Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

What Myths About the Anthropocene Get Wrong

News Feed
Thursday, April 18, 2024

Jan A. Zalasiewicz, Scott L. Wing and the Anthropocene Working Group The concept of the Anthropocene epoch was born in February 2000 out of a moment of spontaneity. Chemist and Nobel Prize winner Paul Crutzen had been listening to a narrative emerging at an international convening of scientists in Mexico. All day, scientists had presented data that showed how the human-caused changes in climate, chemical cycles and biology of recent decades were jarringly different from the relative stability of the Holocene, the geological epoch that began 11,700 years prior. They kept referring to the remarkably rapid environmental changes of the late Holocene. Exasperated, Crutzen finally broke into the discussion: “We aren’t in the Holocene anymore, we’re in … the Anthropocene!” The improvised term quickly caught fire as a foundational concept among earth scientists, and in the last decade the word has proliferated through other sciences, the arts, humanities and popular culture. Along the way, “Anthropocene” gained many meanings and implications unrelated to—or even opposing—Crutzen’s original concept, blurring and sometimes wholly obscuring its original meaning. But what did Crutzen intend by the Anthropocene, a concept since enhanced and refined by years of scientific study? It’s absurdly simple. The shift from the Holocene to the Anthropocene epoch hits like a brick wall when looking at graphs that show changes in three major greenhouse gases and in global temperature during the last 30 millennia. All four of these critical planetary parameters shift from near-horizontal to near-vertical lines in the last 70 years or so. The graphs are simple, but they show changes in atmospheric chemistry and—lagging a little behind—temperature, that affect the habitability of the planet for all its organisms, including humans. On a time scale of millennia, the shifts don’t resemble a hockey stick as much as a stair step. Furthermore, these changes affect the whole atmosphere and ocean, so they are essentially irreversible on any human time scale. Our distant descendants will still be living with the planetary changes that humans have wrought in a single lifetime. The stunning effect of humans on the atmosphere can be seen in the concentration of three important greenhouse gases: nitrous oxide, methane and carbon dioxide. These gases have increased far more in the last 70 years than in the previous 30,000 years or more. Global temperature has begun to spike as a result, and it will continue to rise as the full effect of higher greenhouse gas concentration is felt. Martin Head If we zoom in on the time axis to look at just the last 300 years, ten human generations, we see remarkably large and rapid change in a whole range of factors that mark the effect of humans at a global scale: not just carbon emissions, but also production of metals, plastics, fertilizers, concrete and farm animals, and even a giant increase in the ultimate geological currency: sediment. The amount of sediment moved every year by humans now exceeds the amount moved by non-human processes by a factor of 15. Cropping the time frame tightly in this way, we see that the global shifts are most rapid beginning in the mid-20th century. The Anthropocene Working Group, a body of 34 scientists from 14 countries constituted in 2009 by the International Commission on Stratigraphy, proposed placing the beginning of a new Anthropocene Epoch in 1952, when sediments are marked globally by the first major increase in the element plutonium, derived from the earliest tests of thermonuclear weapons. Scientists proposed recognizing a new geological epoch, the Anthropocene, marked by rapid changes beginning in the mid-20th century. Sediments deposited in the last 70 years are marked by abundant artificial materials including concrete, metals, plastics and fertilizer. Ecosystems have also been transformed by the great increases in fertilizer production (ammonia) and raising livestock (meat production). Humans are also prodigious producers of sediment. Colin Waters By proposing a formal, geologically defined Anthropocene epoch, the working group intended to provide a precise definition for this recent, large, permanent and rapid transition in Earth’s physical, chemical and biological systems. The proposal was rejected by the international hierarchy of stratigraphy—of which the International Commission on Stratigraphy is a part—without citing substantive reasons, but most public criticisms of the Anthropocene stem from a range of sources: from within the heart of geology, to well outside it, among the social sciences and humanities. Tourists look down at the Hoover Dam. The amount of sediment settled behind the world’s thousands of big dams would cover all of California to a depth of five meters. Robert Nickelsberg / Getty Images Across a spectrum of disciplines, the Anthropocene touched—and often jabbed—a nerve: sometimes as a gut response to a disturbing new idea and sometimes with discomfort at unfamiliar sociopolitical implications. For whatever reasons, the Anthropocene came under fire. But the barrage of criticism has often focused on what the Anthropocene isn’t rather than what it is. Fundamental misconceptions have come to surround this concept and to cloud its meaning. Here we debunk ten common myths about the Anthropocene. 1. The Anthropocene fails to represent all human impacts. This is true enough—but it misses the point entirely. Recognizing an Anthropocene epoch does not at all underplay the impacts that humans have caused for many millennia by hunting, by farming, and by building cities and trade networks. But those early impacts were not global, were not synchronous around the planet and did not shift the global environment permanently. The reason for naming a new geological epoch, both in Crutzen’s original formulation and in the highly detailed proposal of the working group, is to mark the departure of the Earth and its inhabitants from the stable planetary system of the Holocene. The Anthropocene epoch was never meant to encompass all anthropogenic impacts. 2. The Anthropocene is too short to be a geological epoch—just one human lifetime. The Anthropocene’s duration is short, true—so far. But it’s the Holocene that shows the greatest change in duration from other epochs: nearly three orders of magnitude (0.0117 million years versus 2.57 million years for the Pleistocene epoch that precedes it). The difference in duration between Holocene and Anthropocene epochs is proportionately less, and the Anthropocene represents far more significant and enduring change to the planet than does the Holocene. 