Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

Tracking Tire Plastics—and Chemicals—From Road to Plate

News Feed
Tuesday, July 16, 2024

A version of this article originally appeared in The Deep Dish, our members-only newsletter. Become a member today and get the next issue directly in your inbox. In the last few years, vehicle tires have emerged as a shockingly prolific producer of microplastics. It probably shouldn’t come as a surprise. Each year, roughly 3 billion new tires are made, consisting of synthetic rubber, which is a plastic polymer, as well as natural rubber, metal, and other materials. And each year, about 800 million of them become waste. As tires wear down—from contact with the road or the friction of the brakes—they shed chemical-laden particles, and those chemicals, it turns out, can find their way into crops. A new study has shown for the first time that store-bought lettuce contains chemical tire additives. Tire-derived microplastics are a growing source of plastic pollution and a target of the United Nations International Plastic Treaty negotiations. Further, concern is growing about the hundreds of chemicals, up to 15 percent of the weight of the tire, that are shed into the environment via tire microplastics. “It is the additives that are the toxic compounds,” says Thilo Hofmann, an environmental scientist at the University of Vienna. While scientists agree that tire particles contribute significantly to microplastic emissions in the environment, the numbers are difficult to quantify. Recent studies have found tire particles made up to 30 percent of microplastics in Germany, roughly 54 percent in China, 61 to 79 percent in Sweden, and a whopping 94 percent in Switzerland. Researchers have already demonstrated that some crops, including lettuce and fruits, can take up microplastics, possibly putting human health at risk. But a new study has shown for the first time that store-bought lettuce contains chemical tire additives. It is an unexpected finding, according to study co-author Anya Sherman, a doctoral student working with Hofmann at the University of Vienna. Sherman and colleagues found one or more of the 16 tire additives they looked for in 20 of 28 lettuce samples. The concentrations of tire additives in leafy vegetables were low overall, but two compounds were most common: benzothiazole, used to strengthen rubber, was detected in 12 of the 28 samples; and 6PPD, used to prevent its oxidation, was found in seven. It’s hard to know the exact source of the pollutants. Leaching from tire-wear particles is a major source of benzothiazoles in the environment, but the compound is used in other applications, including agrochemicals and consumer products. Likewise, 6PPD can be found in sporting equipment and recreation facilities. Sherman’s methodology, meanwhile, couldn’t target all of the tire additives, and therefore can’t provide the total chemical load in lettuces. “We don’t know the total chemical burden; that’s left out of the conversation,” she says. “Some compounds are toxic or mutagenic at trace levels.” Even less is known about the toxicity of the mixture of chemicals. Still, the study highlights the increased dangers from our industrialized world. Scientists have documented microplastics in human breast milk, semen, placentas, and blood. These tiny particles can accumulate in organs including the lungs, heart, and brain. Microplastics can have a range of health impacts: They can cause oxidative stress, disrupt metabolism, interfere with gut microflora, disrupt immune systems, and alter reproductive health. Perhaps the biggest concern is cardiovascular distress caused by microplastics. In March, scientists revealed that people who had microplastics in their carotid arteries had a four-fold higher risk of heart attack or stroke. Perhaps not surprisingly, researchers are urgently trying to determine the degree of microplastic risk from ingestion versus inhalation. To that end, Sherman’s lettuce findings were a surprise in another regard: How did these chemicals get into lettuce fields in the first place? Of the three most likely suspects—biosolids, atmospheric deposition, and recycled irrigation water—none has emerged as the most likely offender. Biosolids to Blame? As tire particles are shed on roadways, they are often washed into water catchments by rain. From there, microplastics can become concentrated in wastewater, where the waste products—biosolids or as irrigation water—can be applied to the land. Sherman analyzed lettuce grown in four countries with very different policies for biosolids or recycled irrigation water—the two most direct avenues by which tire plastics could concentrate in farm fields. Switzerland, for example, has banned biosolids applications; Spain and Italy had the highest and lowest application rate, respectively, of biosolids; and Israel relies heavily on recycled irrigation water. But there was no discernable pattern related to waste application policies, suggesting that these particles may be more ubiquitous than anticipated. “There are so many different pathways by which contaminants can reach fields,” Sherman says. “We are nowhere close to understanding the full picture yet.” Amid nutrient scarcities, many countries around the world, including the U.S., are dramatically increasing the application of biosolids to farmlands. But because pollutants can concentrate in biosolids, some scientists are concerned that soil biosolid applications could exceed the high concentrations have been found in marine environments. “The solutions are an attempt to be sustainable, but they could be introducing more contaminants to the agricultural environment,” Sherman says. Roughly 56 percent of biosolids are applied to the land in California and across the U.S.