Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

Why Recycling Is Mostly Garbage

News Feed
Friday, September 27, 2024

“Here we have a man whose job it is to gather the day’s refuse in the capital,” wrote Charles Baudelaire, invoking the ragpicker, a new type on the streets of his native nineteenth-century Paris. “Everything that the big city has thrown away, everything it has lost, everything it has scorned, everything it has crushed underfoot, he catalogs and collects.” Buried in Baudelaire’s descriptions of ragpickers are processes that historians have recently laid bare. With industrialization came the rise of consumer culture, and with consumer culture came the rise of disposal culture. Add unfettered fossil fuel use and the invention of single-use plastics and we arrive at the ragpickers of today: people in Indonesia climbing mountains of trash, or children scavenging for survival in the slums of Delhi or Manila or northeastern Brazil. Consumer lifestyles in high-income nations have clogged the oceans with garbage and broken our recycling systems. Only 9 percent of the world’s plastic waste is recycled, according to the Organization for Economic Co-operation and Development, but plastic consumption is on track to triple by 2050. Running out of places to put our daily detritus, the United States and the European Union export hundreds of millions of tons of garbage each year to poorer nations where it is landfilled, littered, or burned.In two new books, the rise of recycling is a story of illusory promises, often entwined with disturbing political agendas. In Empire of Rags and Bones, Anne Berg, a historian at the University of Pennsylvania, examines one of the first modern recycling systems: the “waste regime” of Nazi Germany, where planners and engineers devised programs to recycle metal, rags, and paper; repurpose wires, cables, and railroad equipment; compost kitchen scraps; and collect old shoes, utensils, and junk—all in the service of a genocidal war.We need a better way to think about our trash, and even more so, our consumption.In Total Garbage, journalist Edward Humes picks up the story of recycling from the postwar era to the present. His dive into the teeming wastes and faltering waste management systems of the United States shows that most recycling is a charade, a form of carefully constructed greenwashing that belies the fact that most postconsumer waste, including packaging, clamshells, films, pouches, boxes with windows, bags, and food containers, was never designed to be recycled.Rather than being a virtuous act or an effective practice, recycling has been a feature of destructive systems that exploit labor and natural resources. We need a better way to think about our trash, and even more so, our consumption. Scientists were decades away from discovering the planet-warming effects of carbon dioxide when millions of Germans took up recycling with near-religious fervor. It wasn’t environmental concerns that energized mass campaigns to eradicate waste, but a war economy. This was not unique to Germany: Across the British Empire and the United States, World War II catalyzed public and private efforts to persuade citizens to salvage metals, paper, and objects that could be used to make munitions. But in Germany, recycling campaigns were compulsory and extreme, bound up with the regime’s plans for total war and the total mobilization of the population. Lacking overseas colonies (the post–World War I settlement stripped the Reich of its imperial holdings), Germany was strapped for raw materials. In 1936, preparing for war, Nazi leaders announced a Four-Year Plan, a series of economic measures that introduced recycling regulations and mandated waste avoidance strategies. In the Nazi imagination, Berg tells us, waste was an abundant resource that could be exploited, cycled through the economy in a zero-waste scheme to extract value from existing goods. The solution was to uncover the hidden value of waste. Lurking in the people’s garbage were the resources to fuel Germany’s expansion, the sole guarantee of the Reich’s security and racial purity.A 1938 book by Claus Ungewitter, the head of the regime’s Office of Chemistry, served as the Nazi “garbage bible,” Berg writes. Ungewitter’s scientific treatise outlined how value could be recovered from manufacturing processes and from old rags, sewage, and municipal waste. During World War I, Europeans had collected scrap for the first time, Ungewitter noted, detailing how Germans contributed to the war effort by rounding up paper, rubber, kitchen discards, lamp sockets, celluloid, and early plastic. He believed that Germans could go much further by irrigating agricultural fields with sewage, melting down fences and door hinges to recover metal, churning out briquettes from coal dust, and converting garbage slag to make cement and build roads. Nazi bureaucrats soon took Ungewitter’s ideas into S.S.-owned industries and concentration camps, concocting ways to wrest value from waste and inventing new uses for old materials. The details of Nazi waste reclamation are gory: There are slippers made of hair and a disgusting “garbage sausage” that sickened any prisoner forced to eat it. There are crates of gold teeth and mountains of garments and shoes, objects that entered the visual record in 1945 as an illustration of Nazism’s murderous designs. The piles of glasses and teeth that confronted Allied troops entering the camps show how coordinated and comprehensive the regime’s efforts were to extract value from waste, using the labor of those it condemned to death. While these atrocities became synonymous with a civilizational breach, they grew out of Europe’s racist, brutal history of colonial rule. As Nazi imperial planners prepared for the conquest and depopulation of the east, and calculated allocations of food and other resources, they studied other colonial powers. Just as Europe’s colonial empires plundered gold, timber, cotton, spices, and fossil fuels, “the imperial visions of the Third Reich, too, were focused on natural resources,” Berg writes, “such as iron, oil, and fertile soil, and the Nazis robbed whatever luxury goods they could get their hands on.” In the end, the contingencies and pressures of war led the Nazi empire to extract gold from people, rather than land, and resources from slave laborers instead of nature. Concentration camp prisoners, POWs, and deportees from enemy nations unloaded trains crammed with junk, scrapped metal, and squeezed value from every available textile. Ordinary Germans, meanwhile, proved