3. The Anthropocene is just a blip in Earth history. Or, as the New York Times writes, a senior member of the geological time-scale hierarchy calls it “a blip of a blip of a blip.” What this point of view misunderstands is that these approximately 70 years have altered the planet fundamentally and set it on a new trajectory. Already, many geological signals are sharper than, and as pronounced as, the sudden carbon release and global warming that initiated the Eocene epoch 56 million years ago. Take just the climate impacts from burning fossil fuels, of which 90 percent have been burned in the last 70 years. These impacts will roll across the planet for at least many thousands of years. We and many generations to come are locked into a climate unlike that of the Holocene. Carbon dioxide already in the atmosphere will make the Earth hotter than it has been for at least 3 million years. Many of the biological changes of the last 70 years are permanent, too: extinctions, of course, but also the spread of many species through the intended and unintended assistance of humans, making fauna and flora more homogeneous worldwide. The biosphere has been changed forever. This is no blip. 4. Anthropocene strata are “minimal” or “negligible.” That’s a very geological objection—but it’s wrong. Humans have, since the mid-20th century, been prodigious reshapers of the landscape and movers of rock and sediment (now, by more than an order of magnitude than natural sediment movers such as glaciers and rivers.) The amount of sediment settled behind the world’s thousands of big dams would cover all of California to a depth of five meters, and such sediments are full of distinctive markers, like pesticide residues, metals, microplastics and the fossils of invasive species. To define a time period formally, geologists must identify distinctive signals in sediments or rocks that can be correlated around the globe, and the presence of such markers is ubiquitous. The geology is real. Plastic debris collects after a rainstorm near Culver City, California. Microplastics that result from such debris can often be found in sediment. Citizen of the Planet / UIG via Getty Images 5. The geological record is too complex and gradational to draw one single boundary for the Anthropocene. All of history (of Earth and of humans) is complex, is gradational and varies through time and across space. Nevertheless, geologists define epochs because such time units are useful, indeed indispensable to their work. In geology, each time unit is precisely defined by a “golden spike”—a specified level in a sedimentary succession at a specified location that is chosen because it can be correlated to other sedimentary sequences around the globe. This golden spike identifies a global time plane, but the planetary transition that motivates the placement of a golden spike can be anything but simple. The last ice age of the Pleistocene gave way to Holocene interglacial conditions over the course of about 13,000 years—and took a different course between Northern and Southern Hemispheres. Yet the defined Holocene boundary within that transition, at 11,700 years ago, is accepted and used without complaint. The Holocene-Anthropocene transition is much sharper and more globally synchronous, and so is easier to define and recognize. 6. Other animals have affected the environment and caused geological change, so there’s nothing special about the Anthropocene. Other animals have indeed changed the environment, but that can help rather than hinder the recognition of geological time intervals. For instance, the rise of mobile, muscular animals that could burrow through sediment serves as the basis for defining the Cambrian Period. But none of those previous changes has swept across all environments on the planet so quickly—or been triggered by an animal conscious of the changes it was making. This consciousness, we note, is yet to be effectively translated into action to ward off the worst consequences of these changes. Too many still pursue economic and industrial development without considering the long-term cost to planetary health. 7. The Anthropocene blames all humans equally for the global environmental crises. The Anthropocene assigns neither blame nor credit; it simply recognizes a great, abrupt and more or less permanent change to the course of Earth history. There is no doubt that some humans, societies, institutions and nation-states have driven far more change than others, and that the benefits and costs of change have been and are unevenly distributed. The societal value of the Anthropocene epoch is that it announces the unambiguous scientific evidence showing that humans have permanently changed the global environment. And it might encourage us to recognize that we all must deal with the rapid, permanent, global changes that are underway. 8. The Anthropocene signals defeat in our efforts to mitigate environmental change. The first step in solving problems is to diagnose them. We cannot return the Earth to the conditions in which our grandparents or any other Holocene generation lived. But we can make wiser decisions about the future that will ameliorate and mitigate change. That’s realism, not defeatism. 9. Naming the Anthropocene after humans is hubristic. The planetary transformation that ushered in the Anthropocene epoch was caused by humans. It could have been called a lot of things, but Anthropocene caught the imagination of many because its meaning is evident and accurate. If only that were true. Accepting that we are no longer living in a Holocene world is a first step in addressing the issues facing humans and non-humans in the immediate future. These myths have persisted in the scientific community despite being systematically refuted in scientific papers by the Anthropocene Working Group and others. This suggests that, like all myths, they are reactions based on ideology, conviction or personal philosophy rather than evidence. These misconceptions lie at the heart, too, of the recent formal rejection of the Anthropocene epoch by the hierarchy of international stratigraphy. Why has the Anthropocene been misunderstood and mythologized in so many ways? Probably because it’s deeply uncomfortable to many. It’s very brief (so far). It includes smelly landfill sites as strata to “foul up” a geological time scale that is sacrosanct to many geologists. And it raises the specter that the calm abstractions of geological time have come up against the tough predicaments we face in the present and future. Change is hard, and the Anthropocene is an uncomfortable concept. It is hard to accept that we as a society have gained so much power to change the Earth and have thought so little about how to use that power. Scientific knowledge can transform our perspectives (think of heliocentrism and evolution)—so it’s not surprising that the Anthropocene is hard to accept. But, recognizing our role in suddenly, recently driving the Earth towards a new future is a necessary first step to engaging with the planetary changes we have set in train. Get the latest on what's happening At the Smithsonian in your inbox.

