Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

The Secret Affair that Bloomed Gaia Theory

News Feed
Saturday, September 7, 2024

This story was originally published by the Guardian and is reproduced here as part of the Climate Desk collaboration. Love rarely gets the credit it deserves for the advancement of science. Nor, for that matter, does hatred, greed, envy or any other emotion. Instead, this realm of knowledge tends to be idealized as something cold, hard, rational, neutral, and objective, dictated by data rather than feelings. The life and work of James Lovelock is proof that this is neither possible nor desirable. In his work, he helped us understand that humans can never completely divorce ourselves from any living subject because we are interconnected and interdependent, all part of the same Earth system, which he called Gaia. Our planet, he argued, behaves like a giant organism—regulating its temperature, discharging waste and cycling chemicals to maintain a healthy balance. Although highly controversial among scientists in the 1970s and 80s, this holistic view of the world had mass appeal, which stretched from New Age spiritual gurus to that stern advocate of free-market orthodoxy, Margaret Thatcher. Its insights into the link between nature and climate have since inspired many of the world’s most influential climate scientists, philosophers, and environmental campaigners. The French philosopher Bruno Latour said the Gaia theory has reshaped humanity’s understanding of our place in the universe as fundamentally as the ideas of Galileo Galilei. At its simplest, Gaia is about restoring an emotional connection with a living planet. Even in his darkest moments, Lovelock tended not to dwell on the causes of his unhappiness. While the most prominent academics of the modern age made their names by delving ever deeper into narrow specialisms, Lovelock dismissed this as knowing “more and more about less and less” and worked instead on his own all-encompassing, and thus deeply unfashionable, theory of planetary life. I first met Lovelock in the summer of 2020, during a break between pandemic lockdowns, when he was 101 years old. In person, he was utterly engrossing and kind. I had long wanted to interview the thinker who somehow managed to be both the inspiration for the green movement, and one of its fiercest critics. The account that follows, of the origins and development of Gaia theory, will probably surprise many of Lovelock’s followers, as it surprised me. Knowing he did not have long to live, Lovelock told me: “I can tell you things now that I could not say before.” The true nature of the relationships that made the man and the hypothesis were hidden or downplayed for decades. Some were military (he worked for MI5 and MI6 for more than 50 years) or industrial secrets (he warned another employer, Shell, of the climate dangers of fossil fuels as early as 1966). Others were too painful to share with the public, his own family and, sometimes, himself. Even in his darkest moments, Lovelock tended not to dwell on the causes of his unhappiness. He preferred to move on. Everything was a problem to be solved. What I discovered, and what has been lost in the years since Lovelock first formulated Gaia theory in the 1960s, is that the initial work was not his alone. Another thinker, and earlier collaborator, played a far more important conceptual role than has been acknowledged until now. It was a woman, Dian Hitchcock, whose name has largely been overlooked in accounts of the world-famous Gaia theory. Lovelock told me his greatest discovery was the biotic link between the Earth’s life and its atmosphere. He envisaged it as a “cool flame” that has been burning off the planet’s excess heat for billions of years. From this emerged the Gaia theory and an obsession with the atmosphere’s relationship with life on Earth. But he could not have seen it alone. Lovelock was guided by a love affair with Hitchcock, an American philosopher and systems analyst, who he met at NASA’s Jet Propulsion Laboratory (JPL) in California. Like most brilliant women in the male-dominated world of science in the 1960s, Hitchcock struggled to have her ideas heard, let alone acknowledged. But Lovelock listened. And, as he later acknowledged, without Hitchcock, the world’s understanding of itself may well have been very different. Lovelock had arrived at JPL in 1961 at the invitation of Abe Silverstein, the director of Space Flight Programs at NASA, who wanted an expert in chromatography to measure the chemical composition of the soil and air on other planets. For the science-fiction junkie Lovelock, it was “like a letter from a beloved. I was as excited and euphoric as if at the peak of passion.” He had been given a front-row seat to the reinvention of the modern world. California felt like the future. Hollywood was in its pomp, Disneyland had opened six years earlier, Venice Beach was about to become a cradle of youth culture and Bell Labs, Fairchild and Hewlett-Packard were pioneering the computer-chip technology that was to lead to the creation of Silicon Valley. JPL