eager to display their commitment to the future and became dedicated recyclers. In Berg’s telling, the Volksgemeinschaft was also a Müllgemeinschaft (garbage community), and even down to the regime’s final weeks with Allied troops closing in, Germans clung to the fantasy that old textiles and piles of rubble could be recycled into weapons of war, leading them to final victory.In Berg’s story, this chapter in the history of recycling is about war and imperial exploitation. Perhaps even more confounding is that today, books about Nazi Germany fill libraries, and yet historians have somehow failed, until now, to grasp the ideological and strategic importance of recycling. As Berg makes clear, waste is everywhere in the archives—the Nazis rarely hesitated to create a bureaucracy (or a paper trail)—and yet scholars couldn’t see it. Our systems are designed to make waste invisible, at least for those of us who produce most of it.It wasn’t just recycling but also plastic that emerged from war. The difficulties of rubber extraction and a worldwide ivory shortage led to the 1907 invention of Bakelite, the first synthetic plastic, a process Jeffrey L. Meikle traces in American Plastic: A Cultural History. Bakelite could be molded and machined and proved more versatile than labor-intensive rubber or ivory, once the preferred material for European makers of boxes, buttons, combs, and piano keys. The decimation of African and Indian elephant herds thanks to European hunters also spurred the invention of celluloid, another hard, durable substance that originated in nature (its inventor combined nitrocellulose with the sap of the laurel tree), only to be replaced by heat- and water-resistant Bakelite. It was Europe’s colonial quest for raw materials, its booming consumer markets, and then the chemical and war-making industries that created and popularized plastic. The U.S. military, eager to conserve precious rubber, contributed to plastic’s spread in World War II by using it in fuses, parachutes, airplanes, antenna housing, bazooka barrels, helmet liners, and combs distributed to service members as part of a hygiene kit.The 1960s ushered in the dawn of single-use plastics, when shopping bags, straws, tubs, utensils, and food wrap became exceedingly cheap to produce and convenient to use, as long as no one paid attention to where it was going. When the first curbside recycling programs appeared in the 1970s, just as U.S. landfills started running short on space, the point of recycling was no longer to mine an untapped resource, or to get the most out of old stuff, but simply to find a place to put it.The flow of plastic from rich countries to poorer ones, glutting waterways and leaching chemicals into the environment, recalls colonial-era destructiveness.Some three decades later, the accumulation of plastic wastes led the U.S. to look abroad for dumping destinations. By the 1990s, half the plastic Americans chucked into the recycling bin “was stuffed onto giant container ships and sold to China,” instead of making it to the local recycling center, says Humes. “Why invest in expensive technology and labor to keep up with the constantly changing world of packaging and plastics when the mess could be bundled off to China in exchange for easy money and the appearance of being green?”There is a chasm, Humes points out, between “theoretical recycling” and “actual recycling.” (The chasing arrows symbol is a lie: The majority of plastic types captured by the arrows are considered “financially unviable” to recycle.) In 2018, China banned most imports of plastic, meaning that recyclables collected in the United States could no longer be shipped out of sight, out of mind. Instead of bringing in easy revenue by sending waste to China, U.S. cities, towns, and waste companies now faced staggering costs, and as a result, recycling fell off a cliff. The pandemic’s disruptions of global supply chains only exacerbated the problem of sending junk to other countries. Mexico, Vietnam, Malaysia, and other nations now absorb a portion of our waste, “a global hot potato,” as reporters referred to it in The Guardian. The bulk of this waste (more than 80 percent) is mismanaged, often dumped in open landfills, according to researchers. The flow of plastic from rich countries to poorer ones, glutting waterways and leaching harmful chemicals into the environment, recalls colonial-era destructiveness. Reading Humes’s book alongside Berg’s, the overwhelming takeaway is that waste management perpetuates systems of domination and oppression. Under Nazism, waste was a resource, while under capitalism, waste is a commodity.Humes reports on garbage changemakers—individuals and communities scattered across the country that have come up with new ways to mitigate waste. There’s the father-son team behind Seattle’s Ridwell, which collects and repurposes single-use, zombie trash that refuses to die. Or Sarah Nichols at Maine’s Natural Resources Council, whose efforts to shift the burden of waste disposal from consumers to producers resulted in a 2021 law that levies fees on producers and sellers of packaging and containers to foot the bill for actual recycling. Several college campuses have diverted much of their waste from landfills while ditching fossil fuels. The trash cognoscenti, as Humes calls them, understand that everything must begin with the end in mind. Zero-waste is the goal, and recycling won’t get us there.The best way to solve our garbage crisis, Humes suggests, is to produce less of it in the first place. He intersperses his reporting with thoughts on how to prevent food waste, how to shop package-free, and how to participate in resale and secondhand economies. Citizen-consumers have power, he notes, to buy less; to live, work, and study in low-waste ways; to vote for better policies, and to model change in our communities. Instead of taking out the trash without mulling over where it’s going, for Humes, the key is to “think about what will happen to a product or package at the end of its useful life.”Berg’s history of Nazi recycling concludes with a reminder: “Waste is supposed to be invisible.” Since the nineteenth century, not seeing our trash has been a marker of civilization and progress. Modern sanitation and urban infrastructure carried away our waste, enabling us to produce more of it. What Berg and Humes tell us is that destructive values and oppressive power structures are embedded in our garbage. To exist and persist, our systems make waste. The first step toward change is to start seeing what is hidden in plain sight.