These ten misconceptions underplay how much we have altered the global environment and undermine the new perspective we need to deal with a drastically changed world

Jan A. Zalasiewicz, Scott L. Wing and the Anthropocene Working Group

The concept of the Anthropocene epoch was born in February 2000 out of a moment of spontaneity. Chemist and Nobel Prize winner Paul Crutzen had been listening to a narrative emerging at an international convening of scientists in Mexico.

All day, scientists had presented data that showed how the human-caused changes in climate, chemical cycles and biology of recent decades were jarringly different from the relative stability of the Holocene, the geological epoch that began 11,700 years prior. They kept referring to the remarkably rapid environmental changes of the late Holocene.

Exasperated, Crutzen finally broke into the discussion: “We aren’t in the Holocene anymore, we’re in … the Anthropocene!” The improvised term quickly caught fire as a foundational concept among earth scientists, and in the last decade the word has proliferated through other sciences, the arts, humanities and popular culture.

Along the way, “Anthropocene” gained many meanings and implications unrelated to—or even opposing—Crutzen’s original concept, blurring and sometimes wholly obscuring its original meaning. But what did Crutzen intend by the Anthropocene, a concept since enhanced and refined by years of scientific study?

It’s absurdly simple. The shift from the Holocene to the Anthropocene epoch hits like a brick wall when looking at graphs that show changes in three major greenhouse gases and in global temperature during the last 30 millennia. All four of these critical planetary parameters shift from near-horizontal to near-vertical lines in the last 70 years or so. The graphs are simple, but they show changes in atmospheric chemistry and—lagging a little behind—temperature, that affect the habitability of the planet for all its organisms, including humans. On a time scale of millennia, the shifts don’t resemble a hockey stick as much as a stair step. Furthermore, these changes affect the whole atmosphere and ocean, so they are essentially irreversible on any human time scale. Our distant descendants will still be living with the planetary changes that humans have wrought in a single lifetime.

Greenhouse Gases Graphic
The stunning effect of humans on the atmosphere can be seen in the concentration of three important greenhouse gases: nitrous oxide, methane and carbon dioxide. These gases have increased far more in the last 70 years than in the previous 30,000 years or more. Global temperature has begun to spike as a result, and it will continue to rise as the full effect of higher greenhouse gas concentration is felt. Martin Head

If we zoom in on the time axis to look at just the last 300 years, ten human generations, we see remarkably large and rapid change in a whole range of factors that mark the effect of humans at a global scale: not just carbon emissions, but also production of metals, plastics, fertilizers, concrete and farm animals, and even a giant increase in the ultimate geological currency: sediment. The amount of sediment moved every year by humans now exceeds the amount moved by non-human processes by a factor of 15.

Cropping the time frame tightly in this way, we see that the global shifts are most rapid beginning in the mid-20th century. The Anthropocene Working Group, a body of 34 scientists from 14 countries constituted in 2009 by the International Commission on Stratigraphy, proposed placing the beginning of a new Anthropocene Epoch in 1952, when sediments are marked globally by the first major increase in the element plutonium, derived from the earliest tests of thermonuclear weapons.

Anthropocene Graphic
Scientists proposed recognizing a new geological epoch, the Anthropocene, marked by rapid changes beginning in the mid-20th century. Sediments deposited in the last 70 years are marked by abundant artificial materials including concrete, metals, plastics and fertilizer. Ecosystems have also been transformed by the great increases in fertilizer production (ammonia) and raising livestock (meat production). Humans are also prodigious producers of sediment. Colin Waters

By proposing a formal, geologically defined Anthropocene epoch, the working group intended to provide a precise definition for this recent, large, permanent and rapid transition in Earth’s physical, chemical and biological systems.

The proposal was rejected by the international hierarchy of stratigraphy—of which the International Commission on Stratigraphy is a part—without citing substantive reasons, but most public criticisms of the Anthropocene stem from a range of sources: from within the heart of geology, to well outside it, among the social sciences and humanities.

Hoover Dam
Tourists look down at the Hoover Dam. The amount of sediment settled behind the world’s thousands of big dams would cover all of California to a depth of five meters. Robert Nickelsberg / Getty Images

Across a spectrum of disciplines, the Anthropocene touched—and often jabbed—a nerve: sometimes as a gut response to a disturbing new idea and sometimes with discomfort at unfamiliar sociopolitical implications. For whatever reasons, the Anthropocene came under fire.

But the barrage of criticism has often focused on what the Anthropocene isn’t rather than what it is. Fundamental misconceptions have come to surround this concept and to cloud its meaning. Here we debunk ten common myths about the Anthropocene.

