numbers of breeding-age females, as well as some fetal and neonatal horses from pregnant mares. The slaughter of these animals would be devastating to the fertility of a domestic herd, but evidence of it is common in archaeological sites where wild animals were hunted for food.

This healthy disagreement over domestication at Botai was temporarily quashed in 2009, when a high-­profile publication in the journal Science brought together new evidence apparently showing that people from Botai milked and rode horses. The authors looked at the shape of the bones of horses at Botai and argued they were similar to the modern domestic horse, Equus caballus. Using emerging techniques for the study of ancient biomolecules, scientists also analyzed ceramic shards from Botai and found residues that seemed to have come from ancient horse fats. These residues, though not diagnostic of milk on their own, had anomalous isotope values, suggesting they could have originated from milk.

The most important new argument, though, was that some Botai horses displayed a different kind of tooth damage that the researchers said could be more securely linked to use of a bridle. With new results from Botai strengthening con­fidence in the idea of horse domestica­­tion during the fourth millennium B.C.E., the kurgan hypothesis returned to paradigm status.

In the decade and a half since Botai revived the kurgan hypothesis, our archaeozoological tool kit for understanding ancient horses has grown by leaps and bounds. And one by one these new techniques and discoveries have begun to erode the connections between Botai and horse domestication. In a recent study, my colleagues and I analyzed dozens of wild horses from Ice Age sites across North America. Our research showed that the key features interpreted as evidence of bridle and bit use at Botai were probably the result of natural variation rather than horse riding or horse equipment.

Moreover, we now know that many other aspects of horse riding can leave a recognizable signature in an animal’s teeth and bones. Halters, saddles and harnesses can make distinctive marks. And different activity patterns, from heavy exertion to confinement, also have identifiable impacts. For instance, the pressure from mounted riding or from pulling a carriage or chariot can each cause unique problems in a horse’s vertebral column or lower limbs. Even early veterinary practices such as dentistry are sometimes visible in the archaeological rec­ord. So far none of these more reliable indicators of domestication have been found in Botai horses.

A group of horses grazing in a field

Horses from the site of Botai are now known to have belonged to a wild horse species, Przewalski’s horse, that was hunted for food. Conservation efforts are currently underway to restore this highly endangered species.

Sven Zellner/Agentur Focus/Redux

We can also look to DNA for clues. Improvements in ancient-DNA sequencing now allow scientists to reconstruct partial or whole genomic sequences from archaeological remains. Analysis of DNA from ancient people and animals has yielded some rather remarkable findings, documenting, for example, the migration of Yamnaya people from eastern Europe as far east as Siberia and Mongolia during the late fourth millennium B.C.E. These same techniques have shown no evidence of interaction between Yamnaya people and Botai, however.

Likewise, new techniques for recovering ancient proteins from human dental plaque have shown no evidence of horse milk in the diet of the people who lived at Botai. In fact, horse milk apparently didn’t become widespread in western Asia until the first millennium B.C.E., 3,000 years after the Yamnaya and Botai.

The most devastating blow to the kurgan hypothesis came accidentally from a 2018 genomic study by Charleen Gaunitz of the University of Copenhagen, Ludovic Orlando of the Center of Anthropobiology and Genomics of Toulouse in France and their colleagues that showed Botai horses were not the ancestors of domestic horses at all. Rather they were members of another horse species that still survives today, known as Przewalski’s horse. Przewalski’s horse is a close relative of domestic horses but one that has never been managed as a domestic animal in recorded history.

Photograph of an ancient saddle

Recent archaeological and genetic insights into horse domestication have relevance for understanding the horse human relationship today. Discoveries of an ancient saddle and other tack in Mongolia show that steppe cultures helped to invent technology that is still in use.

Some scientists remain convinced that Botai has some connection to early domestication but now suggest that the site represents an earlier, failed effort at taming and control of Przewalski’s horse. In their 2018 study, Gaunitz and her colleagues went so far as to argue that modern Prze­walski’s horses might be the escaped descendants of domesticated Botai horses, a conclusion that many others in the scientific community felt was unsupported.

The Botai debate has had important real-­world impacts for Przewalski’s horse. In the 20th century Przewalski’s horses went extinct in the wild, and zoo populations dwindled almost to the single digits. In recent decades these horses have returned from the brink through a careful captive-breeding program, and they have been reintroduced into some areas of Central Asia. This past June a new band of Przewalski’s horses from the Prague Zoo was released into the grasslands of central Kazakhstan, marking the first return of this species to the region in two centuries.

In the long term, the success and funding of such conservation projects may hinge heavily on public support, making it imperative to get the story straight. Media attention around Botai has sometimes generated headlines suggesting that Przewalski’s horses “aren’t wild after all” and are instead domestic escapees. Narratives like these are no longer supported by the archaeological data and can imperil ongoing protection, conservation and restoration of habitat for this highly endangered species.