—but state and county policies are sharply divided on their use. “The percentage of biosolids application varies by state,” says Scott Coffin, a research scientist at California’s Office of Environmental Health Hazard Assessment. Some states are near 0 percent; others are near 80 percent. Map source: Holmes et al (2018). “Estimating environmental emissions and aquatic concentrations of sludge-bound CECs [Contaminants of Emerging Concern] using spatial modeling and US datasets.” SETAC North America 39th Annual Meeting Sacramento, California. Atmospheric Microplastics and Chemicals When microplastics are incorporated into soil, they behave differently from soil particles: They are more easily carried by wind. In January, Jamie Leonard, a UCLA Ph.D. candidate, found microplastics in wind-blown sediments from fields amended with biosolids. “Microplastics are very light,” Leonard says. They also don’t like water, and therefore they are less bound to the soil, which makes them loft into the air at windspeeds far lower than expected for bare soils. As a result, Leonard says, the current dust emission models may underestimate the microplastic component of dust from biosolid-amended soil. It may also help explain why microplastics are able to travel thousands of miles and contribute an estimated 6.6 million U.S. tons of tire particles globally per year, equivalent to approximately 5 percent of airborne ambient particulate matter concentrations. When microplastics are incorporated into soil, they behave differently from soil particles: They are more easily carried by wind. That includes microplastics from tires, which tend to be overlooked, due to the technological challenges in identifying them. The biggest problem? Black microplastics, including tire wear particles, absorb (rather than reflect) radiation from the instrumentation used to find them. An alternate approach exists to detect tire microplastics, one that involves heating up a sample to measure its composite chemicals via gas chromatography and mass spectrometry. But few laboratories have this equipment, Coffin says. “That’s why the tire particle aspect of microplastics wasn’t really considered until quite recently; they were just simply not detected.” Biosolids are complex mixtures of nutrients and pollutants from disparate sources, and they present difficult challenges when trying to separate out microplastics. Scientists have to know which compounds they are searching for, as well as their breakdown products. Given there are thousands of chemicals in tires, it’s literally impossible to trace the environmental fate of all of them. Furthermore, tire producers do not disclose what additives are used in tires because they’re considered a trade secret. “[Tire additives] are not regulated, which may change in the coming years,” Hofmann says. Microplastics and Chemicals in Irrigation Water Evidence of microplastics’ toxic impacts has largely been found in marine and freshwater systems, because it’s relatively easy to measure microplastics in water, says Coffin. In 2020, for instance, researchers identified 6PPD-quinone, the breakdown product of 6PPD, as the culprit behind massive salmon deaths in Washington after storms washed tire particles into streams. Given that water is easier to work with than solids, the scientific community has begun to develop a methodology to quantify microplastics in aquatic environments. “We were strategically using our very limited resources dedicated to microplastics on what we think that we can make the most progress on in the short term; pretty much all of our effort is focused on the marine environment,” Coffin says. Environmental researchers have so far developed hazard thresholds in marine environments, to be adopted by the California State Water Board, to evaluate water body impairment. For a long time, Coffin adds, “the conversation about water has detracted from what’s happening on land.” Water is also far easier to monitor—and treat—than biosolids, Coffin says. “Treating biosolids is effectively out of the equation,” he says. “Even if we do determine this is a huge problem, we’re basically left trying to find solutions upstream,” he adds, meaning preventing microplastics from getting into biosolids to begin with. There’s also little incentive to challenge the use of biosolids in agriculture, as it’s been touted as an example of sustainable return of nutrients to the soil. In response to a lawsuit by the Yurok, Port Gamble S’Klallam, and Puyallup tribes, the U.S. Environmental Protection Agency (EPA) is currently reviewing 6PPD as tire makers scramble to come up with alternatives. California’s Department of Toxic Substance Control, which is also part of the state EPA, has a consumer products section that is evaluating safer chemical alternatives to replace 6PPD in tires as well. Forging Ahead with Research Despite all these efforts, researchers are not yet able to determine the health threat of the tiniest microplastics. That’s because it’s not yet possible to detect the smallest, most hazardous particles. “Below 10 micrometers is when we start to care about [the health effects of] particles that we’re ingesting—and we can’t detect those in the environment with standardized methods yet,” Coffin says. While researchers continue to make progress developing detection methods for water, the monitoring campaigns are expensive and scientifically challenging, he adds. “We’re not even close to developing standardized methods for detecting microplastics in biosolids or soils or terrestrial samples,” says Suzanne Brander, who studies microplastics at Oregon State University in Corvallis.  “Gathering data on [microplastics in] food systems is where [research] needs to go next.” That research is starting to get underway. Funding to study plastics in agriculture is limited, but Brander says that the USDA is prioritizing microplastics research going forward. Oregon Sen. Jeff Merkley is sponsoring a Research for Healthy Soils Act to fund studies on microplastics in land-applied biosolids. Although this is a move in the right direction, it sidesteps the main problem. “Those of us who are concerned and have been doing research for a decade are pushing for source reduction and waste management approaches that don’t create more problems,” Brander says. She says the singular focus on 6PPD in recent years risks overlooking the impacts of all the other tire chemicals that are leaching into the environment. “We know enough to act—that’s the feeling and opinion of most of the other scientists in the [U.N.] global plastics treaty,” Brander says. “We need to push for chemical reduction and a reduction in the production of virgin plastics.” Reporting for this piece was supported by the Nova Institute for Health. The post Tracking Tire Plastics—and Chemicals—From Road to Plate appeared first on Civil Eats.