1. The Anthropocene fails to represent all human impacts.

This is true enough—but it misses the point entirely. Recognizing an Anthropocene epoch does not at all underplay the impacts that humans have caused for many millennia by hunting, by farming, and by building cities and trade networks. But those early impacts were not global, were not synchronous around the planet and did not shift the global environment permanently. The reason for naming a new geological epoch, both in Crutzen’s original formulation and in the highly detailed proposal of the working group, is to mark the departure of the Earth and its inhabitants from the stable planetary system of the Holocene. The Anthropocene epoch was never meant to encompass all anthropogenic impacts.

2. The Anthropocene is too short to be a geological epoch—just one human lifetime.

The Anthropocene’s duration is short, true—so far. But it’s the Holocene that shows the greatest change in duration from other epochs: nearly three orders of magnitude (0.0117 million years versus 2.57 million years for the Pleistocene epoch that precedes it). The difference in duration between Holocene and Anthropocene epochs is proportionately less, and the Anthropocene represents far more significant and enduring change to the planet than does the Holocene.

3. The Anthropocene is just a blip in Earth history.

Or, as the New York Times writes, a senior member of the geological time-scale hierarchy calls it “a blip of a blip of a blip.” What this point of view misunderstands is that these approximately 70 years have altered the planet fundamentally and set it on a new trajectory. Already, many geological signals are sharper than, and as pronounced as, the sudden carbon release and global warming that initiated the Eocene epoch 56 million years ago.

Take just the climate impacts from burning fossil fuels, of which 90 percent have been burned in the last 70 years. These impacts will roll across the planet for at least many thousands of years. We and many generations to come are locked into a climate unlike that of the Holocene. Carbon dioxide already in the atmosphere will make the Earth hotter than it has been for at least 3 million years. Many of the biological changes of the last 70 years are permanent, too: extinctions, of course, but also the spread of many species through the intended and unintended assistance of humans, making fauna and flora more homogeneous worldwide. The biosphere has been changed forever. This is no blip.

4. Anthropocene strata are “minimal” or “negligible.”

That’s a very geological objection—but it’s wrong. Humans have, since the mid-20th century, been prodigious reshapers of the landscape and movers of rock and sediment (now, by more than an order of magnitude than natural sediment movers such as glaciers and rivers.) The amount of sediment settled behind the world’s thousands of big dams would cover all of California to a depth of five meters, and such sediments are full of distinctive markers, like pesticide residues, metals, microplastics and the fossils of invasive species. To define a time period formally, geologists must identify distinctive signals in sediments or rocks that can be correlated around the globe, and the presence of such markers is ubiquitous. The geology is real.

Plastic Pollution in California
Plastic debris collects after a rainstorm near Culver City, California. Microplastics that result from such debris can often be found in sediment. Citizen of the Planet / UIG via Getty Images

5. The geological record is too complex and gradational to draw one single boundary for the Anthropocene.

All of history (of Earth and of humans) is complex, is gradational and varies through time and across space. Nevertheless, geologists define epochs because such time units are useful, indeed indispensable to their work. In geology, each time unit is precisely defined by a “golden spike”—a specified level in a sedimentary succession at a specified location that is chosen because it can be correlated to other sedimentary sequences around the globe. This golden spike identifies a global time plane, but the planetary transition that motivates the placement of a golden spike can be anything but simple.

The last ice age of the Pleistocene gave way to Holocene interglacial conditions over the course of about 13,000 years—and took a different course between Northern and Southern Hemispheres. Yet the defined Holocene boundary within that transition, at 11,700 years ago, is accepted and used without complaint. The Holocene-Anthropocene transition is much sharper and more globally synchronous, and so is easier to define and recognize.

6. Other animals have affected the environment and caused geological change, so there’s nothing special about the Anthropocene.

Other animals have indeed changed the environment, but that can help rather than hinder the recognition of geological time intervals. For instance, the rise of mobile, muscular animals that could burrow through sediment serves as the basis for defining the Cambrian Period. But none of those previous changes has swept across all environments on the planet so quickly—or been triggered by an animal conscious of the changes it was making. This consciousness, we note, is yet to be effectively translated into action to ward off the worst consequences of these changes. Too many still pursue economic and industrial development without considering the long-term cost to planetary health.

7. The Anthropocene blames all humans equally for the global environmental crises.

The Anthropocene assigns neither blame nor credit; it simply recognizes a great, abrupt and more or less permanent change to the course of Earth history. There is no doubt that some humans, societies, institutions and nation-states have driven far more change than others, and that the benefits and costs of change have been and are unevenly distributed. The societal value of the Anthropocene epoch is that it announces the unambiguous scientific evidence showing that humans have permanently changed the global environment. And it might encourage us to recognize that we all must deal with the rapid, permanent, global changes that are underway.

8. The Anthropocene signals defeat in our efforts to mitigate environmental change.

The first step in solving problems is to diagnose them. We cannot return the Earth to the conditions in which our grandparents or any other Holocene generation lived. But we can make wiser decisions about the future that will ameliorate and mitigate change. That’s realism, not defeatism.

9. Naming the Anthropocene after humans is hubristic.

The planetary transformation that ushered in the Anthropocene epoch was caused by humans. It could have been called a lot of things, but Anthropocene caught the imagination of many because its meaning is evident and accurate.

If only that were true. Accepting that we are no longer living in a Holocene world is a first step in addressing the issues facing humans and non-humans in the immediate future.