led the fields of space exploration, robotics and rocket technology. In the 1950s, Wernher von Braun, the German scientist who designed the V-2 rockets that devastated London in the second world war, made JPL the base for the US’s first successful satellite programme. It was his technology that the White House was relying on to provide the thrust for missions to the moon, Mars and Venus. By 1961, the San Gabriel hillside headquarters of JPL had become a meeting place for many of the planet’s finest minds, drawing in Nobel winners, such as Joshua Lederberg, and emerging “pop scientists” like Carl Sagan. There was no more thrilling time to be in the space business. Lovelock had a relatively minor role as a technical adviser, but he was, he told me, the first Englishman to join the US space programme: the most high-profile, and most lavishly funded, of cold war fronts. Everyone on Earth had a stake in the US-USSR rivalry, but most people felt distant and powerless. Three years earlier, Lovelock had listened on his homemade shortwave radio in Finchley to the “beep, beep, beep” transmission of the USSR’s Sputnik, the first satellite that humanity had put into orbit. Now he was playing with the super powers. Dian Hitchcock had been hired by NASA to keep tabs on the work being done at JPL to find life on Mars. The two organisations had been at loggerheads since 1958, when JPL had been placed under the jurisdiction of the newly created civilian space agency, Nasa, with day-to-day management carried out by the California Institute of Technology. JPL’s veteran scientists bristled at being told what to do by their counterparts in the younger but more powerful federal organisation. Nasa was determined to regain control. Hitchcock was both their spy and their battering ram. Lovelock became her besotted ally. They had first met in the JPL canteen, where Hitchcock introduced herself to Lovelock with a joke: “Do you realise your surname is a polite version of mine?” The question delighted Lovelock. As they got to know one another, he also came to respect Hitchcock’s toughness in her dealings with her boss, her colleagues and the scientists. He later saw her yell furiously at a colleague in the street. “They were frightened of her. Nasa was very wise to send her down,” he recalled. They found much in common. Both had struggled to find intellectual peers throughout their lives. Pillow talk involved imagining how a Martian scientist might find clues from the Earth’s atmosphere that our planet was full of life. Hitchcock had grown used to being overlooked or ignored. She struggled to find anyone who would take her seriously. That and her inability to find people she could talk to on the same intellectual level left her feeling lonely. Lovelock seemed different. He came across as something of an outsider, and was more attentive than other men. “I was initially invisible. I couldn’t find people who would listen to me. But Jim did want to talk to me and I ate it up,” she said. “When I find someone I can talk to in depth it’s a wonderful experience. It happens rarely.” They became not just collaborators but conspirators. Hitchcock was sceptical about JPL’s approach to finding life on Mars, while Lovelock had complaints about the inadequacy of the equipment. This set them against powerful interests. At JPL, the most optimistic scientists were those with the biggest stake in the research. Vance Oyama, an effusively cheerful biochemist who had joined the JPL programme from the University of Houston the same year as Lovelock, put the prospects of life on Mars at 50 percent. He had a multimillion-dollar reason to be enthusiastic, as he was responsible for designing one of the life-detection experiments on the Mars lander: a small box containing water and a “chicken soup” of nutrients that were to be poured on to Martian soil. Hitchcock suggested her employer, the NASA contractor Hamilton Standard, hire Lovelock as a consultant, which meant she wrote the checks for all his flights, hotel bills and other expenses during trips to JPL. As his former laboratory assistant Peter Simmonds put it, Lovelock was now “among the suits.” On March 31, 1965, Hitchcock submitted a scathing initial report to Hamilton Standard and its client Nasa, describing the plans of JPL’s bioscience division as excessively costly and unlikely to yield useful data. She accused the biologists of “geocentrism” in their assumption that experiments to find life on Earth would be equally applicable to other planets. She felt that information about the presence of life could be found in signs of order—in homeostasis—not in one specific surface location, but at a wider level. As an example of how this might be achieved, she spoke highly of a method of atmospheric gas sampling that she had “initiated” with Lovelock. “I thought it obvious that the best experiment to begin with was composition of the atmosphere,” she recalled. This plan was brilliantly simple and thus a clear threat to the complicated, multimillion-dollar experiments that had been on the table up to that point. At a JPL strategy meeting, Lovelock