“Here we have a man whose job it is to gather the day’s refuse in the capital,” wrote Charles Baudelaire, invoking the ragpicker, a new type on the streets of his native nineteenth-century Paris. “Everything that the big city has thrown away, everything it has lost, everything it has scorned, everything it has crushed underfoot, he catalogs and collects.” Buried in Baudelaire’s descriptions of ragpickers are processes that historians have recently laid bare. With industrialization came the rise of consumer culture, and with consumer culture came the rise of disposal culture. Add unfettered fossil fuel use and the invention of single-use plastics and we arrive at the ragpickers of today: people in Indonesia climbing mountains of trash, or children scavenging for survival in the slums of Delhi or Manila or northeastern Brazil. Consumer lifestyles in high-income nations have clogged the oceans with garbage and broken our recycling systems. Only 9 percent of the world’s plastic waste is recycled, according to the Organization for Economic Co-operation and Development, but plastic consumption is on track to triple by 2050. Running out of places to put our daily detritus, the United States and the European Union export hundreds of millions of tons of garbage each year to poorer nations where it is landfilled, littered, or burned.In two new books, the rise of recycling is a story of illusory promises, often entwined with disturbing political agendas. In Empire of Rags and Bones, Anne Berg, a historian at the University of Pennsylvania, examines one of the first modern recycling systems: the “waste regime” of Nazi Germany, where planners and engineers devised programs to recycle metal, rags, and paper; repurpose wires, cables, and railroad equipment; compost kitchen scraps; and collect old shoes, utensils, and junk—all in the service of a genocidal war.We need a better way to think about our trash, and even more so, our consumption.In Total Garbage, journalist Edward Humes picks up the story of recycling from the postwar era to the present. His dive into the teeming wastes and faltering waste management systems of the United States shows that most recycling is a charade, a form of carefully constructed greenwashing that belies the fact that most postconsumer waste, including packaging, clamshells, films, pouches, boxes with windows, bags, and food containers, was never designed to be recycled.Rather than being a virtuous act or an effective practice, recycling has been a feature of destructive systems that exploit labor and natural resources. We need a better way to think about our trash, and even more so, our consumption. Scientists were decades away from discovering the planet-warming effects of carbon dioxide when millions of Germans took up recycling with near-religious fervor. It wasn’t environmental concerns that energized mass campaigns to eradicate waste, but a war economy. This was not unique to Germany: Across the British Empire and the United States, World War II catalyzed public and private efforts to persuade citizens to salvage metals, paper, and objects that could be used to make munitions. But in Germany, recycling campaigns were compulsory and extreme, bound up with the regime’s plans for total war and the total mobilization of the population. Lacking overseas colonies (the post–World War I settlement stripped the Reich of its imperial holdings), Germany was strapped for raw materials. In 1936, preparing for war, Nazi leaders announced a Four-Year Plan, a series of economic measures that introduced recycling regulations and mandated waste avoidance strategies. In the Nazi imagination, Berg tells us, waste was an abundant resource that could be exploited, cycled through the economy in a zero-waste scheme to extract value from existing goods. The solution was to uncover the hidden value of waste. Lurking in the people’s garbage were the resources to fuel Germany’s expansion, the sole guarantee of the Reich’s security and racial purity.A 1938 book by Claus Ungewitter, the head of the regime’s Office of Chemistry, served as the Nazi “garbage bible,” Berg writes. Ungewitter’s scientific treatise outlined how value could be recovered from manufacturing processes and from old rags, sewage, and municipal waste. During World War I, Europeans had collected scrap for the first time, Ungewitter noted, detailing how Germans contributed to the war effort by rounding up paper, rubber, kitchen discards, lamp sockets, celluloid, and early plastic. He believed that Germans could go much further by irrigating agricultural fields with sewage, melting down fences and door hinges to recover metal, churning out briquettes from coal dust, and converting garbage slag to make cement and build roads. Nazi bureaucrats soon took Ungewitter’s ideas into S.S.-owned industries and concentration camps, concocting ways to wrest value from waste and inventing new uses for old materials. The details of Nazi waste reclamation are gory: There are slippers made of hair and a disgusting “garbage sausage” that sickened any prisoner forced to eat it. There are crates of gold teeth and mountains of garments and shoes, objects that entered the visual record in 1945 as an illustration of Nazism’s murderous designs. The piles of glasses and teeth that confronted Allied troops entering the camps show how coordinated and comprehensive the regime’s efforts were to extract value from waste, using the labor of those it condemned to death. While these atrocities became synonymous with a civilizational breach, they grew out of Europe’s racist, brutal history of colonial rule. As Nazi imperial planners prepared for the conquest and depopulation of the east, and calculated allocations of food and other resources, they studied other colonial powers. Just as Europe’s colonial empires plundered gold, timber, cotton, spices, and fossil fuels, “the imperial visions of the Third Reich, too, were focused on natural resources,” Berg writes, “such as iron, oil, and fertile soil, and the Nazis robbed whatever luxury goods they could get their hands on.” In the end, the contingencies and pressures of war led the Nazi empire to extract gold from people, rather than land, and resources from slave laborers instead of nature. Concentration camp prisoners, POWs, and deportees from enemy nations unloaded trains crammed with junk, scrapped metal, and squeezed value from every available textile. Ordinary Germans, meanwhile, proved eager to display their commitment to the future and became dedicated recyclers. In Berg’s telling, the Volksgemeinschaft was also a Müllgemeinschaft (garbage community), and even down to the regime’s final weeks with Allied troops closing in, Germans clung to the fantasy that old textiles and piles of rubble could be recycled into weapons of war, leading them to final victory.In Berg’s story, this chapter in the history of recycling is about war and imperial exploitation. Perhaps even more confounding is that today, books about Nazi Germany fill libraries, and yet historians have somehow failed, until now, to grasp the ideological and strategic importance of recycling. As Berg makes clear, waste is everywhere in the archives—the Nazis rarely hesitated to create a bureaucracy (or a paper trail)—and yet scholars couldn’t see it. Our systems are designed to make waste invisible, at least for those of us who produce most of it.It wasn’t just recycling but also plastic that emerged from war. The difficulties of rubber extraction and a worldwide ivory shortage led to the 1907 invention of Bakelite, the first synthetic plastic, a process Jeffrey L. Meikle traces in American Plastic: A Cultural History. Bakelite could be molded and machined and proved more versatile than labor-intensive rubber or ivory, once the preferred material for European makers of boxes, buttons, combs, and piano keys. The decimation of African and Indian elephant herds thanks to European hunters also spurred the invention of celluloid, another hard, durable substance that originated in nature (its inventor combined nitrocellulose with the sap of the laurel tree), only to be replaced by heat- and water-resistant Bakelite. It was Europe’s colonial quest for raw materials, its booming consumer markets, and then the chemical and war-making industries that created and popularized plastic. The U.S. military, eager to conserve precious rubber, contributed to plastic’s spread in World War II by using it in fuses, parachutes, airplanes, antenna housing, bazooka barrels, helmet liners, and combs distributed to service members as part of a hygiene kit.The 1960s ushered in the dawn of single-use plastics, when shopping bags, straws, tubs, utensils, and food wrap became exceedingly cheap to produce and convenient to use, as long as no one paid attention to where it was going. When the first curbside recycling programs appeared in the 1970s, just as U.S. landfills started running short on space, the point of recycling was no longer to mine an untapped resource, or to get the most out of old stuff, but simply to find a place to put it.The flow of plastic from rich countries to poorer ones, glutting waterways and leaching chemicals into the environment, recalls colonial-era destructiveness.Some three decades later, the accumulation of plastic wastes led the U.S. to look abroad for dumping destinations. By the 1990s, half the plastic Americans chucked into the recycling bin “was stuffed onto giant container ships and sold to China,” instead of making it to the local recycling center, says Humes. “Why invest in expensive technology and labor to keep up with the constantly changing world of packaging and plastics when the mess could be bundled off to China in exchange for easy money and the appearance of being green?”There is a chasm, Humes points out, between “theoretical recycling” and “actual recycling.” (The chasing arrows symbol is a lie: The majority of plastic types captured by the arrows are considered “financially unviable” to recycle.) In 2018, China banned most imports of plastic, meaning that recyclables collected in the United States could no longer be shipped out of sight, out of mind. Instead of bringing in easy revenue by sending waste to China, U.S. cities, towns, and waste companies now faced staggering costs, and as a result, recycling fell off a cliff. The pandemic’s disruptions of global supply chains only exacerbated the problem of sending junk to other countries. Mexico, Vietnam, Malaysia, and other nations now absorb a portion of our waste, “a global hot potato,” as reporters referred to it in The Guardian. The bulk of this waste (more than 80 percent) is mismanaged, often dumped in open landfills, according to researchers. The flow of plastic from rich countries to poorer ones, glutting waterways and leaching harmful chemicals into the environment, recalls colonial-era destructiveness. Reading Humes’s book alongside Berg’s, the overwhelming takeaway is that waste management perpetuates systems of domination and oppression. Under Nazism, waste was a resource, while under capitalism, waste is a commodity.Humes reports on garbage changemakers—individuals and communities scattered across the country that have come up with new ways to mitigate waste. There’s the father-son team behind Seattle’s Ridwell, which collects and repurposes single-use, zombie trash that refuses to die. Or Sarah Nichols at Maine’s Natural Resources Council, whose efforts to shift the burden of waste disposal from consumers to producers resulted in a 2021 law that levies fees on producers and sellers of packaging and containers to foot the bill for actual recycling. Several college campuses have diverted much of their waste from landfills while ditching fossil fuels. The trash cognoscenti, as Humes calls them, understand that everything must begin with the end in mind. Zero-waste is the goal, and recycling won’t get us there.The best way to solve our garbage crisis, Humes suggests, is to produce less of it in the first place. He intersperses his reporting with thoughts on how to prevent food waste, how to shop package-free, and how to participate in resale and secondhand economies. Citizen-consumers have power, he notes, to buy less; to live, work, and study in low-waste ways; to vote for better policies, and to model change in our communities. Instead of taking out the trash without mulling over where it’s going, for Humes, the key is to “think about what will happen to a product or package at the end of its useful life.”Berg’s history of Nazi recycling concludes with a reminder: “Waste is supposed to be invisible.” Since the nineteenth century, not seeing our trash has been a marker of civilization and progress. Modern sanitation and urban infrastructure carried away our waste, enabling us to produce more of it. What Berg and Humes tell us is that destructive values and oppressive power structures are embedded in our garbage. To exist and persist, our systems make waste. The first step toward change is to start seeing what is hidden in plain sight.