Despite some lingering controversy over Botai, the available data emerging from new scientific approaches to studying the past paint a much clearer picture of horse domestication than we’ve ever had before. The recent spate of genomic sequencing and radiocarbon dating of horse bones from across Eurasia has all but disproved the kurgan hypothesis. Such data show us that important cultural developments in the fourth millennium B.C.E.—including the Yamnaya migration and the dissemination of kurgans and Indo-­European culture—probably took place many centuries before the first horses were domesticated, aided by the spread of other livestock such as sheep, goats and cattle and the use of cattle to pull wagons. Meanwhile many steppe people still hunted wild horses for meat.

New genomic analyses led by Pablo Librado of the Institute of Evolutionary Biology in Barcelona and Orlando indicate that the ancestors of modern domestic horses originated in the Black Sea steppes around 2200 B.C.E., nearly 2,000 years later than previously thought. Although we do not yet know exactly the details of their initial domestication, it is clear based on the timing that these horses belonged to post-Yamnaya culture. Patterns in the ancient genomes suggest that in the early centuries of domestication, the horse cultures of the western steppe were selectively breeding these animals for traits such as strength and docility.

A Native American woman petting a horse outdoors

Horses have figured prominently in the traditions and values of the Lakota and many other Native Nations across the Great Plains and Rockies.

Courtesy of the Global Institute for Traditional Sciences

This revised timeline for horse domestication is part of a growing body of evidence that casts the Yamnaya legacy in a new light. Early Indo-European cultures such as the Yamnaya are sometimes portrayed in popular culture in a nationalist manner, with links drawn between their supposed domestication of the horse, impressive transcontinental migrations, and cultural dominance. Now science indicates that the Yamnaya probably didn’t domesticate horses at all, and their migrations were not necessarily heroic conquests. For example, new genomic data show that by around 5,000 years ago Yamnaya migrants reached as far as central Mongolia, where they are known as the Afa­nasievo culture. Although these migrants may have helped spread sheep, goats and cattle into East Asia, initially it seems their impact was limited to a few mountain regions of the eastern steppe. After the Yamnaya arrival, it would be almost 2,000 years before horses showed up in the region. And genomic analyses suggest that their Afanasievo descendants had little lasting genetic effect on later populations.

The revelation that people domesticated horses much later than previously thought resolves what was always a nagging problem with the kurgan hypothesis. If horses were domesticated in the Eneolithic, why did it take centuries for much of their impact to show up in the archaeological record? Under the kurgan model, researchers often framed horse domestication as a gradual development to explain why it took so long for horses to move beyond the steppes and revolutionize trade and conflicts, for instance. When we look at our records of the past with this revised time frame for horse domestication in mind, there appears to be the rapid, disruptive and dynamic development we expected to see after all.

In our new understanding it seems that almost as soon as people tamed horses, they began using them for transport. Some of the earliest robust archaeological evidence of horse domestication comes from burials of horses paired with chariots dated to around 2000 B.C.E. at sites associated with Russia’s Sintashta culture. Radiocarbon-dating and genetic records show that within only a few centuries domestic horses spread over huge swaths of the Eurasian continent. In some cases, their expansion was peaceful: as availability of horses grew across the steppes, new people incorporated horses, herding and transport into their way of life. In other instances, domesticated horses reached new locales through destructive conquests by marauding charioteers. Some cultures riding this wave of horse-drawn expansion were Indo-European; others weren’t.

Photograph of a nomadic family corrals livestock on horseback

A nomadic family corrals livestock on horseback in Central Mongolia.

Timothy Allen/Getty Images

By the middle of the second millennium B.C.E., horsepower had reached civilizations from Egypt and the Mediterranean to Scandinavia in the north and Mongolia and China in the east. In many cases, the arrival of horses upended the balance of power. For example, when horses first arrived in China during the late Shang dynasty, around 3,200 years ago, they were mostly a novelty for the elite. But within little more than a century a rival power, the Western Zhou, was able to marshal its strength and skill in chariotry to bring a dramatic end to Shang rule. In very short order, horses went from being a steppe curiosity to the foundation of authority for one of the largest civilizations of East Asia.

In addition to clearing up these early chapters of the human-horse story, scientific archaeology has also uncovered connections between the horse cultures of the distant past and our world today. Archaeological discoveries and genomic data from the steppes and deserts of Central Asia are revealing the ways that horses and horseback riding helped humans form networks, trade routes and empires linking the ancient world in new ways.

On horseback, people traveled steppe networks and the Silk Roads to move goods, plants, animals, ideas and even early pandemic diseases across Eurasia and beyond. These emerging transcontinental connections can be directly observed in the archaeological record. In Mongolia, a royal tomb from the early steppe kingdom of the Xiongnu dating to somewhere around 100 B.C.E. was found to contain a silver plate with a picture of the Greek demigod Hercules on it. Historical records document expeditions from China to Central Asia’s Ferghana Valley in search of horses, an early step in the formation of the Silk Roads trade routes, and during the height of the Tang Dynasty, a thriving trade sent horses from the Tibetan Plateau and the Himalaya to lowland China in exchange for tea. Recent DNA sequencing of the plague-­causing bacterium Yersinia pestis suggests that the earliest strains of the virus that devastated Europe first emerged deep in deserts, mountains and steppes of Central Asia before spreading along the horse-powered steppe corridors and Silk Roads in the early 14th century.