weighed into the debate with a series of withering comments about using equipment developed in the Mojave Desert to find life on Mars. He instead proposed an analysis of gases to assess whether the planet was in equilibrium (lifelessly flatlining) or disequilibrium (vivaciously erratic) based on the assumption that life discharged waste (excess heat and gases) into space in order to maintain a habitable environment. It would be the basis for his theory of a self-regulating planet, which he would later call Gaia. Lovelock’s first paper on detecting life on Mars was published in Nature in August 1965, under his name only. Hitchcock later complained that she deserved more credit, but she said nothing at the time. The pair were not only working together by this stage, they were also having a love affair. “Our trysts were all in hotels in the US,” Lovelock remembered. “We carried on the affair for six months or more.” Sex and science were interwoven. Pillow talk involved imagining how a Martian scientist might find clues from the Earth’s atmosphere that our planet was full of life. This was essential for the Gaia hypothesis. Hitchcock said she had posed the key question: what made life possible here and, apparently, nowhere else? This set them thinking about the Earth as a self-regulating system in which the atmosphere was a product of life. From this revolutionary perspective, the gases surrounding the Earth suddenly began to take on an air of vitality. They were not just life-enabling, they were suffused with life, like the exhalation of a planetary being—or what they called in their private correspondence, the “great animal.” Far more complex and irregular than the atmosphere of a dead planet like Mars, these gases burned with life. They sounded out others. Sagan, who shared an office with Lovelock, provided a new dimension to their idea by asking how the Earth had remained relatively cool even though the sun had steadily grown hotter over the previous 8 billion years. Lewis Kaplan at JPL and Peter Fellgett at Reading University were important early allies and listeners. (Later, the pioneering US biologist Lynn Margulis would make an essential contribution, providing an explanation of how Lovelock’s theory might work in practice at a microbial level.) The long-dead physicist Erwin Schrödinger also provided an important key, according to Lovelock: “I knew nothing about finding life or what life was. The first thing I read was Schrödinger’s What is Life? He said life chucked out high-entropy systems into the environment. That was the basis of Gaia; I realized planet Earth excretes heat.” In the mid-60s, this was all still too new and unformed to be described as a hypothesis. But it was a whole new way of thinking about life on Earth. They were going further than Charles Darwin in arguing that life does not just adapt to the environment, it also shapes it. This meant evolution was far more of a two-way relationship than mainstream science had previously acknowledged. Life was no longer just a passive object of change; it was an agent. The couple were thrilled. They were pioneers making an intellectual journey nobody had made before. It was to be the high point in their relationship. The following two years were a bumpy return to Earth. Lovelock was uncomfortable with the management duties he had been given at JPL. The budget was an unwelcome responsibility for a man who had struggled with numbers since childhood, and he was worried he lacked the street smarts to sniff out the charlatans who were pitching bogus multimillion-dollar projects. Meanwhile, the biologists Oyama and Lederberg were going above his head and taking every opportunity to put him down. “Oyama would come up and say: ‘What are you doing there? You are wasting your time, Nasa’s time,’” Lovelock recalled. “He was one of the few unbearable persons I have known in my life.” In 1966, they had their way, and Lovelock and Hitchcock’s plans for an alternative Mars life-exploration operation using atmospheric analysis were dropped by the US space agency. “I am sorry to hear that politics has interfered with your chances of a subcontract from Nasa,” Fellgett commiserated. Cracks started to appear in Lovelock’s relationship with Hitchcock. He had tried to keep the affair secret, but lying weighed heavily on him. They could never go to the theater, concerts, or parks in case they were spotted together, but close friends could see what was happening. “They naturally gravitated towards one another. It was obvious,” Simmonds said. When they corresponded, Lovelock insisted Hitchcock never discuss anything but work and science in her letters, which he knew would be opened by his wife, Helen, who also worked as his secretary. But intimacy and passion still came across in discussions of their theories. Their view of the atmosphere “almost as something itself alive” was to become a pillar of Gaia theory. Lovelock’s family noticed a change in his behaviour. The previous year, his mother had suspected he was unhappy in his marriage and struggling with a big decision. Helen openly ridiculed his