A version of this article originally appeared in The Deep Dish, our members-only newsletter. Become a member today and get the next issue directly in your inbox. Tire-derived microplastics are a growing source of plastic pollution and a target of the United Nations International Plastic Treaty negotiations. Further, concern is growing about the hundreds of chemicals, […] The post Tracking Tire Plastics—and Chemicals—From Road to Plate appeared first on Civil Eats.

A version of this article originally appeared in The Deep Dish, our members-only newsletter. Become a member today and get the next issue directly in your inbox.

In the last few years, vehicle tires have emerged as a shockingly prolific producer of microplastics. It probably shouldn’t come as a surprise. Each year, roughly 3 billion new tires are made, consisting of synthetic rubber, which is a plastic polymer, as well as natural rubber, metal, and other materials. And each year, about 800 million of them become waste. As tires wear down—from contact with the road or the friction of the brakes—they shed chemical-laden particles, and those chemicals, it turns out, can find their way into crops.

A new study has shown for the first time that store-bought lettuce contains chemical tire additives.

Tire-derived microplastics are a growing source of plastic pollution and a target of the United Nations International Plastic Treaty negotiations. Further, concern is growing about the hundreds of chemicals, up to 15 percent of the weight of the tire, that are shed into the environment via tire microplastics. “It is the additives that are the toxic compounds,” says Thilo Hofmann, an environmental scientist at the University of Vienna.

While scientists agree that tire particles contribute significantly to microplastic emissions in the environment, the numbers are difficult to quantify. Recent studies have found tire particles made up to 30 percent of microplastics in Germany, roughly 54 percent in China, 61 to 79 percent in Sweden, and a whopping 94 percent in Switzerland.

Researchers have already demonstrated that some crops, including lettuce and fruits, can take up microplastics, possibly putting human health at risk. But a new study has shown for the first time that store-bought lettuce contains chemical tire additives. It is an unexpected finding, according to study co-author Anya Sherman, a doctoral student working with Hofmann at the University of Vienna.

Sherman and colleagues found one or more of the 16 tire additives they looked for in 20 of 28 lettuce samples. The concentrations of tire additives in leafy vegetables were low overall, but two compounds were most common: benzothiazole, used to strengthen rubber, was detected in 12 of the 28 samples; and 6PPD, used to prevent its oxidation, was found in seven.

It’s hard to know the exact source of the pollutants. Leaching from tire-wear particles is a major source of benzothiazoles in the environment, but the compound is used in other applications, including agrochemicals and consumer products. Likewise, 6PPD can be found in sporting equipment and recreation facilities.

Sherman’s methodology, meanwhile, couldn’t target all of the tire additives, and therefore can’t provide the total chemical load in lettuces. “We don’t know the total chemical burden; that’s left out of the conversation,” she says. “Some compounds are toxic or mutagenic at trace levels.” Even less is known about the toxicity of the mixture of chemicals.