The corridors and connections that ancient equestrians forged persist today: Ancient travel routes across the Mongolian steppe are now receiving makeovers with Chinese financing to serve as high-speed highways for motor vehicle transit. Even the state highway I take for my daily commute in Boulder, Colo., got its start as a 19th-century postal road.

New archaeology discoveries show that steppe cultures helped to invent or spread important technologies that improved control over horses and are still used today. In Mongolia, my collaborators and I have discovered immaculately preserved ancient tack from some 1,600 years ago. This riding technology, which includes a wood frame saddle and iron stirrups, shows that steppe cultures helped to develop these equestrian devices, which gave riders greater seat stability and the ability to brace or stand in the saddle—significant advantages when it came to mounted warfare. These tools became a standard part of horse equipment in cultures all over the world, from the caliphates of Islam to the Viking explorers of the high Arctic.

Archaeological science also allows us to trace the spread of domesticated horses out of Eurasia as people transported them to such places as the Sahel savanna of Africa, the Great Plains of North America, the Pampas of South America, and even island nations of Australasia and the Pacific, where horses shaped cultures across more recent periods. This work is showing some surprising results.

Recently I worked with a large team of scientists, scholars and Indigenous knowledge keepers to see what archaeology, genomics and Indigenous knowledge systems could tell us about the history of domesticated horses in the U.S. The prevailing view among Western scientists was that Native American peoples did not begin caring for horses until after the Pueblo Revolt of 1680, when Pueblo people in what is now New Mexico overthrew Spanish colonizers. Through our collaboration we found that Native nations from across the Plains and Rockies adopted horses at least a century earlier than was ever chronicled in European historical records. This finding confirms perspectives preserved in some oral traditions and Tribal histories and mirrors our scholarship from similar archaeological contexts in Patagonia.

Many Indigenous horse cultures, for whom a connection with horses is a source of strength, resilience and tradition, are now drawing on collaborative and interdisciplinary archaeological scholarship in their efforts to correct narratives, conserve traditional horse lineages and secure a place for horses in our changing world.

In many ways, the disappearance of horses from daily life in the past century has been as rapid and jarring as their initial domestication 4,000 years ago. In most corners of the world speedy mechanization has replaced trails with pavement and horse transport with engine-powered or electric alternatives. These days, along the Front Range of the Rockies, people wearing jeans and cowboy hats once designed for life in the saddle are more likely to be found shopping at Whole Foods than slinging lassos.

But the threads linking our ever changing present to the distant past are never far if you know where to look. Resolution of some of the most urgent problems of the 21st century—from saving endangered species to conserving cultural knowledge and traditions—will require a clear-headed and scientifically grounded understanding of the millennia-long relationship between human and horse.

Read the full story here.
Photos courtesy of

Giant Sloths and Many Other Massive Creatures Were Once Common on Our Planet. With Environmental Changes, Such Giants Could Thrive Again

If large creatures like elephants, giraffes and bison are allowed to thrive, they could alter habitats that allow for the rise of other giants