“Here we have a man whose job it is to gather the day’s refuse in the capital,” wrote Charles Baudelaire, invoking the ragpicker, a new type on the streets of his native nineteenth-century Paris. “Everything that the big city has thrown away, everything it has lost, everything it has scorned, everything it has crushed underfoot, he catalogs and collects.”

Buried in Baudelaire’s descriptions of ragpickers are processes that historians have recently laid bare. With industrialization came the rise of consumer culture, and with consumer culture came the rise of disposal culture. Add unfettered fossil fuel use and the invention of single-use plastics and we arrive at the ragpickers of today: people in Indonesia climbing mountains of trash, or children scavenging for survival in the slums of Delhi or Manila or northeastern Brazil. Consumer lifestyles in high-income nations have clogged the oceans with garbage and broken our recycling systems. Only 9 percent of the world’s plastic waste is recycled, according to the Organization for Economic Co-operation and Development, but plastic consumption is on track to triple by 2050. Running out of places to put our daily detritus, the United States and the European Union export hundreds of millions of tons of garbage each year to poorer nations where it is landfilled, littered, or burned.

In two new books, the rise of recycling is a story of illusory promises, often entwined with disturbing political agendas. In Empire of Rags and Bones, Anne Berg, a historian at the University of Pennsylvania, examines one of the first modern recycling systems: the “waste regime” of Nazi Germany, where planners and engineers devised programs to recycle metal, rags, and paper; repurpose wires, cables, and railroad equipment; compost kitchen scraps; and collect old shoes, utensils, and junk—all in the service of a genocidal war.

In Total Garbage, journalist Edward Humes picks up the story of recycling from the postwar era to the present. His dive into the teeming wastes and faltering waste management systems of the United States shows that most recycling is a charade, a form of carefully constructed greenwashing that belies the fact that most postconsumer waste, including packaging, clamshells, films, pouches, boxes with windows, bags, and food containers, was never designed to be recycled.