newly acquired philosophical pretensions and way of talking—both no doubt influenced by Hitchcock. “Who does he think he is? A second Einstein?” she asked scornfully. Helen would refer to Hitchcock as “Madam” or “Fanny by Gaslight,” forbade her husband from introducing Hitchcock to other acquaintances, and insisted he spend less time in the US. But he could not stay away, and Helen could not help but fret: “Why do you keep asking me what I’m worried about? You know I don’t like (you) all those miles away. I’m only human, dear, and nervous. I can only sincerely hope by now you have been to JPL and found that you do not have to stay anything like a month. I had a night of nightmares…The bed is awfully big and cold without you.” So, Lovelock visited JPL less frequently and for shorter periods. Hitchcock filled the physical void by throwing her energy into their shared intellectual work. Taking the lead, she began drafting a summary of their life-detection ideas for an ambitious series of journal papers about exobiology (the study of the possibility of life on other planets) that she hoped would persuade either the US Congress or the British parliament to fund a 100-inch infrared telescope to search planetary atmospheres for evidence of life. But nothing seemed to be going their way. In successive weeks, their jointly authored paper on life detection was rejected by two major journals: the Proceedings of the Royal Society in the UK and then Science in the US. The partners agreed to swallow their pride and submit their work to the little-known journal Icarus. Hitchcock admitted to feeling downhearted in a handwritten note from 11 November 1966: “Enclosed is a copy of our masterpiece, now doubly blessed since it has been rejected by Science. No explanation so I suppose it got turned down by all the reviewers…Feel rather badly about the rejection. Have you ever had trouble like this, publishing anything?…As for going for Icarus, I can’t find anybody who’s even heard of the journal.” Hitchcock refused to give up. In late 1966 and early 1967, she sent a flurry of long, intellectually vivacious letters to Lovelock about the papers they were working on together. Her correspondence during this period was obsessive, hesitant, acerbic, considerate, critical, encouraging and among the most brilliant in the Lovelock archives. These missives can be read as foundation stones for the Gaia hypothesis or as thinly disguised love letters. The connection between life and the atmosphere, which was only intuited here, would be firmly established by climatologists. In one she lamented that they were unable to meet in person to discuss their work, but she enthused about how far their intellectual journey had taken them. “I’m getting rather impressed with us as I read Biology and the Exploration of Mars—with the fantastic importance of the topic. Wow, if this works and we do find life on Mars we will be in the limelight,” she wrote. Further on, she portrayed the two of them as explorers, whose advanced ideas put them up against the world, or at least against the senior members of the JPL biology team. The most impressive of these letters is a screed in which Hitchcock wrote to Lovelock with an eloquent summary of “our reasoning” and how this shared approach went beyond mainstream science. “We want to see whether a biota exists—not whether single animals exist,” she said. “It is also the nature of single species to affect their living and nonliving environments—to leave traces of themselves and their activity everywhere. Therefore we conclude that the biota must leave its characteristic signature on the ‘non-living’ portions of the environment.” Hitchcock then went on to describe how the couple had tried to identify life, in a letter dated December 13, 1966: “We started our search for the unmistakable physical signature of the terrestrial biota, believing that if we found it, it would—like all other effects of biological entities—be recognizable as such by virtue of the fact that it represents ‘information’ in the pure and simple sense of a state of affairs which is enormously improbable on nonbiological grounds…We picked the atmosphere as the most likely residence of the signature, on the grounds that the chemical interactions with atmospheres are probably characteristic of all biotas. We then tried to find something in our atmosphere which would, for example, tell a good Martian chemist that life exists here. We made false starts because we foolishly looked for one giveaway component. There are none. Came the dawn and we saw that the total atmospheric mixture is a peculiar one, which is in fact so information-full that it is improbable. And so forth. And now we tend to view the atmosphere almost as something itself alive, because it is the product of the biota and an essential channel by which elements of the great living animal communicate—it is indeed the milieu internal which is maintained by the biota as a whole for the wellbeing of its components. This is getting too long. Hope it helps. Will write again soon.” With hindsight, these words are astonishingly prescient