Still, the study highlights the increased dangers from our industrialized world. Scientists have documented microplastics in human breast milk, semen, placentas, and blood. These tiny particles can accumulate in organs including the lungs, heart, and brain. Microplastics can have a range of health impacts: They can cause oxidative stress, disrupt metabolism, interfere with gut microflora, disrupt immune systems, and alter reproductive health. Perhaps the biggest concern is cardiovascular distress caused by microplastics.

In March, scientists revealed that people who had microplastics in their carotid arteries had a four-fold higher risk of heart attack or stroke. Perhaps not surprisingly, researchers are urgently trying to determine the degree of microplastic risk from ingestion versus inhalation.

To that end, Sherman’s lettuce findings were a surprise in another regard: How did these chemicals get into lettuce fields in the first place? Of the three most likely suspects—biosolids, atmospheric deposition, and recycled irrigation water—none has emerged as the most likely offender.

Biosolids to Blame?

As tire particles are shed on roadways, they are often washed into water catchments by rain. From there, microplastics can become concentrated in wastewater, where the waste products—biosolids or as irrigation water—can be applied to the land.

Sherman analyzed lettuce grown in four countries with very different policies for biosolids or recycled irrigation water—the two most direct avenues by which tire plastics could concentrate in farm fields. Switzerland, for example, has banned biosolids applications; Spain and Italy had the highest and lowest application rate, respectively, of biosolids; and Israel relies heavily on recycled irrigation water. But there was no discernable pattern related to waste application policies, suggesting that these particles may be more ubiquitous than anticipated.

“There are so many different pathways by which contaminants can reach fields,” Sherman says. “We are nowhere close to understanding the full picture yet.”

Amid nutrient scarcities, many countries around the world, including the U.S., are dramatically increasing the application of biosolids to farmlands. But because pollutants can concentrate in biosolids, some scientists are concerned that soil biosolid applications could exceed the high concentrations have been found in marine environments. “The solutions are an attempt to be sustainable, but they could be introducing more contaminants to the agricultural environment,” Sherman says.

Roughly 56 percent of biosolids are applied to the land in California and across the U.S.—but state and county policies are sharply divided on their use. “The percentage of biosolids application varies by state,” says Scott Coffin, a research scientist at California’s Office of Environmental Health Hazard Assessment. Some states are near 0 percent; others are near 80 percent.

Map source: Holmes et al (2018). “Estimating environmental emissions and aquatic concentrations of sludge-bound CECs [Contaminants of Emerging Concern] using spatial modeling and US datasets.” SETAC North America 39th Annual Meeting Sacramento, CA.

Map source: Holmes et al (2018). “Estimating environmental emissions and aquatic concentrations of sludge-bound CECs [Contaminants of Emerging Concern] using spatial modeling and US datasets.” SETAC North America 39th Annual Meeting Sacramento, California.

Atmospheric Microplastics and Chemicals

When microplastics are incorporated into soil, they behave differently from soil particles: They are more easily carried by wind. In January, Jamie Leonard, a UCLA Ph.D. candidate, found microplastics in wind-blown sediments from fields amended with biosolids.

“Microplastics are very light,” Leonard says. They also don’t like water, and therefore they are less bound to the soil, which makes them loft into the air at windspeeds far lower than expected for bare soils. As a result, Leonard says, the current dust emission models may underestimate the microplastic component of dust from biosolid-amended soil. It may also help explain why microplastics are able to travel thousands of miles and contribute an estimated 6.6 million U.S. tons of tire particles globally per year, equivalent to approximately 5 percent of airborne ambient particulate matter concentrations.

When microplastics are incorporated into soil, they behave differently from soil particles: They are more easily carried by wind.

That includes microplastics from tires, which tend to be overlooked, due to the technological challenges in identifying them. The biggest problem? Black microplastics, including tire wear particles, absorb (rather than reflect) radiation from the instrumentation used to find them.

An alternate approach exists to detect tire microplastics, one that involves heating up a sample to measure its composite chemicals via gas chromatography and mass spectrometry. But few laboratories have this equipment, Coffin says. “That’s why the tire particle aspect of microplastics wasn’t really considered until quite recently; they were just simply not detected.”

Biosolids are complex mixtures of nutrients and pollutants from disparate sources, and they present difficult challenges when trying to separate out microplastics. Scientists have to know which compounds they are searching for, as well as their breakdown products. Given there are thousands of chemicals in tires, it’s literally impossible to trace the environmental fate of all of them.

Furthermore, tire producers do not disclose what additives are used in tires because they’re considered a trade secret. “[Tire additives] are not regulated, which may change in the coming years,” Hofmann says.

