Giant Sloths and Many Other Massive Creatures Were Once Common on Our Planet. With Environmental Changes, Such Giants Could Thrive Again
Giant Sloths and Many Other Massive Creatures Were Once Common on Our Planet. With Environmental Changes, Such Giants Could Thrive Again If large creatures like elephants, giraffes and bison are allowed to thrive, they could alter habitats that allow for the rise of other giants Riley Black - Science Correspondent July 11, 2025 8:00 a.m. Ancient sloths lived in trees, on mountains, in deserts, in boreal forests and on open savannas. Some grew as large as elephants. Illustration by Diego Barletta The largest sloth of all time was the size of an elephant. Known to paleontologists as Eremotherium, the shaggy giant shuffled across the woodlands of the ancient Americas between 60,000 and five million years ago. Paleontologists have spent decades hotly debating why such magnificent beasts went extinct, the emerging picture involving a one-two punch of increasing human influence on the landscape and a warmer interglacial climate that began to change the world’s ecosystems. But even less understood is how our planet came to host entire communities of such immense animals during the Pleistocene. Now, a new study on the success of the sloths helps to reveal how the world of Ice Age giants came to be, and hints that an Earth brimming with enormous animals could come again. Florida Museum of Natural History paleontologist Rachel Narducci and colleagues tracked how sloths came to be such widespread and essential parts of the Pleistocene Americas and published their findings in Science this May. The researchers found that climate shifts that underwrote the spread of grasslands allowed big sloths to arise, the shaggy mammals then altering those habitats to maintain open spaces best suited to big bodies capable of moving long distances. The interactions between the animals and environment show how giants attained their massive size, and how strange it is that now our planet has fewer big animals than would otherwise be here. Earth still boasts some impressively big species. In fact, the largest animal of all time is alive right now and only evolved relatively recently. The earliest blue whale fossils date to about 1.5 million years ago, and, at 98 feet long and more than 200 tons, the whale is larger than any mammoth or dinosaur. Our planet has always boasted a greater array of small species than large ones, even during prehistoric ages thought of as synonymous with megafauna. Nevertheless, Earth’s ecosystems are still in a megafaunal lull that began at the close of the Ice Age. “I often say we are living on a downsized planet Earth,” says University of Maine paleoecologist Jacquelyn Gill.Consider what North America was like during the Pleistocene, between 11,000 years and two million ago. The landmass used to host multiple forms of mammoths, mastodons, giant ground sloths, enormous armadillos, multiple species of sabercat, huge bison, dire wolves and many more large creatures that formed ancient ecosystems unlike anything on our planet today. In addition, many familiar species such as jaguars, black bears, coyotes, white-tailed deer and golden eagles also thrived. Elsewhere in the world lived terror birds taller than an adult human, wombats the size of cars, woolly rhinos, a variety of elephants with unusual tusks and other creatures. Ecosystems capable of supporting such giants have been the norm rather than the exception for tens of millions of years. Giant sloths were among the greatest success stories among the giant-size menagerie. The herbivores evolved on South America when it was still an island continent, only moving into Central and North America as prehistoric Panama connected the landmasses about 2.7 million years ago. Some were small, like living two- and three-toed sloths, while others embodied a range of sizes all the way up to elephant-sized giants like Eremotherium and the “giant beast” Megatherium. An Eremotherium skeleton at the Houston Museum of Natural Science demonstrates just how large the creature grew. James Nielsen / Houston Chronicle via Getty Images The earliest sloths originated on South America about 35 million years ago. They were already big. Narducci and colleagues estimate that the common ancestor of all sloths was between about 150 and 770 pounds—or similar to the range of sizes seen among black bears today—and they walked on the ground. “I was surprised and thrilled” to find that sloths started off large, Narducci says, as ancestral forms of major mammal groups are often small, nocturnal creatures. The earliest sloths were already in a good position to shift with Earth’s climate and ecological changes. The uplift of the Andes Mountains in South America led to changes on the continent as more open, drier grasslands spread where there had previously been wetter woodlands and forests. While some sloths became smaller as they spent more time around and within trees, the grasslands would host the broadest diversity of sloth species. The grasslands sloths were the ones that ballooned to exceptional sizes. Earth has been shifting between warmer and wetter times, like now, and cooler and drier climates over millions of years. The chillier and more arid times are what gave sloths their size boost. During these colder spans, bigger sloths were better able to hold on to their body heat, but they also didn’t need as much water, and they were capable of traveling long distances more efficiently thanks to their size. “The cooler and drier the climate, especially after 11.6 million years ago, led to expansive grasslands, which tends to favor the evolution of increasing body mass,” Narducci says. The combination of climate shifts, mountain uplift and vegetation changes created environments where sloths could evolve into a variety of forms—including multiple times when sloths became giants again. Gill says that large body size was a “winning strategy” for herbivores. “At a certain point, megaherbivores get so large that