and poignant. Their view of the atmosphere “almost as something itself alive” was to become a pillar of Gaia theory. The connection between life and the atmosphere, which was only intuited here, would be firmly established by climatologists. It was not just the persuasiveness of the science that resonates in this letter, but the intellectual passion with which ideas are developed and given lyrical expression. The poetic conclusion—“came the dawn”—reads as a hopeful burst of illumination and a sad intimation that their night together may be drawing to a close. Their joint paper, “Life detection by atmospheric analysis,” was submitted to Icarus in December 1966. Lovelock acknowledged it was superior to his earlier piece for Nature: “Anybody who was competent would see the difference, how the ideas had been cleared up and presented in a much more logical way.” He insisted Hitchcock be lead author. Although glad to have him on board because she had never before written a scientific paper and would have struggled to get the piece published if she had put it solely under her name, she told me she had no doubt she deserved most of the credit: “I remember when I wrote that paper, I hardly let him put a word in.” The year 1967 was to prove horrendous for them both, professionally and personally. In fact, it was a dire moment for the entire US space program. In January, three astronauts died in a flash fire during a test on an Apollo 204 spacecraft, prompting soul-searching and internal investigations. US politicians were no longer willing to write blank cheques for a race to Mars. Public priorities were shifting as the Vietnam war and the civil rights movement gained ground, and Congress slashed the Nasa budget. “He just dropped me. I was puzzled and deeply hurt. It had to end, but he could have said something.” The affair between Hitchcock and Lovelock was approaching an ugly end. Domestic pressures were becoming intense. Helen was increasingly prone to illness and resentment. On March 15, 1967, she wrote to Lovelock at JPL to say: “It seems as if you have been gone for ages,” and scornfully asked about Hitchcock: “Has Madam arrived yet?” Around this time, Lovelock’s colleague at JPL, Peter Simmonds, remembered things coming to a head. “He strayed from the fold. Helen told him to ‘get on a plane or you won’t have a marriage’ or some such ultimatum.” Lovelock was forced into an agonising decision about Hitchcock. “We were in love with each other. It was very difficult. I think that was one of the worst times in my life. [Helen’s health] was getting much worse. She needed me. It was clear where duty led me and I had four kids. Had Helen been fit and well, despite the size of the family, it would have been easier to go off.” Instead, he decided to ditch Hitchcock. “I determined to break it off. It made me very miserable…I just couldn’t continue.” The breakup, when it finally came, was brutal. Today, more than 50 years on, Hitchcock is still pained by the way things ended. “I think it was 1967. We were both checking into the Huntington and got rooms that were separated by a conference room. Just after I opened the door, a door on the opposite side was opened by Jim. We looked at each other and I said something like: ‘Look, Jim, this is really handy.’ Whereupon he closed the door and never spoke to me again. I was shattered. Probably ‘heartbroken’ is the appropriate term here. He didn’t give me any explanation. He didn’t say anything about Helen. He just dropped me. I was puzzled and deeply hurt. It had to end, but he could have said something…He could not possibly have been more miserable than I was.” Hitchcock was reluctant to let go. That summer, she sent Lovelock a clipping of her interview with a newspaper in Connecticut, below the headline “A Telescopic Look at Life on Other Planets,” an article outlining the bid she and Lovelock were preparing in order to secure financial support for a telescope. In November, she wrote a memo for her company detailing the importance of her continued collaboration with Lovelock and stressing their work “must be published.” But the flame had been extinguished. The last record of direct correspondence between the couple is an official invoice, dated March 18, 1968, and formally signed “consultant James E Lovelock.” Hitchcock was fired by Hamilton Standard soon after. “They were not pleased that I had anything at all to do with Mars,” she recalled. The same was probably also true for her relationship with Lovelock. The doomed romance could not have been more symbolic. Hitchcock and Lovelock had transformed humanity’s view of its place in the universe. By revealing the interplay between life and the atmosphere, they had shown how fragile are the conditions for existence on this planet, and how unlikely are the prospects for life elsewhere in the solar system. They had brought romantic dreams of endless expansion back down to Earth with a bump. This is an edited excerpt from The Many Lives of James Lovelock: Science, Secrets and Gaia Theory, published by Canongate on September 12 and available at guardianbookshop.com