Microplastics and Chemicals in Irrigation Water

Evidence of microplastics’ toxic impacts has largely been found in marine and freshwater systems, because it’s relatively easy to measure microplastics in water, says Coffin. In 2020, for instance, researchers identified 6PPD-quinone, the breakdown product of 6PPD, as the culprit behind massive salmon deaths in Washington after storms washed tire particles into streams.

Given that water is easier to work with than solids, the scientific community has begun to develop a methodology to quantify microplastics in aquatic environments.

“We were strategically using our very limited resources dedicated to microplastics on what we think that we can make the most progress on in the short term; pretty much all of our effort is focused on the marine environment,” Coffin says. Environmental researchers have so far developed hazard thresholds in marine environments, to be adopted by the California State Water Board, to evaluate water body impairment. For a long time, Coffin adds, “the conversation about water has detracted from what’s happening on land.”

Water is also far easier to monitor—and treat—than biosolids, Coffin says. “Treating biosolids is effectively out of the equation,” he says. “Even if we do determine this is a huge problem, we’re basically left trying to find solutions upstream,” he adds, meaning preventing microplastics from getting into biosolids to begin with. There’s also little incentive to challenge the use of biosolids in agriculture, as it’s been touted as an example of sustainable return of nutrients to the soil.

In response to a lawsuit by the Yurok, Port Gamble S’Klallam, and Puyallup tribes, the U.S. Environmental Protection Agency (EPA) is currently reviewing 6PPD as tire makers scramble to come up with alternatives. California’s Department of Toxic Substance Control, which is also part of the state EPA, has a consumer products section that is evaluating safer chemical alternatives to replace 6PPD in tires as well.

Forging Ahead with Research

Despite all these efforts, researchers are not yet able to determine the health threat of the tiniest microplastics. That’s because it’s not yet possible to detect the smallest, most hazardous particles. “Below 10 micrometers is when we start to care about [the health effects of] particles that we’re ingesting—and we can’t detect those in the environment with standardized methods yet,” Coffin says. While researchers continue to make progress developing detection methods for water, the monitoring campaigns are expensive and scientifically challenging, he adds.

“We’re not even close to developing standardized methods for detecting microplastics in biosolids or soils or terrestrial samples,” says Suzanne Brander, who studies microplastics at Oregon State University in Corvallis.  “Gathering data on [microplastics in] food systems is where [research] needs to go next.”

That research is starting to get underway. Funding to study plastics in agriculture is limited, but Brander says that the USDA is prioritizing microplastics research going forward. Oregon Sen. Jeff Merkley is sponsoring a Research for Healthy Soils Act to fund studies on microplastics in land-applied biosolids.

Although this is a move in the right direction, it sidesteps the main problem. “Those of us who are concerned and have been doing research for a decade are pushing for source reduction and waste management approaches that don’t create more problems,” Brander says. She says the singular focus on 6PPD in recent years risks overlooking the impacts of all the other tire chemicals that are leaching into the environment.

“We know enough to act—that’s the feeling and opinion of most of the other scientists in the [U.N.] global plastics treaty,” Brander says. “We need to push for chemical reduction and a reduction in the production of virgin plastics.”

Reporting for this piece was supported by the Nova Institute for Health.

The post Tracking Tire Plastics—and Chemicals—From Road to Plate appeared first on Civil Eats.

Read the full story here.
Photos courtesy of

Forever Chemicals' Might Triple Teens' Risk Of Fatty Liver Disease

By Dennis Thompson HealthDay ReporterTHURSDAY, Jan. 8, 2026 (HealthDay News) — PFAS “forever chemicals” might nearly triple a young person’s risk...