Giant Sloths and Many Other Massive Creatures Were Once Common on Our Planet. With Environmental Changes, Such Giants Could Thrive Again If large creatures like elephants, giraffes and bison are allowed to thrive, they could alter habitats that allow for the rise of other giants Riley Black - Science Correspondent July 11, 2025 8:00 a.m. Ancient sloths lived in trees, on mountains, in deserts, in boreal forests and on open savannas. Some grew as large as elephants. Illustration by Diego Barletta The largest sloth of all time was the size of an elephant. Known to paleontologists as Eremotherium, the shaggy giant shuffled across the woodlands of the ancient Americas between 60,000 and five million years ago. Paleontologists have spent decades hotly debating why such magnificent beasts went extinct, the emerging picture involving a one-two punch of increasing human influence on the landscape and a warmer interglacial climate that began to change the world’s ecosystems. But even less understood is how our planet came to host entire communities of such immense animals during the Pleistocene. Now, a new study on the success of the sloths helps to reveal how the world of Ice Age giants came to be, and hints that an Earth brimming with enormous animals could come again. Florida Museum of Natural History paleontologist Rachel Narducci and colleagues tracked how sloths came to be such widespread and essential parts of the Pleistocene Americas and published their findings in Science this May. The researchers found that climate shifts that underwrote the spread of grasslands allowed big sloths to arise, the shaggy mammals then altering those habitats to maintain open spaces best suited to big bodies capable of moving long distances. The interactions between the animals and environment show how giants attained their massive size, and how strange it is that now our planet has fewer big animals than would otherwise be here. Earth still boasts some impressively big species. In fact, the largest animal of all time is alive right now and only evolved relatively recently. The earliest blue whale fossils date to about 1.5 million years ago, and, at 98 feet long and more than 200 tons, the whale is larger than any mammoth or dinosaur. Our planet has always boasted a greater array of small species than large ones, even during prehistoric ages thought of as synonymous with megafauna. Nevertheless, Earth’s ecosystems are still in a megafaunal lull that began at the close of the Ice Age. “I often say we are living on a downsized planet Earth,” says University of Maine paleoecologist Jacquelyn Gill.Consider what North America was like during the Pleistocene, between 11,000 years and two million ago. The landmass used to host multiple forms of mammoths, mastodons, giant ground sloths, enormous armadillos, multiple species of sabercat, huge bison, dire wolves and many more large creatures that formed ancient ecosystems unlike anything on our planet today. In addition, many familiar species such as jaguars, black bears, coyotes, white-tailed deer and golden eagles also thrived. Elsewhere in the world lived terror birds taller than an adult human, wombats the size of cars, woolly rhinos, a variety of elephants with unusual tusks and other creatures. Ecosystems capable of supporting such giants have been the norm rather than the exception for tens of millions of years. Giant sloths were among the greatest success stories among the giant-size menagerie. The herbivores evolved on South America when it was still an island continent, only moving into Central and North America as prehistoric Panama connected the landmasses about 2.7 million years ago. Some were small, like living two- and three-toed sloths, while others embodied a range of sizes all the way up to elephant-sized giants like Eremotherium and the “giant beast” Megatherium. An Eremotherium skeleton at the Houston Museum of Natural Science demonstrates just how large the creature grew. James Nielsen / Houston Chronicle via Getty Images The earliest sloths originated on South America about 35 million years ago. They were already big. Narducci and colleagues estimate that the common ancestor of all sloths was between about 150 and 770 pounds—or similar to the range of sizes seen among black bears today—and they walked on the ground. “I was surprised and thrilled” to find that sloths started off large, Narducci says, as ancestral forms of major mammal groups are often small, nocturnal creatures. The earliest sloths were already in a good position to shift with Earth’s climate and ecological changes. The uplift of the Andes Mountains in South America led to changes on the continent as more open, drier grasslands spread where there had previously been wetter woodlands and forests. While some sloths became smaller as they spent more time around and within trees, the grasslands would host the broadest diversity of sloth species. The grasslands sloths were the ones that ballooned to exceptional sizes. Earth has been shifting between warmer and wetter times, like now, and cooler and drier climates over millions of years. The chillier and more arid times are what gave sloths their size boost. During these colder spans, bigger sloths were better able to hold on to their body heat, but they also didn’t need as much water, and they were capable of traveling long distances more efficiently thanks to their size. “The cooler and drier the climate, especially after 11.6 million years ago, led to expansive grasslands, which tends to favor the evolution of increasing body mass,” Narducci says. The combination of climate shifts, mountain uplift and vegetation changes created environments where sloths could evolve into a variety of forms—including multiple times when sloths became giants again. Gill says that large body size was a “winning strategy” for herbivores. “At a certain point, megaherbivores get so large that most predators can’t touch them; they’re able to access nutrition in foods that other animals can’t really even digest thanks to gut microbes that help them digest cellulose, and being large means you’re also mobile,” Gill adds, underscoring advantages that have repeatedly pushed animals to get big time and again. The same advantages underwrote the rise of the biggest dinosaurs as well as more recent giants like the sloths and mastodons. As large sloths could travel further, suitable grassland habitats stretched from Central America to prehistoric Florida. “This is what also allowed for their passage into North America,” Narducci says. Sloths were able to follow their favored habitats between continents. If the world were to shift back toward cooler and drier conditions that assisted the spread of the grasslands that gave sloths their size boost, perhaps similar giants could evolve. The sticking point is what humans are doing to Earth’s climate, ecosystems and existing species. The diversity and number of large species alive today is vastly, and often negatively, affected by humans. A 2019 study of human influences on 362 megafauna species, on land and in the water, found that 70 percent are diminishing in number, and 59 percent are getting dangerously close to extinction. But if that relationship were to change, either through our actions or intentions, studies like the new paper on giant sloths hint that ecosystems brimming with a wealth of megafaunal species could evolve again. Big animals change the habitats where they live, which in turn tends to support more large species adapted to those environments. The giant sloths that evolved among ancient grasslands helped to keep those spaces open in tandem with other big herbivores, such as mastodons, as well as the large carnivores that preyed upon them. Paleontologists and ecologists know this from studies of how large animals such as giraffes and rhinos affect vegetation around them. Big herbivores, in particular, tend to keep habitats relatively open. Elephants and other big beasts push over trees, trample vegetation underfoot, eat vast amounts of greenery and transport seeds in their dung, disassembling vegetation while unintentionally planting the beginnings of new habitats. Such broad, open spaces were essential to the origins of the giant sloths, and so creating wide-open spaces helps spur the evolution of giants to roam such environments. For now, we are left with the fossil record of giant animals that were here so recently that some of their bones aren’t even petrified, skin and fur still clinging to some skeletons. “The grasslands they left behind are just not the same, in ways we’re really only starting to understand and appreciate,” Gill says. A 2019 study on prehistoric herbivores in Africa, for example, found that the large plant-eaters altered the water cycling, incidence of fire and vegetation of their environment in a way that has no modern equivalent and can’t just be assumed to be an ancient version of today’s savannas. The few megaherbivores still with us alter the plant life, water flow, seed dispersal and other aspects of modern environments in their own unique ways, she notes, which should be a warning to us to protect them—and the ways in which they affect our planet. If humans wish to see the origin of new magnificent giants like the ones we visit museums to see, we must change our relationship to the Earth first. Get the latest Science stories in your inbox.