This story was originally published by the Guardian and is reproduced here as part of the Climate Desk collaboration. Love rarely gets the credit it deserves for the advancement of science. Nor, for that matter, does hatred, greed, envy or any other emotion. Instead, this realm of knowledge tends to be idealized as something cold, hard, rational, neutral, and objective, dictated […]

This story was originally published by the Guardian and is reproduced here as part of the Climate Desk collaboration.

Love rarely gets the credit it deserves for the advancement of science. Nor, for that matter, does hatred, greed, envy or any other emotion. Instead, this realm of knowledge tends to be idealized as something cold, hard, rational, neutral, and objective, dictated by data rather than feelings. The life and work of James Lovelock is proof that this is neither possible nor desirable. In his work, he helped us understand that humans can never completely divorce ourselves from any living subject because we are interconnected and interdependent, all part of the same Earth system, which he called Gaia.

Our planet, he argued, behaves like a giant organism—regulating its temperature, discharging waste and cycling chemicals to maintain a healthy balance. Although highly controversial among scientists in the 1970s and 80s, this holistic view of the world had mass appeal, which stretched from New Age spiritual gurus to that stern advocate of free-market orthodoxy, Margaret Thatcher. Its insights into the link between nature and climate have since inspired many of the world’s most influential climate scientists, philosophers, and environmental campaigners. The French philosopher Bruno Latour said the Gaia theory has reshaped humanity’s understanding of our place in the universe as fundamentally as the ideas of Galileo Galilei. At its simplest, Gaia is about restoring an emotional connection with a living planet.

Even in his darkest moments, Lovelock tended not to dwell on the causes of his unhappiness.

While the most prominent academics of the modern age made their names by delving ever deeper into narrow specialisms, Lovelock dismissed this as knowing “more and more about less and less” and worked instead on his own all-encompassing, and thus deeply unfashionable, theory of planetary life.

I first met Lovelock in the summer of 2020, during a break between pandemic lockdowns, when he was 101 years old. In person, he was utterly engrossing and kind. I had long wanted to interview the thinker who somehow managed to be both the inspiration for the green movement, and one of its fiercest critics. The account that follows, of the origins and development of Gaia theory, will probably surprise many of Lovelock’s followers, as it surprised me.

Knowing he did not have long to live, Lovelock told me: “I can tell you things now that I could not say before.” The true nature of the relationships that made the man and the hypothesis were hidden or downplayed for decades. Some were military (he worked for MI5 and MI6 for more than 50 years) or industrial secrets (he warned another employer, Shell, of the climate dangers of fossil fuels as early as 1966). Others were too painful to share with the public, his own family and, sometimes, himself. Even in his darkest moments, Lovelock tended not to dwell on the causes of his unhappiness. He preferred to move on. Everything was a problem to be solved.

What I discovered, and what has been lost in the years since Lovelock first formulated Gaia theory in the 1960s, is that the initial work was not his alone. Another thinker, and earlier collaborator, played a far more important conceptual role than has been acknowledged until now. It was a woman, Dian Hitchcock, whose name has largely been overlooked in accounts of the world-famous Gaia theory.

Lovelock told me his greatest discovery was the biotic link between the Earth’s life and its atmosphere. He envisaged it as a “cool flame” that has been burning off the planet’s excess heat for billions of years. From this emerged the Gaia theory and an obsession with the atmosphere’s relationship with life on Earth. But he could not have seen it alone. Lovelock was guided by a love affair with Hitchcock, an American philosopher and systems analyst, who he met at NASA’s Jet Propulsion Laboratory (JPL) in California. Like most brilliant women in the male-dominated world of science in the 1960s, Hitchcock struggled to have her ideas heard, let alone acknowledged. But Lovelock listened. And, as he later acknowledged, without Hitchcock, the world’s understanding of itself may well have been very different.

Lovelock had arrived at JPL in 1961 at the invitation of Abe Silverstein, the director of Space Flight Programs at NASA, who wanted an expert in chromatography to measure the chemical composition of the soil and air on other planets. For the science-fiction junkie Lovelock, it was “like a letter from a beloved. I was as excited and euphoric as if at the peak of passion.” He had been given a front-row seat to the reinvention of the modern world.

California felt like the future. Hollywood was in its pomp, Disneyland had opened six years earlier, Venice Beach was about to become a cradle of youth culture and Bell Labs, Fairchild and Hewlett-Packard were pioneering the computer-chip technology that was to lead to the creation of Silicon Valley. JPL led the fields of space exploration, robotics and rocket technology.

In the 1950s, Wernher von Braun, the German scientist who designed the V-2 rockets that devastated London in the second world war, made JPL the base for the US’s first successful satellite programme. It was his technology that the White House was relying on to provide the thrust for missions to the moon, Mars and Venus. By 1961, the San Gabriel hillside headquarters of JPL had become a meeting place for many of the planet’s finest minds, drawing in Nobel winners, such as Joshua Lederberg, and emerging “pop scientists” like Carl Sagan. There was no more thrilling time to be in the space business.