By Dennis Thompson HealthDay ReporterTHURSDAY, Jan. 8, 2026 (HealthDay News) — PFAS “forever chemicals” might nearly triple a young person’s risk of developing fatty liver disease, a new study says.Each doubling in blood levels of the PFAS chemical perfluorooctanoic acid is linked to 2.7 times the odds of fatty liver disease among teenagers, according to findings published in the January issue of the journal Environmental Research.Fatty liver disease — also known as metabolic dysfunction-associated steatotic liver disease (MASLD) — occurs when fat builds up in the organ, leading to inflammation, scarring and increased risk of cancer.About 10% of all children, and up to 40% of children with obesity, have fatty liver disease, researchers said in background notes.“MASLD can progress silently for years before causing serious health problems,” said senior researcher Dr. Lida Chatzi, a professor of population and public health sciences and pediatrics at the Keck School of Medicine of USC in Los Angeles.“When liver fat starts accumulating in adolescence, it may set the stage for a lifetime of metabolic and liver health challenges,” Chatzi added in a news release. “If we reduce PFAS exposure early, we may help prevent liver disease later. That’s a powerful public health opportunity.”Per- and polyfluoroalkyl substances (PFAS) are called “forever chemicals” because they combine carbon and fluorine molecules, one of the strongest chemical bonds possible. This makes PFAS removal and breakdown very difficult.PFAS compounds have been used in consumer products since the 1940s, including fire extinguishing foam, nonstick cookware, food wrappers, stain-resistant furniture and waterproof clothing.More than 99% of Americans have measurable PFAS in their blood, and at least one PFAS chemical is present in roughly half of U.S. drinking water supplies, researchers said.“Adolescents are particularly more vulnerable to the health effects of PFAS as it is a critical period of development and growth,” lead researcher Shiwen “Sherlock” Li, an assistant professor of public health sciences at the University of Hawaii, said in a news release.“In addition to liver disease, PFAS exposure has been associated with a range of adverse health outcomes, including several types of cancer,” Li said.For the new study, researchers examined data on 284 Southern California adolescents and young adults gathered as part of two prior USC studies.All of the participants already had a high risk of metabolic disease because their parents had type 2 diabetes or were overweight, researchers said.Their PFAS levels were measured through blood tests, and liver fat was assessed using MRI scans.Higher blood levels of two common PFAS — perfluorooctanoic acid (PFOA) and perfluoroheptanoic acid (PFHpA) — were linked to an increased risk of fatty liver disease.Results showed a young person’s risk was even higher if they smoked or carried a genetic variant known to influence liver fat.“These findings suggest that PFAS exposures, genetics and lifestyle factors work together to influence who has greater risk of developing MASLD as a function of your life stage,” researcher Max Aung, assistant professor of population and public health sciences at the Keck School of Medicine, said in a news release.“Understanding gene and environment interactions can help advance precision environmental health for MASLD,” he added.The study also showed that fatty liver disease became more common as teens grew older, adding to evidence that younger people might be more vulnerable to PFAS exposure, Chatzi said.“PFAS exposures not only disrupt liver biology but also translate into real liver disease risk in youth,” Chatzi said. “Adolescence seems to be a critical window of susceptibility, suggesting PFAS exposure may matter most when the liver is still developing.”The Environmental Working Group has more on PFAS.SOURCES: Keck School of Medicine of USC, news release, Jan. 6, 2026; Environmental Research, Jan. 1, 2026Copyright © 2026 HealthDay. All rights reserved.

China Announces Another New Trade Measure Against Japan as Tensions Rise

China has escalated its trade tensions with Japan by launching an investigation into imported dichlorosilane, a chemical gas used in making semiconductors