most predators can’t touch them; they’re able to access nutrition in foods that other animals can’t really even digest thanks to gut microbes that help them digest cellulose, and being large means you’re also mobile,” Gill adds, underscoring advantages that have repeatedly pushed animals to get big time and again. The same advantages underwrote the rise of the biggest dinosaurs as well as more recent giants like the sloths and mastodons. As large sloths could travel further, suitable grassland habitats stretched from Central America to prehistoric Florida. “This is what also allowed for their passage into North America,” Narducci says. Sloths were able to follow their favored habitats between continents. If the world were to shift back toward cooler and drier conditions that assisted the spread of the grasslands that gave sloths their size boost, perhaps similar giants could evolve. The sticking point is what humans are doing to Earth’s climate, ecosystems and existing species. The diversity and number of large species alive today is vastly, and often negatively, affected by humans. A 2019 study of human influences on 362 megafauna species, on land and in the water, found that 70 percent are diminishing in number, and 59 percent are getting dangerously close to extinction. But if that relationship were to change, either through our actions or intentions, studies like the new paper on giant sloths hint that ecosystems brimming with a wealth of megafaunal species could evolve again. Big animals change the habitats where they live, which in turn tends to support more large species adapted to those environments. The giant sloths that evolved among ancient grasslands helped to keep those spaces open in tandem with other big herbivores, such as mastodons, as well as the large carnivores that preyed upon them. Paleontologists and ecologists know this from studies of how large animals such as giraffes and rhinos affect vegetation around them. Big herbivores, in particular, tend to keep habitats relatively open. Elephants and other big beasts push over trees, trample vegetation underfoot, eat vast amounts of greenery and transport seeds in their dung, disassembling vegetation while unintentionally planting the beginnings of new habitats. Such broad, open spaces were essential to the origins of the giant sloths, and so creating wide-open spaces helps spur the evolution of giants to roam such environments. For now, we are left with the fossil record of giant animals that were here so recently that some of their bones aren’t even petrified, skin and fur still clinging to some skeletons. “The grasslands they left behind are just not the same, in ways we’re really only starting to understand and appreciate,” Gill says. A 2019 study on prehistoric herbivores in Africa, for example, found that the large plant-eaters altered the water cycling, incidence of fire and vegetation of their environment in a way that has no modern equivalent and can’t just be assumed to be an ancient version of today’s savannas. The few megaherbivores still with us alter the plant life, water flow, seed dispersal and other aspects of modern environments in their own unique ways, she notes, which should be a warning to us to protect them—and the ways in which they affect our planet. If humans wish to see the origin of new magnificent giants like the ones we visit museums to see, we must change our relationship to the Earth first. Get the latest Science stories in your inbox.
If large creatures like elephants, giraffes and bison are allowed to thrive, they could alter habitats that allow for the rise of other giants
Giant Sloths and Many Other Massive Creatures Were Once Common on Our Planet. With Environmental Changes, Such Giants Could Thrive Again
If large creatures like elephants, giraffes and bison are allowed to thrive, they could alter habitats that allow for the rise of other giants
Riley Black - Science Correspondent

The largest sloth of all time was the size of an elephant. Known to paleontologists as Eremotherium, the shaggy giant shuffled across the woodlands of the ancient Americas between 60,000 and five million years ago. Paleontologists have spent decades hotly debating why such magnificent beasts went extinct, the emerging picture involving a one-two punch of increasing human influence on the landscape and a warmer interglacial climate that began to change the world’s ecosystems. But even less understood is how our planet came to host entire communities of such immense animals during the Pleistocene. Now, a new study on the success of the sloths helps to reveal how the world of Ice Age giants came to be, and hints that an Earth brimming with enormous animals could come again.
Florida Museum of Natural History paleontologist Rachel Narducci and colleagues tracked how sloths came to be such widespread and essential parts of the Pleistocene Americas and published their findings in Science this May. The researchers found that climate shifts that underwrote the spread of grasslands allowed big sloths to arise, the shaggy mammals then altering those habitats to maintain open spaces best suited to big bodies capable of moving long distances. The interactions between the animals and environment show how giants attained their massive size, and how strange it is that now our planet has fewer big animals than would otherwise be here.
Earth still boasts some impressively big species. In fact, the largest animal of all time is alive right now and only evolved relatively recently. The earliest blue whale fossils date to about 1.5 million years ago, and, at 98 feet long and more than 200 tons, the whale is larger than any mammoth or dinosaur. Our planet has always boasted a greater array of small species than large ones, even during prehistoric ages thought of as synonymous with megafauna. Nevertheless, Earth’s ecosystems are still in a megafaunal lull that began at the close of the Ice Age. “I often say we are living on a downsized planet Earth,” says University of Maine paleoecologist Jacquelyn Gill.