How changes in California culture have influenced the evolution of wild animals in Los Angeles

A new study argues that religion, politics and war affect how animals and plants in cities evolve, and the confluence of these forces seem to be actively affecting urban wildlife in L.A.

For decades, biologists have studied how cities affect wildlife by altering food supplies, fragmenting habitats and polluting the environment. But a new global study argues that these physical factors are only part of the story. Societal factors, the researchers claim, especially those tied to religion, politics and war, also leave lasting marks on the evolutionary paths of the animals and plants that share our cities.Published in Nature Cities, the comprehensive review synthesizes evidence from cities worldwide, revealing how human conflict and cultural practices affect wildlife genetics, behavior and survival in urban environments.The paper challenges the tendency to treat the social world as separate from ecological processes. Instead, the study argues, we should consider the ways the aftershocks of religious traditions, political systems and armed conflicts can influence the genetic structure of urban wildlife populations. (Gabriella Angotti-Jones / Los Angeles Times) “Social sciences have been very far removed from life sciences for a very long time, and they haven’t been integrated,” said Elizabeth Carlen, a biologist at Washington University in St. Louis and co-lead author of the study. “We started just kind of playing around with what social and cultural processes haven’t been talked about,” eventually focusing on religion, politics and war because of their persistent yet underexamined impacts on evolutionary biology, particularly in cities, where cultural values and built environments are densely concentrated.Carlen’s own work in St. Louis examines how racial segregation and urban design, often influenced by policing strategies, affect ecological conditions and wild animals’ access to green spaces.“Crime prevention through environmental design,” she said, is one example of how these factors influence urban wildlife. “Law enforcement can request that there not be bushes … or short trees, because then they don’t have a sight line across the park.” Although that design choice may serve surveillance goals, it also limits the ability of small animals to navigate those spaces.These patterns, she emphasized, aren’t unique to St. Louis. “I’m positive that it’s happening in Los Angeles. Parks in Beverly Hills are going to look very different than parks in Compton. And part of that is based on what policing looks like in those different places.” This may very well be the case, as there is a significantly lower level of urban tree species richness in areas like Compton than in areas like Beverly Hills, according to UCLA’s Biodiversity Atlas. A coyote wanders onto the fairway, with the sprinklers turned on, as a golfer makes his way back to his cart after hitting a shot on the 16th hole of the Harding golf course at Griffith Park. (Mel Melcon / Los Angeles Times) The study also examines war and its disruptions, which can have unpredictable effects on animal populations. Human evacuation from war zones can open urban habitats to wildlife, while the destruction of green spaces or contamination of soil and water can fragment ecosystems and reduce genetic diversity.In Kharkiv, Ukraine, for example, human displacement during the Russian invasion led to the return of wild boars and deer to urban parks, according to the study. In contrast, sparrows, which depend on human food waste, nearly vanished from high-rise areas.All of this, the researchers argue, underscores the need to rethink how cities are designed and managed by recognizing how religion, politics and war shape not just human communities but also the evolutionary trajectories of urban wildlife. By integrating ecological and social considerations into urban development, planners and scientists can help create cities that are more livable for people while also supporting the long-term genetic diversity and adaptability of the other species that inhabit them.This intersection of culture and biology may be playing out in cities across the globe, including Los Angeles.A study released earlier this year tracking coyotes across L.A. County found that the animals were more likely to avoid wealthier neighborhoods, not because of a lack of access or food scarcity, but possibly due to more aggressive human behavior toward them and higher rates of “removal” — including trapping and releasing elsewhere, and in some rare cases, killing them. In lower-income areas, where trapping is less common, coyotes tended to roam more freely, even though these neighborhoods often had more pollution and fewer resources that would typically support wild canines. Researchers say these patterns reflect how broader urban inequities are written directly into the movements of and risks faced by wildlife in the city.Black bears, parrots and even peacocks tell a similar story in Los Angeles. Wilson Sherman, a PhD student at UCLA who is studying human-black bear interactions, highlights how local politics and fragmented municipal governance shape not only how animals are managed but also where they appear. (Carolyn Cole / Los Angeles Times) “Sierra Madre has an ordinance requiring everyone to have bear-resistant trash cans,” Sherman noted. “Neighboring Arcadia doesn’t.” This kind of patchwork governance, Sherman said, can influence where wild animals ultimately spend their time, creating a mosaic of risk and opportunity for species whose ranges extend across multiple jurisdictions.Cultural values also play a role. Thriving populations of non-native birds, such as Amazon parrots and peacocks, illustrate how aesthetic preferences and everyday choices can significantly influence the city’s ecological makeup in lasting ways.Sherman also pointed to subtler, often overlooked influences, such as policing and surveillance infrastructure. Ideally, the California Department of Fish and Wildlife would be the first agency to respond in a “wildlife situation,” as Sherman put it. But, he said, what often ends up happening is that people default to calling the police, especially when the circumstances involve animals that some urban-dwelling humans may find threatening, like bears.Police departments typically do not possess the same expertise and ability as CDFW to manage and then relocate bears. If a bear poses a threat to human life, police policy is to kill the bear. However, protocols for responding to wildlife conflicts that are not life-threatening can vary from one community to another. And how police use non-lethal methods of deterrence — such as rubber bullets and