BEIJING (AP) — China escalated its trade tensions with Japan on Wednesday by launching an investigation into imported dichlorosilane, a chemical gas used in making semiconductors, a day after it imposed curbs on the export of so-called dual-use goods that could be used by Japan’s military.The Chinese Commerce Ministry said in a statement that it had launched the investigation following an application from the domestic industry showing the price of dichlorosilane imported from Japan had decreased 31% between 2022 and 2024.“The dumping of imported products from Japan has damaged the production and operation of our domestic industry,” the ministry said.The measure comes a day after Beijing banned exports to Japan of dual-use goods that can have military applications.Beijing has been showing mounting displeasure with Tokyo after new Japanese Prime Minister Sanae Takaichi suggested late last year that her nation's military could intervene if China were to take action against Taiwan — an island democracy that Beijing considers its own territory.Tensions were stoked again on Tuesday when Japanese lawmaker Hei Seki, who last year was sanctioned by China for “spreading fallacies” about Taiwan and other disputed territories, visited Taiwan and called it an independent country. Also known as Yo Kitano, he has been banned from entering China. He told reporters that his arrival in Taiwan demonstrated the two are “different countries.”“I came to Taiwan … to prove this point, and to tell the world that Taiwan is an independent country,” Hei Seki said, according to Taiwan’s Central News Agency.“The nasty words of a petty villain like him are not worth commenting on,” Chinese Foreign Ministry spokesperson Mao Ning retorted when asked about his comment. Fears of a rare earths curb Masaaki Kanai, head of Asia Oceanian Affairs at Japan's Foreign Ministry, urged China to scrap the trade curbs, saying a measure exclusively targeting Japan that deviates from international practice is unacceptable. Japan, however, has yet to announce any retaliatory measures.As the two countries feuded, speculation rose that China might target rare earths exports to Japan, in a move similar to the rounds of critical minerals export restrictions it has imposed as part of its trade war with the United States.China controls most of the global production of heavy rare earths, used for making powerful, heat-resistance magnets used in industries such as defense and electric vehicles.While the Commerce Ministry did not mention any new rare earths curbs, the official newspaper China Daily, seen as a government mouthpiece, quoted anonymous sources saying Beijing was considering tightening exports of certain rare earths to Japan. That report could not be independently confirmed. Improved South Korean ties contrast with Japan row As Beijing spars with Tokyo, it has made a point of courting a different East Asian power — South Korea.On Wednesday, South Korean President Lee Jae Myung wrapped up a four-day trip to China – his first since taking office in June. Lee and Chinese President Xi Jinping oversaw the signing of cooperation agreements in areas such as technology, trade, transportation and environmental protection.As if to illustrate a contrast with the China-Japan trade frictions, Lee joined two business events at which major South Korean and Chinese companies pledged to collaborate.The two sides signed 24 export contracts worth a combined $44 million, according to South Korea’s Ministry of Trade, Industry and Resources. During Lee’s visit, Chinese media also reported that South Korea overtook Japan as the leading destination for outbound flights from China’s mainland over the New Year’s holiday.China has been discouraging travel to Japan, saying Japanese leaders’ comments on Taiwan have created “significant risks to the personal safety and lives of Chinese citizens in Japan.”Copyright 2026 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.Photos You Should See – December 2025

Pesticide industry ‘immunity shield’ stripped from US appropriations bill

Democrats and the Make America Healthy Again movement pushed back on the rider in a funding bill led by BayerIn a setback for the pesticide industry, Democrats have succeeded in removing a rider from a congressional appropriations bill that would have helped protect pesticide makers from being sued and could have hindered state efforts to warn about pesticide risks.Chellie Pingree, a Democratic representative from Maine and ranking member of the House appropriations interior, environment, and related agencies subcommittee, said Monday that the controversial measure pushed by the agrochemical giant Bayer and industry allies has been stripped from the 2026 funding bill. Continue reading...