These myths have persisted in the scientific community despite being systematically refuted in scientific papers by the Anthropocene Working Group and others. This suggests that, like all myths, they are reactions based on ideology, conviction or personal philosophy rather than evidence. These misconceptions lie at the heart, too, of the recent formal rejection of the Anthropocene epoch by the hierarchy of international stratigraphy.

Why has the Anthropocene been misunderstood and mythologized in so many ways? Probably because it’s deeply uncomfortable to many. It’s very brief (so far). It includes smelly landfill sites as strata to “foul up” a geological time scale that is sacrosanct to many geologists. And it raises the specter that the calm abstractions of geological time have come up against the tough predicaments we face in the present and future.

Change is hard, and the Anthropocene is an uncomfortable concept. It is hard to accept that we as a society have gained so much power to change the Earth and have thought so little about how to use that power. Scientific knowledge can transform our perspectives (think of heliocentrism and evolution)—so it’s not surprising that the Anthropocene is hard to accept. But, recognizing our role in suddenly, recently driving the Earth towards a new future is a necessary first step to engaging with the planetary changes we have set in train.

Get the latest on what's happening At the Smithsonian in your inbox.

Read the full story here.
Photos courtesy of

Contributor: 'Save the whales' worked for decades, but now gray whales are starving

The once-booming population that passed California twice a year has cratered because of retreating sea ice. A new kind of intervention is needed.

Recently, while sailing with friends on San Francisco Bay, I enjoyed the sight of harbor porpoises, cormorants, pelicans, seals and sea lions — and then the spouting plume and glistening back of a gray whale that gave me pause. Too many have been seen inside the bay recently.California’s gray whales have been considered an environmental success story since the passage of the 1972 Marine Mammal Protection Act and 1986’s global ban on commercial whaling. They’re also a major tourist attraction during their annual 12,000-mile round-trip migration between the Arctic and their breeding lagoons in Baja California. In late winter and early spring — when they head back north and are closest to the shoreline, with the moms protecting the calves — they can be viewed not only from whale-watching boats but also from promontories along the California coast including Point Loma in San Diego, Point Lobos in Monterey and Bodega Head and Shelter Cove in Northern California.In 1972, there were some 10,000 gray whales in the population on the eastern side of the Pacific. Generations of whaling all but eliminated the western population — leaving only about 150 alive today off of East Asia and Russia. Over the four decades following passage of the Marine Mammal Protection Act, the eastern whale numbers grew steadily to 27,000 by 2016, a hopeful story of protection leading to restoration. Then, unexpectedly over the last nine years, the eastern gray whale population has crashed, plummeting by more than half to 12,950, according to a recent report by the National Oceanic and Atmospheric Administration, the lowest numbers since the 1970s.Today’s changing ocean and Arctic ice conditions linked to fossil-fuel-fired climate change are putting this species again at risk of extinction.While there has been some historical variation in their population, gray whales — magnificent animals that can grow up to 50 feet long and weigh as much as 80,000 pounds — are now regularly starving to death as their main food sources disappear. This includes tiny shrimp-like amphipods in the whales’ summer feeding grounds in the Arctic. It’s there that the baleen filter feeders spend the summer gorging on tiny crustaceans from the muddy bottom of the Bering, Chuckchi and Beaufort seas, creating shallow pits or potholes in the process. But, with retreating sea ice, there is less under-ice algae to feed the amphipods that in turn feed the whales. Malnourished and starving whales are also producing fewer offspring.As a result of more whales washing up dead, NOAA declared an “unusual mortality event” in California in 2019. Between 2019 and 2025, at least 1,235 gray whales were stranded dead along the West Coast. That’s eight times greater than any previous 10-year average.While there seemed to be some recovery in 2024, 2025 brought back the high casualty rates. The hungry whales now come into crowded estuaries like San Francisco Bay to feed, making them vulnerable to ship traffic. Nine in the bay were killed by ship strikes last year while another 12 appear to have died of starvation.Michael Stocker, executive director of the acoustics group Ocean Conservation Research, has been leading whale-viewing trips to the gray whales’ breeding ground at San Ignacio Lagoon in Baja California since 2006. “When we started going, there would be 400 adult whales in the lagoon, including 100 moms and their babies,” he told me. “This year we saw about 100 adult whales, only five of which were in momma-baby pairs.” Where once the predators would not have dared to hunt, he said that more recently, “orcas came into the lagoon and ate a couple of the babies because there were not enough adult whales to fend them off.”Southern California’s Gray Whale Census & Behavior Project reported record-low calf counts last year.The loss of Arctic sea ice and refusal of the world’s nations recently gathered at the COP30 Climate Summit in Brazil to meet previous commitments to reduce greenhouse gas emissions suggest that the prospects for gray whales and other wildlife in our warming seas, including key food species for humans such as salmon, cod and herring, look grim.California shut down the nation’s last whaling station in 1971. And yet now whales that were once hunted for their oil are falling victim to the effects of the petroleum or “rock oil” that replaced their melted blubber as a source of light and lubrication. That’s because the burning of oil, coal and gas are now overheating our blue planet. While humans have gone from hunting to admiring whales as sentient beings in recent decades, our own intelligence comes into question when we fail to meet commitments to a clean carbon-free energy future. That could be the gray whales’ last best hope, if there is any.David Helvarg is the executive director of Blue Frontier, an ocean policy group, and co-host of “Rising Tide: The Ocean Podcast.” He is the author of the forthcoming “Forest of the Sea: The Remarkable Life and Imperiled Future of Kelp.”