Consider what North America was like during the Pleistocene, between 11,000 years and two million ago. The landmass used to host multiple forms of mammoths, mastodons, giant ground sloths, enormous armadillos, multiple species of sabercat, huge bison, dire wolves and many more large creatures that formed ancient ecosystems unlike anything on our planet today. In addition, many familiar species such as jaguars, black bears, coyotes, white-tailed deer and golden eagles also thrived. Elsewhere in the world lived terror birds taller than an adult human, wombats the size of cars, woolly rhinos, a variety of elephants with unusual tusks and other creatures. Ecosystems capable of supporting such giants have been the norm rather than the exception for tens of millions of years.
Giant sloths were among the greatest success stories among the giant-size menagerie. The herbivores evolved on South America when it was still an island continent, only moving into Central and North America as prehistoric Panama connected the landmasses about 2.7 million years ago. Some were small, like living two- and three-toed sloths, while others embodied a range of sizes all the way up to elephant-sized giants like Eremotherium and the “giant beast” Megatherium.

The earliest sloths originated on South America about 35 million years ago. They were already big. Narducci and colleagues estimate that the common ancestor of all sloths was between about 150 and 770 pounds—or similar to the range of sizes seen among black bears today—and they walked on the ground. “I was surprised and thrilled” to find that sloths started off large, Narducci says, as ancestral forms of major mammal groups are often small, nocturnal creatures.
The earliest sloths were already in a good position to shift with Earth’s climate and ecological changes. The uplift of the Andes Mountains in South America led to changes on the continent as more open, drier grasslands spread where there had previously been wetter woodlands and forests. While some sloths became smaller as they spent more time around and within trees, the grasslands would host the broadest diversity of sloth species. The grasslands sloths were the ones that ballooned to exceptional sizes.
Earth has been shifting between warmer and wetter times, like now, and cooler and drier climates over millions of years. The chillier and more arid times are what gave sloths their size boost. During these colder spans, bigger sloths were better able to hold on to their body heat, but they also didn’t need as much water, and they were capable of traveling long distances more efficiently thanks to their size. “The cooler and drier the climate, especially after 11.6 million years ago, led to expansive grasslands, which tends to favor the evolution of increasing body mass,” Narducci says.
The combination of climate shifts, mountain uplift and vegetation changes created environments where sloths could evolve into a variety of forms—including multiple times when sloths became giants again. Gill says that large body size was a “winning strategy” for herbivores. “At a certain point, megaherbivores get so large that most predators can’t touch them; they’re able to access nutrition in foods that other animals can’t really even digest thanks to gut microbes that help them digest cellulose, and being large means you’re also mobile,” Gill adds, underscoring advantages that have repeatedly pushed animals to get big time and again. The same advantages underwrote the rise of the biggest dinosaurs as well as more recent giants like the sloths and mastodons.
As large sloths could travel further, suitable grassland habitats stretched from Central America to prehistoric Florida. “This is what also allowed for their passage into North America,” Narducci says. Sloths were able to follow their favored habitats between continents.
If the world were to shift back toward cooler and drier conditions that assisted the spread of the grasslands that gave sloths their size boost, perhaps similar giants could evolve. The sticking point is what humans are doing to Earth’s climate, ecosystems and existing species. The diversity and number of large species alive today is vastly, and often negatively, affected by humans. A 2019 study of human influences on 362 megafauna species, on land and in the water, found that 70 percent are diminishing in number, and 59 percent are getting dangerously close to extinction. But if that relationship were to change, either through our actions or intentions, studies like the new paper on giant sloths hint that ecosystems brimming with a wealth of megafaunal species could evolve again.
Big animals change the habitats where they live, which in turn tends to support more large species adapted to those environments. The giant sloths that evolved among ancient grasslands helped to keep those spaces open in tandem with other big herbivores, such as mastodons, as well as the large carnivores that preyed upon them. Paleontologists and ecologists know this from studies of how large animals such as giraffes and rhinos affect vegetation around them. Big herbivores, in particular, tend to keep habitats relatively open. Elephants and other big beasts push over trees, trample vegetation underfoot, eat vast amounts of greenery and transport seeds in their dung, disassembling vegetation while unintentionally planting the beginnings of new habitats. Such broad, open spaces were essential to the origins of the giant sloths, and so creating wide-open spaces helps spur the evolution of giants to roam such environments.
For now, we are left with the fossil record of giant animals that were here so recently that some of their bones aren’t even petrified, skin and fur still clinging to some skeletons. “The grasslands they left behind are just not the same, in ways we’re really only starting to understand and appreciate,” Gill says. A 2019 study on prehistoric herbivores in Africa, for example, found that the large plant-eaters altered the water cycling, incidence of fire and vegetation of their environment in a way that has no modern equivalent and can’t just be assumed to be an ancient version of today’s savannas. The few megaherbivores still with us alter the plant life, water flow, seed dispersal and other aspects of modern environments in their own unique ways, she notes, which should be a warning to us to protect them—and the ways in which they affect our planet. If humans wish to see the origin of new magnificent giants like the ones we visit museums to see, we must change our relationship to the Earth first.