loud noises — can shape bear behavior.Meanwhile, the growing prevalence of security cameras and motion-triggered alerts has provided residents with new forms of visibility into urban biodiversity. “That might mean that people are suddenly aware that a coyote is using their yard,” Sherman said. In turn, that could trigger a homeowner to purposefully rework the landscape of their property so as to discourage coyotes from using it. Surveillance systems, he said, are quietly reshaping both public perception and policy around who belongs in the city, and who doesn’t. A mountain lion sits in a tree after being tranquilized along San Vicente Boulevard in Brentwood on Oct. 27, 2022. (Wally Skalij / Los Angeles Times) Korinna Domingo, founder and director of the Cougar Conservancy, emphasized how cougar behavior in Los Angeles is similarly shaped by decades of urban development, fragmented landscapes and the social and political choices that structure them. “Policies like freeway construction, zoning and even how communities have been historically policed or funded can affect where and how cougars move throughout L.A.,” she said. For example, these forces have prompted cougars to adapt by becoming more nocturnal, using culverts or taking riskier crossings across fragmented landscapes.Urban planning and evolutionary consequences are deeply intertwined, Domingo says. For example, mountain lion populations in the Santa Monica and Santa Ana mountains have shown signs of reduced genetic diversity due to inbreeding, an issue created not by natural processes, but by political and planning decisions — such as freeway construction and zoning decisions— that restricted their movement decades ago.Today, the Wallis Annenberg Wildlife Crossing, is an attempt to rectify that. The massive infrastructure project is happening only, Domingo said, “because of community, scientific and political will all being aligned.”However, infrastructure alone isn’t enough. “You can have habitat connectivity all you want,” she said, but you also have to think about social tolerance. Urban planning that allows for animal movement also increases the likelihood of contact with people, pets and livestock — which means humans need to learn how to interact with wild animals in a healthier way.In L.A., coexistence strategies can look very different depending on the resources, ordinances and attitudes of each community. Although wealthier residents may have the means to build predator-proof enclosures, others lack the financial or institutional support to do the same. And some with the means simply choose not to, instead demanding lethal removal., “Wildlife management is not just about biology,” Domingo said. “It’s about values, power, and really, who’s at the table.”Wildlife management in the United States has long been informed by dominant cultural and religious worldviews, particularly those grounded in notions of human exceptionalism and control over nature. Carlen, Sherman and Domingo all brought up how these values shaped early policies that framed predators as threats to be removed rather than species to be understood or respected. In California, this worldview contributed not only to the widespread killing of wolves, bears and cougars but also to the displacement of American Indian communities whose land-based practices and beliefs conflicted with these approaches. A male peacock makes its way past Ian Choi, 21 months old, standing in front of his home on Altura Road in Arcadia. (Mel Melcon / Los Angeles Times) Wildlife management in California, specifically, has long been shaped by these same forces of violence, originating in bounty campaigns not just against predators like cougars and wolves but also against American Indian peoples. These intertwined legacies of removal, extermination and land seizure continue to influence how certain animals and communities are perceived and treated today.For Alan Salazar, a tribal elder with the Fernandeño Tataviam Band of Mission Indians, those legacies run deep. “What happened to native peoples happened to our large predators in California,” he said. “Happened to our plant relatives.” Reflecting on the genocide of Indigenous Californians and the coordinated extermination of grizzly bears, wolves and mountain lions, Salazar sees a clear parallel.“There were three parts to our world — the humans, the animals and the plants,” he explained. “We were all connected. We respected all of them.” Salazar explains that his people’s relationship with the land, animals and plants is itself a form of religion, one grounded in ceremony, reciprocity and deep respect. Salazar said his ancestors lived in harmony with mountain lions for over 10,000 years, not by eliminating them but by learning from them. Other predators — cougars, bears, coyotes and wolves — were also considered teachers, honored through ceremony and studied for their power and intelligence. “Maybe we had a better plan on how to live with mountain lions, wolves and bears,” he said. “Maybe you should look at tribal knowledge.”He views the Wallis Annenberg Wildlife Crossing — for which he is a Native American consultant — as a cultural opportunity. “It’s not just for mountain lions,” he said. “It’s for all animals. And that’s why I wanted to be involved.” He believes the project has already helped raise awareness and shift perceptions about coexistence and planning, and hopes that it will help native plants, animals and peoples.As L.A. continues to grapple with the future of wildlife in its neighborhoods, canyons and corridors, Salazar and others argue that it is an opportunity to rethink the cultural frameworks, governance systems and historical injustices that have long shaped human-animal relations in the city. Whether through policy reform, neighborhood education or sacred ceremony, residents need reminders that evolutionary futures are being shaped not only in forests and preserves but right here, across freeways, backyards and local council meetings. The Wallis Annenberg Wildlife Crossing under construction over the 101 Freeway near Liberty Canyon Road in Agoura Hills on July 12, 2024. (Myung J. Chun / Los Angeles Times) The research makes clear that wildlife is not simply adapting to urban environments in isolation; it is adapting to a range of factors, including policing, architecture and neighborhood design. Carlen believes this opens a crucial frontier for interdisciplinary research, especially in cities like Los Angeles, where uneven geographies, biodiversity and political decisions intersect daily. “I think there’s a lot of injustice in cities that are happening to both humans and wildlife,” she said. “And I think the potential is out there for justice to be brought to both of those things.”