Pills that communicate from the stomach could improve medication adherence

MIT engineers designed capsules with biodegradable radio frequency antennas that can reveal when the pill has been swallowed.

In an advance that could help ensure people are taking their medication on schedule, MIT engineers have designed a pill that can report when it has been swallowed.The new reporting system, which can be incorporated into existing pill capsules, contains a biodegradable radio frequency antenna. After it sends out the signal that the pill has been consumed, most components break down in the stomach while a tiny RF chip passes out of the body through the digestive tract.This type of system could be useful for monitoring transplant patients who need to take immunosuppressive drugs, or people with infections such as HIV or TB, who need treatment for an extended period of time, the researchers say.“The goal is to make sure that this helps people receive the therapy they need to help maximize their health,” says Giovanni Traverso, an associate professor of mechanical engineering at MIT, a gastroenterologist at Brigham and Women’s Hospital, and an associate member of the Broad Institute of MIT and Harvard.Traverso is the senior author of the new study, which appears today in Nature Communications. Mehmet Girayhan Say, an MIT research scientist, and Sean You, a former MIT postdoc, are the lead authors of the paper.A pill that communicatesPatients’ failure to take their medicine as prescribed is a major challenge that contributes to hundreds of thousands of preventable deaths and billions of dollars in health care costs annually.To make it easier for people to take their medication, Traverso’s lab has worked on delivery capsules that can remain in the digestive tract for days or weeks, releasing doses at predetermined times. However, this approach may not be compatible with all drugs.“We’ve developed systems that can stay in the body for a long time, and we know that those systems can improve adherence, but we also recognize that for certain medications, we can’t change the pill,” Traverso says. “The question becomes: What else can we do to help the person and help their health care providers ensure that they’re receiving the medication?”In their new study, the researchers focused on a strategy that would allow doctors to more closely monitor whether patients are taking their medication. Using radio frequency — a type of signal that can be easily detected from outside the body and is safe for humans — they designed a capsule that can communicate after the patient has swallowed it.There have been previous efforts to develop RF-based signaling devices for medication capsules, but those were all made from components that don’t break down easily in the body and would need to travel through the digestive system.To minimize the potential risk of any blockage of the GI tract, the MIT team decided to create an RF-based system that would be bioresorbable, meaning that it can be broken down and absorbed by the body. The antenna that sends out the RF signal is made from zinc, and it is embedded into a cellulose particle.“We chose these materials recognizing their very favorable safety profiles and also environmental compatibility,” Traverso says.The zinc-cellulose antenna is rolled up and placed inside a capsule along with the drug to be delivered. The outer layer of the capsule is made from gelatin coated with a layer of cellulose and either molybdenum or tungsten, which blocks any RF signal from being emitted.Once the capsule is swallowed, the coating breaks down, releasing the drug along with the RF antenna. The antenna can then pick up an RF signal sent from an external receiver and, working with a small RF chip, sends back a signal to confirm that the capsule was swallowed. This communication happens within 10 minutes of the pill being swallowed.The RF chip, which is about 400 by 400 micrometers, is an off-the-shelf chip that is not biodegradable and would need to be excreted through the digestive tract. All of the other components would break down in the stomach within a week.“The components are designed to break down over days using materials with well-established safety profiles, such as zinc and cellulose, which are already widely used in medicine,” Say says. “Our goal is to avoid long-term accumulation while enabling reliable confirmation that a pill was taken, and longer-term safety will continue to be evaluated as the technology moves toward clinical use.”Promoting adherenceTests in an animal model showed that the RF signal was successfully transmitted from inside the stomach and could be read by an external receiver at a distance up to 2 feet away. If developed for use in humans, the researchers envision designing a wearable device that could receive the signal and then transmit it to the patient’s health care team.The researchers now plan to do further preclinical studies and hope to soon test the system in humans. One patient population that could benefit greatly from this type of monitoring is people who have recently had organ transplants and need to take immunosuppressant drugs to make sure their body doesn’t reject the new organ.“We want to prioritize medications that, when non-adherence is present, could have a really detrimental effect for the individual,” Traverso says.Other populations that could benefit include people who have recently had a stent inserted and need to take medication to help prevent blockage of the stent, people with chronic infectious diseases such as tuberculosis, and people with neuropsychiatric disorders whose conditions may impair their ability to take their medication.The research was funded by Novo Nordisk, MIT’s Department of Mechanical Engineering, the Division of Gastroenterology at Brigham and Women’s Hospital, and the U.S. Advanced Research Projects Agency for Health (ARPA-H), which notes that the views and conclusions contained in this article are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the United States Government.

Costa Rica Rescues Orphaned Manatee Calf in Tortuguero

A young female manatee washed up alone on a beach in Tortuguero National Park early on January 5, sparking a coordinated effort by local authorities to save the animal. The calf, identified as a Caribbean manatee, appeared separated from its mother, with no immediate signs of her in the area. Park rangers received the first […] The post Costa Rica Rescues Orphaned Manatee Calf in Tortuguero appeared first on The Tico Times | Costa Rica News | Travel | Real Estate.