Lovelock had a relatively minor role as a technical adviser, but he was, he told me, the first Englishman to join the US space programme: the most high-profile, and most lavishly funded, of cold war fronts. Everyone on Earth had a stake in the US-USSR rivalry, but most people felt distant and powerless. Three years earlier, Lovelock had listened on his homemade shortwave radio in Finchley to the “beep, beep, beep” transmission of the USSR’s Sputnik, the first satellite that humanity had put into orbit. Now he was playing with the super powers.

Dian Hitchcock had been hired by NASA to keep tabs on the work being done at JPL to find life on Mars. The two organisations had been at loggerheads since 1958, when JPL had been placed under the jurisdiction of the newly created civilian space agency, Nasa, with day-to-day management carried out by the California Institute of Technology. JPL’s veteran scientists bristled at being told what to do by their counterparts in the younger but more powerful federal organisation. Nasa was determined to regain control. Hitchcock was both their spy and their battering ram. Lovelock became her besotted ally.

They had first met in the JPL canteen, where Hitchcock introduced herself to Lovelock with a joke: “Do you realise your surname is a polite version of mine?” The question delighted Lovelock. As they got to know one another, he also came to respect Hitchcock’s toughness in her dealings with her boss, her colleagues and the scientists. He later saw her yell furiously at a colleague in the street. “They were frightened of her. Nasa was very wise to send her down,” he recalled. They found much in common. Both had struggled to find intellectual peers throughout their lives.

Pillow talk involved imagining how a Martian scientist might find clues from the Earth’s atmosphere that our planet was full of life.

Hitchcock had grown used to being overlooked or ignored. She struggled to find anyone who would take her seriously. That and her inability to find people she could talk to on the same intellectual level left her feeling lonely. Lovelock seemed different. He came across as something of an outsider, and was more attentive than other men. “I was initially invisible. I couldn’t find people who would listen to me. But Jim did want to talk to me and I ate it up,” she said. “When I find someone I can talk to in depth it’s a wonderful experience. It happens rarely.”

They became not just collaborators but conspirators. Hitchcock was sceptical about JPL’s approach to finding life on Mars, while Lovelock had complaints about the inadequacy of the equipment. This set them against powerful interests. At JPL, the most optimistic scientists were those with the biggest stake in the research. Vance Oyama, an effusively cheerful biochemist who had joined the JPL programme from the University of Houston the same year as Lovelock, put the prospects of life on Mars at 50 percent. He had a multimillion-dollar reason to be enthusiastic, as he was responsible for designing one of the life-detection experiments on the Mars lander: a small box containing water and a “chicken soup” of nutrients that were to be poured on to Martian soil.

Hitchcock suggested her employer, the NASA contractor Hamilton Standard, hire Lovelock as a consultant, which meant she wrote the checks for all his flights, hotel bills and other expenses during trips to JPL. As his former laboratory assistant Peter Simmonds put it, Lovelock was now “among the suits.”

On March 31, 1965, Hitchcock submitted a scathing initial report to Hamilton Standard and its client Nasa, describing the plans of JPL’s bioscience division as excessively costly and unlikely to yield useful data. She accused the biologists of “geocentrism” in their assumption that experiments to find life on Earth would be equally applicable to other planets. She felt that information about the presence of life could be found in signs of order—in homeostasis—not in one specific surface location, but at a wider level. As an example of how this might be achieved, she spoke highly of a method of atmospheric gas sampling that she had “initiated” with Lovelock. “I thought it obvious that the best experiment to begin with was composition of the atmosphere,” she recalled. This plan was brilliantly simple and thus a clear threat to the complicated, multimillion-dollar experiments that had been on the table up to that point.

At a JPL strategy meeting, Lovelock weighed into the debate with a series of withering comments about using equipment developed in the Mojave Desert to find life on Mars. He instead proposed an analysis of gases to assess whether the planet was in equilibrium (lifelessly flatlining) or disequilibrium (vivaciously erratic) based on the assumption that life discharged waste (excess heat and gases) into space in order to maintain a habitable environment. It would be the basis for his theory of a self-regulating planet, which he would later call Gaia.

Lovelock’s first paper on detecting life on Mars was published in Nature in August 1965, under his name only. Hitchcock later complained that she deserved more credit, but she said nothing at the time.