Something Strange Is Happening to Tomatoes Growing on the Galápagos Islands

Scientists say wild tomato plants on the archipelago's western islands are experiencing "reverse evolution" and reverting back to ancestral traits

Something Strange Is Happening to Tomatoes Growing on the Galápagos Islands Scientists say wild tomato plants on the archipelago’s western islands are experiencing “reverse evolution” and reverting back to ancestral traits Sarah Kuta - Daily Correspondent July 9, 2025 4:29 p.m. Scientists are investigating the production of ancestral alkaloids by tomatoes in the Galápagos Islands. Adam Jozwiak / University of California, Riverside Some tomatoes growing on the Galápagos Islands appear to be going back in time by producing the same toxins their ancestors did millions of years ago. Scientists describe this development—a controversial process known as “reverse evolution”—in a June 18 paper published in the journal Nature Communications. Tomatoes are nightshades, a group of plants that also includes eggplants, potatoes and peppers. Nightshades, also known as Solanaceae, produce bitter compounds called alkaloids, which help fend off hungry bugs, animals and fungi. When plants produce alkaloids in high concentrations, they can sicken the humans who eat them. To better understand alkaloid synthesis, researchers traveled to the Galápagos Islands, the volcanic chain roughly 600 miles off the coast of mainland Ecuador made famous by British naturalist Charles Darwin. They gathered and studied more than 30 wild tomato plants growing in different places on various islands. The Galápagos tomatoes are the descendents of plants from South America that were probably carried to the archipelago by birds. The team’s analyses revealed that the tomatoes growing on the eastern islands were behaving as expected, by producing alkaloids that are similar to those found in modern, cultivated varieties. But those growing on the western islands, they found, were creating alkaloids that were more closely related to those produced by eggplants millions of years ago. Tomatoes growing on the western islands (shown here) are producing ancestral alkaloids.  Adam Jozwiak / University of California, Riverside Researchers suspect the environment may be responsible for the plants’ unexpected return to ancestral alkaloids. The western islands are much younger than the eastern islands, so the soil is less developed and the landscape is more barren. To survive in these harsh conditions, perhaps it was advantageous for the tomato plants to revert back to older alkaloids, the researchers posit. “The plants may be responding to an environment that more closely resembles what their ancestors faced,” says lead author Adam Jozwiak, a biochemist at the University of California, Riverside, to BBC Wildlife’s Beki Hooper. However, for now, this is just a theory. Scientists say they need to conduct more research to understand why tomato plants on the western islands have adapted this way. Scientists were able to uncover the underlying molecular mechanisms at play: Four amino acids in a single enzyme appear to be responsible for the reversion back to the ancestral alkaloids, they found. They also used evolutionary modeling to confirm the direction of the adaptation—that is, that the tomatoes on the western islands had indeed returned to an earlier, ancestral state. Among evolutionary biologists, “reverse evolution” is somewhat contentious. The commonly held belief is that evolution marches forward, not backward. It’s also difficult to prove an organism has reverted back to an older trait through the same genetic pathways. But, with the new study, researchers say they’ve done exactly that. “Some people don’t believe in this,” says Jozwiak in a statement. “But the genetic and chemical evidence points to a return to an ancestral state. The mechanism is there. It happened.” So, if “reverse evolution” happened in wild tomatoes, could something similar happen in humans? In theory, yes, but it would take a long time, Jozwiak says. “If environmental conditions shifted dramatically over long timescales, it’s possible that traits from our distant past could re-emerge, but whether that ever happens is highly uncertain,” Jozwiak tells Newsweek’s Daniella Gray. “It’s speculative and would take millions of years, if at all.” Get the latest stories in your inbox every weekday.