A young female manatee washed up alone on a beach in Tortuguero National Park early on January 5, sparking a coordinated effort by local authorities to save the animal. The calf, identified as a Caribbean manatee, appeared separated from its mother, with no immediate signs of her in the area. Park rangers received the first alert around 8 a.m. from visitors who spotted the stranded calf. Staff from the National System of Conservation Areas (SINAC) quickly arrived on site. They secured the animal to prevent further harm and began searching nearby waters and canals for the mother. Despite hours of monitoring, officials found no evidence of her presence. “The calf showed no visible injuries but needed prompt attention due to its age and vulnerability,” said a SINAC official involved in the operation. Without a parent nearby, the young manatee faced risks from dehydration and predators in the open beach environment. As the day progressed, the Ministry of Environment and Energy (MINAE) joined the response. They decided to relocate the calf for specialized care. In a first for such rescues in the region, teams arranged an aerial transport to move the animal safely to a rehabilitation facility. This step aimed to give the manatee the best chance at survival while experts assess its health. Once at the center, the calf received immediate feeding and medical checks. During one session, it dozed off mid-meal, a sign that it felt secure in the hands of caretakers. Biologists now monitor the animal closely, hoping to release it back into the wild if conditions allow. Manatees, known locally as manatíes, inhabit the coastal waters and rivers of Costa Rica’s Caribbean side. They often face threats from boat strikes, habitat loss, and pollution. Tortuguero, with its network of canals and protected areas, serves as a key habitat for the species. Recent laws have strengthened protections, naming the manatee a national marine symbol to raise awareness. This incident highlights the ongoing challenges for wildlife in the area. Local communities and tourists play a key role in reporting sightings, which can lead to timely interventions. Authorities encourage anyone spotting distressed animals to contact SINAC without delay. The rescue team expressed gratitude to those who reported the stranding. Their quick action likely saved the calf’s life. As investigations continue, officials will determine if environmental factors contributed to the separation. For now, the young manatee rests under professional care, a small win for conservation efforts in Limón. The post Costa Rica Rescues Orphaned Manatee Calf in Tortuguero appeared first on The Tico Times | Costa Rica News | Travel | Real Estate.

New Records Reveal the Mess RFK Jr. Left When He Dumped a Dead Bear in Central Park

Robert F. Kennedy Jr. says he left a bear cub's corpse in Central Park in 2014 to "be fun." Records newly obtained by WIRED show what he left New York civil servants to clean up.

This story contains graphic imagery.On August 4, 2024, when now-US health secretary Robert F. Kennedy Jr. was still a presidential candidate, he posted a video on X in which he admitted to dumping a dead bear cub near an old bicycle in Central Park 10 years prior, in a mystifying attempt to make the young bear’s premature death look like a cyclist’s hit and run.WIRED's Guide to How the Universe WorksYour weekly roundup of the best stories on health care, the climate crisis, new scientific discoveries, and more. At the time, Kennedy said he was trying to get ahead of a story The New Yorker was about to publish that mentioned the incident. But in coming clean, Kennedy solved a decade-old New York City mystery: How and why had a young black bear—a wild animal native to the state, but not to modern-era Manhattan—been found dead under a bush near West 69th Street in Central Park?WIRED has obtained documents that shed new light on the incident from the New York City Department of Parks and Recreation via a public records request. The documents—which include previously unseen photos of the bear cub—resurface questions about the bizarre choices Kennedy says he made, which left city employees dealing with the aftermath and lamenting the cub’s short life and grim fate.A representative for Kennedy did not respond for comment. The New York Police Department (NYPD) and the Parks Department referred WIRED to the New York Department of Environmental Conservation (NYDEC). NYDEC spokesperson Jeff Wernick tells WIRED that its investigation into the death of the bear cub was closed in late 2014 “due to a lack of sufficient evidence” to determine if state law was violated. They added that New York’s environmental conservation law forbids “illegal possession of a bear without a tag or permit and illegal disposal of a bear,” and that “the statute of limitations for these offenses is one year.”The first of a number of emails between local officials coordinating the handling of the baby bear’s remains was sent at 10:16 a.m. on October 6, 2014. Bonnie McGuire, then-deputy director at Urban Park Rangers (UPR), told two colleagues that UPR sergeant Eric Handy had recently called her about a “dead black bear” found in Central Park.“NYPD told him they will treat it like a crime scene so he can’t get too close,” McGuire wrote. “I’ve asked him to take pictures and send them over and to keep us posted.”“Poor little guy!” McGuire wrote in a separate email later that morning.According to emails obtained by WIRED, Handy updated several colleagues throughout the day, noting that the NYDEC had arrived on scene, and that the agency was planning to coordinate with the NYPD to transfer the body to the Bronx Zoo, where it would be inspected by the NYPD’s animal cruelty unit and the ASPCA. (This didn’t end up happening, as the NYDEC took the bear to a state lab near Albany.)Imagery of the bear has been public before—local news footage from October 2014 appears to show it from a distance. However, the documents WIRED obtained show previously unpublished images that investigators took of the bear on the scene, which Handy sent as attachments in emails to McGuire. The bear is seen laying on its side in an unnatural position. Its head protrudes from under a bush and rests next to a small patch of grass. Bits of flesh are visible through the bear’s black fur, which was covered in a few brown leaves.Courtesy of NYC Parks