Rather than being a virtuous act or an effective practice, recycling has been a feature of destructive systems that exploit labor and natural resources. We need a better way to think about our trash, and even more so, our consumption.


Scientists were decades away from discovering the planet-warming effects of carbon dioxide when millions of Germans took up recycling with near-religious fervor. It wasn’t environmental concerns that energized mass campaigns to eradicate waste, but a war economy. This was not unique to Germany: Across the British Empire and the United States, World War II catalyzed public and private efforts to persuade citizens to salvage metals, paper, and objects that could be used to make munitions. But in Germany, recycling campaigns were compulsory and extreme, bound up with the regime’s plans for total war and the total mobilization of the population. Lacking overseas colonies (the post–World War I settlement stripped the Reich of its imperial holdings), Germany was strapped for raw materials. In 1936, preparing for war, Nazi leaders announced a Four-Year Plan, a series of economic measures that introduced recycling regulations and mandated waste avoidance strategies. In the Nazi imagination, Berg tells us, waste was an abundant resource that could be exploited, cycled through the economy in a zero-waste scheme to extract value from existing goods. The solution was to uncover the hidden value of waste. Lurking in the people’s garbage were the resources to fuel Germany’s expansion, the sole guarantee of the Reich’s security and racial purity.

A 1938 book by Claus Ungewitter, the head of the regime’s Office of Chemistry, served as the Nazi “garbage bible,” Berg writes. Ungewitter’s scientific treatise outlined how value could be recovered from manufacturing processes and from old rags, sewage, and municipal waste. During World War I, Europeans had collected scrap for the first time, Ungewitter noted, detailing how Germans contributed to the war effort by rounding up paper, rubber, kitchen discards, lamp sockets, celluloid, and early plastic. He believed that Germans could go much further by irrigating agricultural fields with sewage, melting down fences and door hinges to recover metal, churning out briquettes from coal dust, and converting garbage slag to make cement and build roads. Nazi bureaucrats soon took Ungewitter’s ideas into S.S.-owned industries and concentration camps, concocting ways to wrest value from waste and inventing new uses for old materials.

The details of Nazi waste reclamation are gory: There are slippers made of hair and a disgusting “garbage sausage” that sickened any prisoner forced to eat it. There are crates of gold teeth and mountains of garments and shoes, objects that entered the visual record in 1945 as an illustration of Nazism’s murderous designs. The piles of glasses and teeth that confronted Allied troops entering the camps show how coordinated and comprehensive the regime’s efforts were to extract value from waste, using the labor of those it condemned to death.

While these atrocities became synonymous with a civilizational breach, they grew out of Europe’s racist, brutal history of colonial rule. As Nazi imperial planners prepared for the conquest and depopulation of the east, and calculated allocations of food and other resources, they studied other colonial powers. Just as Europe’s colonial empires plundered gold, timber, cotton, spices, and fossil fuels, “the imperial visions of the Third Reich, too, were focused on natural resources,” Berg writes, “such as iron, oil, and fertile soil, and the Nazis robbed whatever luxury goods they could get their hands on.” In the end, the contingencies and pressures of war led the Nazi empire to extract gold from people, rather than land, and resources from slave laborers instead of nature. Concentration camp prisoners, POWs, and deportees from enemy nations unloaded trains crammed with junk, scrapped metal, and squeezed value from every available textile. Ordinary Germans, meanwhile, proved eager to display their commitment to the future and became dedicated recyclers. In Berg’s telling, the Volksgemeinschaft was also a Müllgemeinschaft (garbage community), and even down to the regime’s final weeks with Allied troops closing in, Germans clung to the fantasy that old textiles and piles of rubble could be recycled into weapons of war, leading them to final victory.

In Berg’s story, this chapter in the history of recycling is about war and imperial exploitation. Perhaps even more confounding is that today, books about Nazi Germany fill libraries, and yet historians have somehow failed, until now, to grasp the ideological and strategic importance of recycling. As Berg makes clear, waste is everywhere in the archives—the Nazis rarely hesitated to create a bureaucracy (or a paper trail)—and yet scholars couldn’t see it. Our systems are designed to make waste invisible, at least for those of us who produce most of it.


It wasn’t just recycling but also plastic that emerged from war. The difficulties of rubber extraction and a worldwide ivory shortage led to the 1907 invention of Bakelite, the first synthetic plastic, a process Jeffrey L. Meikle traces in American Plastic: A Cultural History. Bakelite could be molded and machined and proved more versatile than labor-intensive rubber or ivory, once the preferred material for European makers of boxes, buttons, combs, and piano keys. The decimation of African and Indian elephant herds thanks to European hunters also spurred the invention of celluloid, another hard, durable substance that originated in nature (its inventor combined nitrocellulose with the sap of the laurel tree), only to be replaced by heat- and water-resistant Bakelite. It was Europe’s colonial quest for raw materials, its booming consumer markets, and then the chemical and war-making industries that created and popularized plastic. The U.S. military, eager to conserve precious rubber, contributed to plastic’s spread in World War II by using it in fuses, parachutes, airplanes, antenna housing, bazooka barrels, helmet liners, and combs distributed to service members as part of a hygiene kit.

The 1960s ushered in the dawn of single-use plastics, when shopping bags, straws, tubs, utensils, and food wrap became exceedingly cheap to produce and convenient to use, as long as no one paid attention to where it was going. When the first curbside recycling programs appeared in the 1970s, just as U.S. landfills started running short on space, the point of recycling was no longer to mine an untapped resource, or to get the most out of old stuff, but simply to find a place to put it.

Some three decades later, the accumulation of plastic wastes led the U.S. to look abroad for dumping destinations. By the 1990s, half the plastic Americans chucked into the recycling bin “was stuffed onto giant container ships and sold to China,” instead of making it to the local recycling center, says Humes. “Why invest in expensive technology and labor to keep up with the constantly changing world of packaging and plastics when the mess could be bundled off to China in exchange for easy money and the appearance of being green?”