Lifesize herd of puppet animals begins climate action journey from Africa to Arctic Circle

The Herds project from the team behind Little Amal will travel 20,000km taking its message on environmental crisis across the worldHundreds of life-size animal puppets have begun a 20,000km (12,400 mile) journey from central Africa to the Arctic Circle as part of an ambitious project created by the team behind Little Amal, the giant puppet of a Syrian girl that travelled across the world.The public art initiative called The Herds, which has already visited Kinshasa and Lagos, will travel to 20 cities over four months to raise awareness of the climate crisis. Continue reading...

Hundreds of life-size animal puppets have begun a 20,000km (12,400 mile) journey from central Africa to the Arctic Circle as part of an ambitious project created by the team behind Little Amal, the giant puppet of a Syrian girl that travelled across the world.The public art initiative called The Herds, which has already visited Kinshasa and Lagos, will travel to 20 cities over four months to raise awareness of the climate crisis.It is the second major project from The Walk Productions, which introduced Little Amal, a 12-foot puppet, to the world in Gaziantep, near the Turkey-Syria border, in 2021. The award-winning project, co-founded by the Palestinian playwright and director Amir Nizar Zuabi, reached 2 million people in 17 countries as she travelled from Turkey to the UK.The Herds’ journey began in Kinshasa’s Botanical Gardens on 10 April, kicking off four days of events. It moved on to Lagos, Nigeria, the following week, where up to 5,000 people attended events performed by more than 60 puppeteers.On Friday the streets of Dakar in Senegal will be filled with more than 40 puppet zebras, wildebeest, monkeys, giraffes and baboons as they run through Médina, one of the busiest neighbourhoods, where they will encounter a creation by Fabrice Monteiro, a Belgium-born artist who lives in Senegal, and is known for his large-scale sculptures. On Saturday the puppets will be part of an event in the fishing village of Ngor.The Herds’ 20,000km journey began in Kinshasa, the Democratic Republic of the Congo. Photograph: Berclaire/walk productionsThe first set of animal puppets was created by Ukwanda Puppetry and Designs Art Collective in Cape Town using recycled materials, but in each location local volunteers are taught how to make their own animals using prototypes provided by Ukwanda. The project has already attracted huge interest from people keen to get involved. In Dakar more than 300 artists applied for 80 roles as artists and puppet guides. About 2,000 people will be trained to make the puppets over the duration of the project.“The idea is that we’re migrating with an ever-evolving, growing group of animals,” Zuabi told the Guardian last year.Zuabi has spoken of The Herds as a continuation of Little Amal’s journey, which was inspired by refugees, who often cite climate disaster as a trigger for forced migration. The Herds will put the environmental emergency centre stage, and will encourage communities to launch their own events to discuss the significance of the project and get involved in climate activism.The puppets are created with recycled materials and local volunteers are taught how to make them in each location. Photograph: Ant Strack“The idea is to put in front of people that there is an emergency – not with scientific facts, but with emotions,” said The Herds’ Senegal producer, Sarah Desbois.She expects thousands of people to view the four events being staged over the weekend. “We don’t have a tradition of puppetry in Senegal. As soon as the project started, when people were shown pictures of the puppets, they were going crazy.”Little Amal, the puppet of a Syrian girl that has become a symbol of human rights, in Santiago, Chile on 3 January. Photograph: Anadolu/Getty ImagesGrowing as it moves, The Herds will make its way from Dakar to Morocco, then into Europe, including London and Paris, arriving in the Arctic Circle in early August.

Dead, sick pelicans turning up along Oregon coast

So far, no signs of bird flu but wildlife officials continue to test the birds.

Sick and dead pelicans are turning up on Oregon’s coast and state wildlife officials say they don’t yet know why. The Oregon Department of Fish and Wildlife says it has collected several dead brown pelican carcasses for testing. Lab results from two pelicans found in Newport have come back negative for highly pathogenic avian influenza, also known as bird flu, the agency said. Avian influenza was detected in Oregon last fall and earlier this year in both domestic animals and wildlife – but not brown pelicans. Additional test results are pending to determine if another disease or domoic acid toxicity caused by harmful algal blooms may be involved, officials said. In recent months, domoic acid toxicity has sickened or killed dozens of brown pelicans and numerous other wildlife in California. The sport harvest for razor clams is currently closed in Oregon – from Cascade Head to the California border – due to high levels of domoic acid detected last fall.Brown pelicans – easily recognized by their large size, massive bill and brownish plumage – breed in Southern California and migrate north along the Oregon coast in spring. Younger birds sometimes rest on the journey and may just be tired, not sick, officials said. If you find a sick, resting or dead pelican, leave it alone and keep dogs leashed and away from wildlife. State wildlife biologists along the coast are aware of the situation and the public doesn’t need to report sick, resting or dead pelicans. — Gosia Wozniacka covers environmental justice, climate change, the clean energy transition and other environmental issues. Reach her at gwozniacka@oregonian.com or 971-421-3154.Our journalism needs your support. Subscribe today to OregonLive.com.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.