U.S. Military Ends Practice of Shooting Live Animals to Train Medics to Treat Battlefield Wounds

The 2026 National Defense Authorization Act bans the use of live animals in live fire training exercises and prohibits "painful" research on domestic cats and dogs

U.S. Military Ends Practice of Shooting Live Animals to Train Medics to Treat Battlefield Wounds The 2026 National Defense Authorization Act bans the use of live animals in live fire training exercises and prohibits “painful” research on domestic cats and dogs Sarah Kuta - Daily Correspondent January 5, 2026 12:00 p.m. The U.S. military will no longer shoot live goats and pigs to help combat medics learn to treat battlefield injuries. Pexels The United States military is no longer shooting live animals as part of its trauma training exercises for combat medics. The 2026 National Defense Authorization Act, which was enacted on December 18, bans the use of live animals—including dogs, cats, nonhuman primates and marine mammals—in any live fire trauma training conducted by the Department of Defense. It directs military leaders to instead use advanced simulators, mannequins, cadavers or actors. According to the Associated Press’ Ben Finley, the bill ends the military’s practice of shooting live goats and pigs to help combat medics learn to treat battlefield injuries. However, the military is allowed to continue other practices involving animals, including stabbing, burning and testing weapons on them. In those scenarios, the animals are supposed to be anesthetized, per the AP. “With today’s advanced simulation technology, we can prepare our medics for the battlefield while reducing harm to animals,” says Florida Representative Vern Buchanan, who advocated for the change, in a statement shared with the AP. He described the military’s practices as “outdated and inhumane” and called the move a “major step forward in reducing unnecessary suffering.” Quick fact: What is the National Defense Authorization Act? The National Defense Authorization Act, or NDAA, is a law passed each year that authorizes the Department of Defense’s appropriated funds, greenlights the Department of Energy’s nuclear weapons programs and sets defense policies and restrictions, among other activities, for the upcoming fiscal year. Organizations have opposed the military’s use of live animals in trauma training, too, including the Physicians Committee for Responsible Medicine and the People for the Ethical Treatment of Animals. PETA, a nonprofit animal advocacy group, described the legislation as a “major victory for animals” that will “save countless animals from heinous cruelty” in a statement. The legislation also prohibits “painful research” on domestic cats and dogs, though exceptions can be made under certain circumstances, such as interests of national security. “Painful” research includes any training, experiments or tests that fall into specific pain categories outlined by the U.S. Department of Agriculture. For example, military cats and dogs can no longer be exposed to extreme environmental conditions or noxious stimuli they cannot escape, nor can they be forced to exercise to the point of distress or exhaustion. The bill comes amid a broader push to end the use of live animals in federal tests, studies and training, reports Linda F. Hersey for Stars and Stripes. After temporarily suspending live tissue training with animals in 2017, the U.S. Coast Guard made the ban permanent in 2018. In 2024, U.S. lawmakers directed the Department of Veterans Affairs to end its experiments on cats, dogs and primates. And in May 2025, the U.S. Navy announced it would no longer conduct research testing on cats and dogs. As the Washington Post’s Ernesto Londoño reported in 2013, the U.S. military has used animals for medical training since at least the Vietnam War. However, the practice largely went unnoticed until 1983, when the U.S. Army planned to anesthetize dogs, hang them from nylon mesh slings and shoot them at an indoor firing range in Maryland. When activists and lawmakers learned of the proposal, they decried the practice and convinced then-Defense Secretary Caspar Weinberger to ban the shooting of dogs. However, in 1984, the AP reported the U.S. military would continue shooting live goats and pigs for wound treatment training, with a military medical study group arguing “there is no substitute for the live animals as a study object for hands-on training.” In the modern era, it’s not clear how often and to what extent the military uses animals, per the AP. And despite the Department of Defense’s past efforts to minimize the use of animals for trauma training, a 2022 report from the Government Accountability Office, the watchdog agency charged with providing fact-based, nonpartisan information to Congress, determined that the agency was “unable to fully demonstrate the extent to which it has made progress.” The Defense Health Agency, the U.S. government entity responsible for the military’s medical training, says in a statement shared with the AP that it “remains committed to replacement of animal models without compromising the quality of medical training,” including the use of “realistic training scenarios to ensure medical providers are well-prepared to care for the combat-wounded.” Animal activists say technology has come a long way in recent decades so, beyond the animal welfare concerns, the military simply no longer needs to use live animals for training. Instead, military medics can simulate treating battlefield injuries using “cut suits,” or realistic suits with skin, blood and organs that are worn by a live person to mimic traumatic injuries. However, not everyone agrees. Michael Bailey, an Army combat medic who served two tours in Iraq, told the Washington Post in 2013 that his training with a sedated goat was invaluable. “You don’t get that [sense of urgency] from a mannequin,” he told the publication. “You don’t get that feeling of this mannequin is going to die. When you’re talking about keeping someone alive when physics and the enemy have done their best to do the opposite, it’s the kind of training that you want to have in your back pocket.” Get the latest stories in your inbox every weekday.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.