There is a chasm, Humes points out, between “theoretical recycling” and “actual recycling.” (The chasing arrows symbol is a lie: The majority of plastic types captured by the arrows are considered “financially unviable” to recycle.) In 2018, China banned most imports of plastic, meaning that recyclables collected in the United States could no longer be shipped out of sight, out of mind. Instead of bringing in easy revenue by sending waste to China, U.S. cities, towns, and waste companies now faced staggering costs, and as a result, recycling fell off a cliff. The pandemic’s disruptions of global supply chains only exacerbated the problem of sending junk to other countries. Mexico, Vietnam, Malaysia, and other nations now absorb a portion of our waste, “a global hot potato,” as reporters referred to it in The Guardian. The bulk of this waste (more than 80 percent) is mismanaged, often dumped in open landfills, according to researchers. The flow of plastic from rich countries to poorer ones, glutting waterways and leaching harmful chemicals into the environment, recalls colonial-era destructiveness. Reading Humes’s book alongside Berg’s, the overwhelming takeaway is that waste management perpetuates systems of domination and oppression. Under Nazism, waste was a resource, while under capitalism, waste is a commodity.


Humes reports on garbage changemakers—individuals and communities scattered across the country that have come up with new ways to mitigate waste. There’s the father-son team behind Seattle’s Ridwell, which collects and repurposes single-use, zombie trash that refuses to die. Or Sarah Nichols at Maine’s Natural Resources Council, whose efforts to shift the burden of waste disposal from consumers to producers resulted in a 2021 law that levies fees on producers and sellers of packaging and containers to foot the bill for actual recycling. Several college campuses have diverted much of their waste from landfills while ditching fossil fuels. The trash cognoscenti, as Humes calls them, understand that everything must begin with the end in mind. Zero-waste is the goal, and recycling won’t get us there.

The best way to solve our garbage crisis, Humes suggests, is to produce less of it in the first place. He intersperses his reporting with thoughts on how to prevent food waste, how to shop package-free, and how to participate in resale and secondhand economies. Citizen-consumers have power, he notes, to buy less; to live, work, and study in low-waste ways; to vote for better policies, and to model change in our communities. Instead of taking out the trash without mulling over where it’s going, for Humes, the key is to “think about what will happen to a product or package at the end of its useful life.”

Berg’s history of Nazi recycling concludes with a reminder: “Waste is supposed to be invisible.” Since the nineteenth century, not seeing our trash has been a marker of civilization and progress. Modern sanitation and urban infrastructure carried away our waste, enabling us to produce more of it. What Berg and Humes tell us is that destructive values and oppressive power structures are embedded in our garbage. To exist and persist, our systems make waste. The first step toward change is to start seeing what is hidden in plain sight.

Read the full story here.
Photos courtesy of

James Watson, Co-Discoverer of DNA's Double Helix, Dead at 97

(Reuters) -James D. Watson, the brilliant but controversial American biologist whose 1953 discovery of the structure of DNA, the molecule of...

(Reuters) -James D. Watson, the brilliant but controversial American biologist whose 1953 discovery of the structure of DNA, the molecule of heredity, ushered in the age of genetics and provided the foundation for the biotechnology revolution of the late 20th century, has died at the age of 97.His death was confirmed by Cold Spring Harbor Laboratory on Long Island, where he worked for many years. The New York Times reported that Watson died this week at a hospice on Long Island.In his later years, Watson's reputation was tarnished by comments on genetics and race that led him to be ostracized by the scientific establishment.Even as a younger man, he was known as much for his writing and for his enfant-terrible persona - including his willingness to use another scientist's data to advance his own career - as for his science.His 1968 memoir, "The Double Helix," was a racy, take-no-prisoners account of how he and British physicist Francis Crick were first to determine the three-dimensional shape of DNA. The achievement won the duo a share of the 1962 Nobel Prize in medicine and eventually would lead to genetic engineering, gene therapy and other DNA-based medicine and technology.Crick complained that the book "grossly invaded my privacy" and another colleague, Maurice Wilkins, objected to what he called a "distorted and unfavorable image of scientists" as ambitious schemers willing to deceive colleagues and competitors in order to make a discovery.In addition, Watson and Crick, who did their research at Cambridge University in England, were widely criticized for using raw data collected by X-ray crystallographer Rosalind Franklin to construct their model of DNA - as two intertwined staircases - without fully acknowledging her contribution. As Watson put it in "Double Helix," scientific research feels "the contradictory pulls of ambition and the sense of fair play."In 2007, Watson again caused widespread anger when he told the Times of London that he believed testing indicated the intelligence of Africans was "not really ... the same as ours."Accused of promoting long-discredited racist theories, he was shortly afterwards forced to retire from his post as chancellor of New York's Cold Spring Harbor Laboratory (CSHL). Although he later apologized, he made similar comments in a 2019 documentary, calling different racial attainment on IQ tests - attributed by most scientists to environmental factors - "genetic."James Dewey Watson was born in Chicago on April 6, 1928, and graduated from the University of Chicago in 1947 with a zoology degree. He received his doctorate from Indiana University, where he focused on genetics. In 1951, he joined Cambridge's Cavendish Lab, where he met Crick and began the quest for the structural chemistry of DNA.Just waiting to be found, the double helix opened the doors to the genetics revolution. In the structure Crick and Watson proposed, the steps of the winding staircase were made of pairs of chemicals called nucleotides or bases. As they noted at the end of their 1953 paper, "It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material."That sentence, often called the greatest understatement in the history of biology, meant that the base-and-helix structure provided the mechanism by which genetic information can be precisely copied from one generation to the next. That understanding led to the discovery of genetic engineering and numerous other DNA techniques.Watson and Crick went their separate ways after their DNA research. Watson was only 25 years old then and while he never made another scientific discovery approaching the significance of the double helix, he remained a scientific force."He had to figure out what to do with his life after achieving what he did at such a young age," biologist Mark Ptashne, who met Watson in the 1960s and remained a friend, told Reuters in a 2012 interview. "He figured out how to do things that played to his strength."That strength was playing "the tough Irishman," as Ptashne put it, to become one of the leaders of the U.S. leap to the forefront of molecular biology. Watson joined the biology department at Harvard University in 1956."The existing biology department felt that molecular biology was just a flash in the pan," Harvard biochemist Guido Guidotti related. But when Watson arrived, Guidotti said he immediately told everyone in the biology department – scientists whose research focused on whole organisms and populations, not cells and molecules – "that they were wasting their time and should retire."That earned Watson the decades-long enmity of some of those traditional biologists, but he also attracted young scientists and graduate students who went on to forge the genetics revolution.In 1968 Watson took his institution-building drive to CSHL on Long Island, splitting his time between CSHL and Harvard for eight years. The lab at the time was "just a mosquito-infested backwater," said Ptashne. As director, "Jim turned it into a vibrant, world-class institution."In 1990, Watson was named to lead the Human Genome Project, whose goal was to determine the order of the 3 billion chemical units that constitute humans' full complement of DNA. When the National Institutes of Health, which funded the project, decided to seek patents on some DNA sequences, Watson attacked the NIH director and resigned, arguing that genome knowledge should remain in the public domain.In 2007 he became the second person in the world to have his full genome sequenced. He made the sequence publicly available, arguing that concerns about "genetic privacy" were overwrought but made an exception by saying he did not want to know if he had a gene associated with an increased risk of Alzheimer's disease. Watson did have a gene associated with novelty-seeking.His proudest accomplishment, Watson told an interviewer for Discover magazine in 2003, was not discovering the double helix - which "was going to be found in the next year or two" anyway - but his books."My heroes were never scientists," he said. "They were Graham Greene and Christopher Isherwood - you know, good writers."Watson cherished the bad-boy image he presented to the world in "Double Helix," friends said, and he emphasized it in his 2007 book, "Avoid Boring People."Married with two sons, he often disparaged women in public statements and boasted of chasing what he called "popsies." But he personally encouraged many female scientists, including biologist Nancy Hopkins of the Massachusetts Institute of Technology."I certainly couldn't have had a career in science without his support, I believe," said Hopkins, long outspoken about anti-woman bias in science. "Jim was hugely supportive of me and other women. It's an odd thing to understand."(Editing by Bill Trott and Rosalba O'Brien)Copyright 2025 Thomson Reuters.Photos You Should See – Oct. 2025