In a setback for the pesticide industry, Democrats have succeeded in removing a rider from a congressional appropriations bill that would have helped protect pesticide makers from being sued and could have hindered state efforts to warn about pesticide risks.Chellie Pingree, a Democratic representative from Maine and ranking member of the House appropriations interior, environment, and related agencies subcommittee, said Monday that the controversial measure pushed by the agrochemical giant Bayer and industry allies has been stripped from the 2026 funding bill.The move is final, as Senate Republican leaders have agreed not to revisit the issue, Pingree said.“I just drew a line in the sand and said this cannot stay in the bill,” Pingree told the Guardian. “There has been intensive lobbying by Bayer. This has been quite a hard fight.”The now-deleted language was part of a larger legislative effort that critics say is aimed at limiting litigation against pesticide industry leader Bayer, which sells the widely used Roundup herbicides.An industry alliance set up by Bayer has been pushing for both state and federal laws that would make it harder for consumers to sue over pesticide risks to human health and has successfully lobbied for the passing of such laws in Georgia and North Dakota so far.The specific proposed language added to the appropriations bill blocked federal funds from being used to “issue or adopt any guidance or any policy, take any regulatory action, or approve any labeling or change to such labeling” inconsistent with the conclusion of an Environmental Protection Agency (EPA) human health assessment.Critics said the language would have impeded states and local governments from warning about risks of pesticides even in the face of new scientific findings about health harms if such warnings were not consistent with outdated EPA assessments. The EPA itself would not be able to update warnings without finalizing a new assessment, the critics said.And because of the limits on warnings, critics of the rider said, consumers would have found it difficult, if not impossible, to sue pesticide makers for failing to warn them of health risks if the EPA assessments do not support such warnings.“This provision would have handed pesticide manufacturers exactly what they’ve been lobbying for: federal preemption that stops state and local governments from restricting the use of harmful, cancer-causing chemicals, adding health warnings, or holding companies accountable in court when people are harmed,” Pingree said in a statement. “It would have meant that only the federal government gets a say – even though we know federal reviews can take years, and are often subject to intense industry pressure.”Pingree tried but failed to overturn the language in a July appropriations committee hearing.Bayer, the key backer of the legislative efforts, has been struggling for years to put an end to thousands of lawsuits filed by people who allege they developed cancer from their use of Roundup and other glyphosate-based weed killers sold by Bayer. The company inherited the litigation when it bought Monsanto in 2018 and has paid out billions of dollars in settlements and jury verdicts but still faces several thousand ongoing lawsuits. Bayer maintains its glyphosate-based herbicides do not cause cancer and are safe when used as directed.When asked for comment on Monday, Bayer said that no company should have “blanket immunity” and it disputed that the appropriations bill language would have prevented anyone from suing pesticide manufacturers. The company said it supports state and federal legislation “because the future of American farming depends on reliable science-based regulation of important crop protection products – determined safe for use by the EPA”.The company additionally states on its website that without “legislative certainty”, lawsuits over its glyphosate-based Roundup and other weed killers can impact its research and product development and other “important investments”.Pingree said her efforts were aided by members of the Make America Healthy Again (Maha) movement who have spent the last few months meeting with congressional members and their staffers on this issue. She said her team reached out to Maha leadership in the last few days to pressure Republican lawmakers.“This is the first time that we’ve had a fairly significant advocacy group working on the Republican side,” she said.Last week, Zen Honeycutt, a Maha leader and founder of the group Moms Across America, posted a “call to action”, urging members to demand elected officials “Stop the Pesticide Immunity Shield”.“A lot of people helped make this happen,” Honeycutt said. “Many health advocates have been fervently expressing their requests to keep chemical companies accountable for safety … We are delighted that our elected officials listened to so many Americans who spoke up and are restoring trust in the American political system.”Pingree said the issue is not dead. Bayer has “made this a high priority”, and she expects to see continued efforts to get industry friendly language inserted into legislation, including into the new Farm Bill.“I don’t think this is over,” she said.This story is co-published with the New Lede, a journalism project of the Environmental Working Group

Forever Chemicals' Common in Cosmetics, but FDA Says Safety Data Are Scant

By Deanna Neff HealthDay ReporterSATURDAY, Jan. 3, 2026 (HealthDay News) — Federal regulators have released a mandated report regarding the...

By Deanna Neff HealthDay ReporterSATURDAY, Jan. 3, 2026 (HealthDay News) — Federal regulators have released a mandated report regarding the presence of "forever chemicals" in makeup and skincare products. Forever chemicals — known as perfluoroalkyl and polyfluoroalkyl substances or PFAS — are manmade chemicals that don't break down and have built up in people’s bodies and the environment. They are sometimes added to beauty products intentionally, and sometimes they are contaminants. While the findings confirm that PFAS are widely used in the beauty industry, the U.S. Food and Drug Administration (FDA) admitted it lacks enough scientific evidence to determine if they are truly safe for consumers.The new report reveals that 51 forever chemicals — are used in 1,744 cosmetic formulations. These synthetic chemicals are favored by manufacturers because they make products waterproof, increase their durability and improve texture.FDA scientists focused their review on the 25 most frequently used PFAS, which account for roughly 96% of these chemicals found in beauty products. The results were largely unclear. While five were deemed to have low safety concerns, one was flagged for potential health risks, and safety of the rest could not be confirmed.FDA Commissioner Dr. Marty Makary expressed concern over the difficulty in accessing private research. “Our scientists found that toxicological data for most PFAS are incomplete or unavailable, leaving significant uncertainty about consumer safety,” Makary said in a news release, adding that “this lack of reliable data demands further research.”Despite growing concerns about their potential toxicity, no federal laws specifically ban their use in cosmetics.The FDA report focuses on chemicals that are added to products on purpose, rather than those that might show up as accidental contaminants. Moving forward, FDA plans to work closely with the U.S. Centers for Disease Control and Prevention (CDC) and the Environmental Protection Agency (EPA) to update and strengthen recommendations on PFAS across the retail and food supply chain, Makary said. The agency has vowed to devote more resources to monitoring these chemicals and will take enforcement action if specific products are proven to be dangerous.The U.S. Food and Drug Administration provides updates and consumer guidance on the use of PFAS in cosmetics.SOURCE: U.S. Food and Drug Administration, news release, Dec. 29, 2025Copyright © 2026 HealthDay. All rights reserved.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.