How dry cleaning might raise the risk of cancer, and what to do about it

A new study found links between a toxic dry cleaning chemical and liver cancer. Trump officials are reconsidering an EPA plan to phase it out.

Environmental and health advocates have long sought to curb dangerous chemicals used in dry cleaning. Now a new study adds to the evidence of harms, linking a common dry cleaning chemical to liver disease and cancer.Here’s what you need to know about the risks.How dry cleaning worksDespite the name, clothes don’t stay “dry” when dry-cleaned. Instead, garments are loaded into drums and soaked in chemicals that dissolve stains.Before modern cleaning systems were developed, workers would manually move solvent-soaked garments from washer to dryer, creating a direct exposure route and increasing the chances of environmental contamination. Today, cleaners wash and dry everything in the same drum. Clothes are then pressed or steamed.What are the health risks?One of the most widely used dry cleaning chemicals is an industrial solvent called PCE, also known as tetrachloroethylene, perchloroethylene and perc. The Environmental Protection Agency considers PCE a probable human carcinogen, and it has been linked to bladder cancer, multiple myeloma and non-Hodgkin lymphoma.Follow Climate & environmentLast year, the EPA announced a new rule banning PCE for most uses and giving dry cleaners a 10-year phaseout period. The Trump administration is reconsidering this decision, according to an EPA spokesperson.But a recent study found that exposure to PCE tripled the risk of liver fibrosis, excessive scarring that can lead to liver disease and liver cancer. Researchers found that repeated exposure to PCE, which is detectable in an estimated 7 percent of the U.S. population, increased the likelihood of liver damage.“If you’ve been exposed to PCE, talk to your doctor about it,” said Brian P. Lee, associate professor of medicine at the University of Southern California and the study’s lead author.The study found that higher-income households faced the most risk from PCE exposure because they are more likely to use dry cleaning. People who work in cleaning facilities or live nearby also face an elevated risk due to prolonged exposure. Once the chemical gets into a building or the ground, it’s very difficult to remove. The EPA estimates that roughly 6,000 dry cleaners, mostly small businesses, still use PCE in the United States.Lee said the study adds to the growing list of harms associated with the chemical.Studies have also shown that PCE can linger on clothing after dry cleaning and that it builds up over time after repeated cleanings and can contaminate indoor air as it vaporizes.“We now have decades of studies confirming that these widespread dry cleaning chemicals are exposing people to unacceptable risks of cancer and other serious diseases,” said Jonathan Kalmuss-Katz, a senior attorney at the advocacy group Earthjustice. “Those harms are entirely avoidable.”Jon Meijer, director of membership at the Drycleaning & Laundry Institute International, a trade association, said the group supports the original rule passed under the Biden administration and explained that those who still use the chemical do so because of financial challenges.“It’s time for a phaseout of perchloroethylene,” Meijer said. “There are so many alternatives out there.”Safer alternativesExperts say there are plenty of alternatives to using harmful dry cleaning chemicals, but some are safer than others.Go dry-clean free: Try purchasing clothes that don’t need to be dry-cleaned. Selecting cotton blazers and other professional attire, for example, can reduce dry cleaning visits, said Tasha Stoiber, a senior scientist at the Environmental Working Group, an advocacy group. “The easiest thing is to look for professional staples that don’t need to be dry-cleaned,” Stoiber said.Hand-washing: Some “dry-clean only” garments can be delicately hand-washed in cold water with a gentle detergent specific to the particular fabric you’re using. Hanging delicate clothes to dry after a wash can avoid damage from heated air dryers.Steaming: Steam cleaning can freshen up clothes by removing odors, bacteria and small stains without needing a full wash.Commercial wet cleaning: Commercial wet cleaning relies on biodegradable detergents and water instead of toxic solvents.Liquid carbon dioxide: Experts suggest selecting dry cleaners that use liquid carbon dioxide as a solvent to remove dirt and avoid toxic chemicals.Watch out for greenwashingSome businesses advertise eco-friendly or “green” alternatives to dry cleaning. But experts warn that new chemicals can have their own downsides.Diana Ceballos, an assistant professor in the University of Washington’s Department of Environmental and Occupational Health Sciences, said that dry cleaning technology has improved dramatically and that new solvents and machinery can be more effective than PCE.Still, Cebellos said that there can be a lot of “regrettable substitution” when it comes to alternatives to PCE and that some that are billed as “safe” or “organic” could also be toxic.“Most options are far better,” Cebellos said. “But there’s a lot of greenwashing” out there, so people should ask questions and do “a little bit of research.”

Emergency Crews Respond to Ammonia Leak at Mississippi Fertilizer Plant

(Reuters) -Emergency teams responded on Wednesday to a chemical leak, possibly caused by an explosion, at a fertilizer plant in Central Mississippi...

(Reuters) -Emergency teams responded on Wednesday to a chemical leak, possibly caused by an explosion, at a fertilizer plant in Central Mississippi, according to Governor Tate Reeves and media reports. No injuries were immediately reported.A tall cloud of orange vapor could be seen rising over the facility in a photo from the scene of the plant posted online by television station WJTV, a CBS News affiliate in Jackson, Mississippi, the state capital.The governor identified the leaking chemical as anhydrous ammonia, a toxic substance that can cause irritation to the eyes and lungs.Fertilizer manufacturer CF Industries said in statement that "all employees and contractors on site at the time of the incident have been safely accounted for, with no injuries reported."It said it had notified government officials of an "incident" that occurred at its Yazoo City Complex at about 4:25 p.m. CT (2225 GMT).Reeves said in a statement posted on social media that state authorities were "actively responding to the anhydrous ammonia leak" at the plant, located about 50 miles (80.5 km) north of Jackson."Initial reports indicate the leak is due to an explosion. At this time, no deaths or injuries have been reported," the governor said.Personnel from the Mississippi Department of Environmental Quality were among various teams dispatched to the scene, WJTV reported.The governor said residents living along two nearby streets should be evacuated, while other residents in the vicinity were encouraged to shelter in place.(Reporting by Steve Gorman in Los Angeles; Additional reporting by Costas Pita in Los Angeles and Angela Christy in Bengaluru; Editing by Himani Sarkar and Stephen Coates)Copyright 2025 Thomson Reuters.

EPA Proposes Approving Fifth ‘Forever Chemical’ Pesticide

November 5, 2025 – In line with its plan to continue pesticide approvals despite the government shutdown, the Environmental Protection Agency (EPA) announced this week that it will register a new weedkiller for use in corn, soybean, wheat, and canola fields. The herbicide, epyrifenacil, is the fifth pesticide set to be approved by the agency […] The post EPA Proposes Approving Fifth ‘Forever Chemical’ Pesticide appeared first on Civil Eats.

November 5, 2025 – In line with its plan to continue pesticide approvals despite the government shutdown, the Environmental Protection Agency (EPA) announced this week that it will register a new weedkiller for use in corn, soybean, wheat, and canola fields. The herbicide, epyrifenacil, is the fifth pesticide set to be approved by the agency within the last few months that fits into the group of chemicals called PFAS (per- and polyfluoroalkyl substances), based on a commonly used definition. And the agency is moving fast. The first pesticide was proposed for registration in April; that pesticide, called cyclobutrifluram, was finalized today. PFAS are linked to a wide range of health harms and are commonly called “forever chemicals” because they don’t break down easily and they accumulate in soil and water. In 2023, however, the EPA officially adopted a narrower definition. With the proposed approval of epyrifenacil, the agency for the first time has waded into the debate over which pesticides are PFAS and whether concerns voiced over other recent registrations of similar pesticides are warranted. In its announcement, the agency noted that epyrifenacil “contains a fluorinated carbon” and directed the public to a new website where it lays out its position on pesticides that contain fluorinated carbons. Whether those chemicals fit the definition of PFAS doesn’t matter, the agency argues, because under the law, the EPA evaluates the risks of each chemical individually. “Regardless of whether a chemical meets a specific structural definition or is part of a category or class of chemicals, the Agency utilizes a comprehensive assessment process under [the Federal Insecticide, Fungicide, and Rodenticide Act] to evaluate the potential risks of pesticide use,” it said. “This robust, chemical-specific process considers both hazard and exposure in determining whether the pesticide under review may pose risk to human health or the environment.” Epyrifenacil was developed by Japan-based Sumitomo Chemical, which owns Valent U.S.A. in the U.S. It’s one of a new class of herbicides designed to help farmers kill weeds that have developed resistance to popular chemicals like glyphosate. It’s also specifically designed for farmers to spray on cover crops and in no-till systems to prep fields for planting. The pesticide industry has lobbied in recent years to get the EPA to approve new chemicals to address what it calls an “innovation backlog.” Nathan Donley, environmental health science director at the Center for Biological Diversity, said in a statement that an “office run by chemical lobbyists” is whitewashing what is already known about the risks of PFAS. “Not only did the pesticide industry get a proposed approval of its dangerous new product,” he said, “but it also got a shiny new government website parroting its misleading talking points.” (Link to this post.) The post EPA Proposes Approving Fifth ‘Forever Chemical’ Pesticide appeared first on Civil Eats.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.