The pair were not only working together by this stage, they were also having a love affair. “Our trysts were all in hotels in the US,” Lovelock remembered. “We carried on the affair for six months or more.” Sex and science were interwoven. Pillow talk involved imagining how a Martian scientist might find clues from the Earth’s atmosphere that our planet was full of life. This was essential for the Gaia hypothesis. Hitchcock said she had posed the key question: what made life possible here and, apparently, nowhere else? This set them thinking about the Earth as a self-regulating system in which the atmosphere was a product of life.

From this revolutionary perspective, the gases surrounding the Earth suddenly began to take on an air of vitality. They were not just life-enabling, they were suffused with life, like the exhalation of a planetary being—or what they called in their private correspondence, the “great animal.” Far more complex and irregular than the atmosphere of a dead planet like Mars, these gases burned with life.

They sounded out others. Sagan, who shared an office with Lovelock, provided a new dimension to their idea by asking how the Earth had remained relatively cool even though the sun had steadily grown hotter over the previous 8 billion years. Lewis Kaplan at JPL and Peter Fellgett at Reading University were important early allies and listeners. (Later, the pioneering US biologist Lynn Margulis would make an essential contribution, providing an explanation of how Lovelock’s theory might work in practice at a microbial level.) The long-dead physicist Erwin Schrödinger also provided an important key, according to Lovelock: “I knew nothing about finding life or what life was. The first thing I read was Schrödinger’s What is Life? He said life chucked out high-entropy systems into the environment. That was the basis of Gaia; I realized planet Earth excretes heat.”

In the mid-60s, this was all still too new and unformed to be described as a hypothesis. But it was a whole new way of thinking about life on Earth. They were going further than Charles Darwin in arguing that life does not just adapt to the environment, it also shapes it. This meant evolution was far more of a two-way relationship than mainstream science had previously acknowledged. Life was no longer just a passive object of change; it was an agent. The couple were thrilled. They were pioneers making an intellectual journey nobody had made before.

It was to be the high point in their relationship.

The following two years were a bumpy return to Earth. Lovelock was uncomfortable with the management duties he had been given at JPL. The budget was an unwelcome responsibility for a man who had struggled with numbers since childhood, and he was worried he lacked the street smarts to sniff out the charlatans who were pitching bogus multimillion-dollar projects. Meanwhile, the biologists Oyama and Lederberg were going above his head and taking every opportunity to put him down. “Oyama would come up and say: ‘What are you doing there? You are wasting your time, Nasa’s time,’” Lovelock recalled. “He was one of the few unbearable persons I have known in my life.”

In 1966, they had their way, and Lovelock and Hitchcock’s plans for an alternative Mars life-exploration operation using atmospheric analysis were dropped by the US space agency. “I am sorry to hear that politics has interfered with your chances of a subcontract from Nasa,” Fellgett commiserated.

Cracks started to appear in Lovelock’s relationship with Hitchcock. He had tried to keep the affair secret, but lying weighed heavily on him. They could never go to the theater, concerts, or parks in case they were spotted together, but close friends could see what was happening. “They naturally gravitated towards one another. It was obvious,” Simmonds said. When they corresponded, Lovelock insisted Hitchcock never discuss anything but work and science in her letters, which he knew would be opened by his wife, Helen, who also worked as his secretary. But intimacy and passion still came across in discussions of their theories.

Their view of the atmosphere “almost as something itself alive” was to become a pillar of Gaia theory.

Lovelock’s family noticed a change in his behaviour. The previous year, his mother had suspected he was unhappy in his marriage and struggling with a big decision. Helen openly ridiculed his newly acquired philosophical pretensions and way of talking—both no doubt influenced by Hitchcock. “Who does he think he is? A second Einstein?” she asked scornfully. Helen would refer to Hitchcock as “Madam” or “Fanny by Gaslight,” forbade her husband from introducing Hitchcock to other acquaintances, and insisted he spend less time in the US. But he could not stay away, and Helen could not help but fret: “Why do you keep asking me what I’m worried about? You know I don’t like (you) all those miles away. I’m only human, dear, and nervous. I can only sincerely hope by now you have been to JPL and found that you do not have to stay anything like a month. I had a night of nightmares…The bed is awfully big and cold without you.”

So, Lovelock visited JPL less frequently and for shorter periods. Hitchcock filled the physical void by throwing her energy into their shared intellectual work. Taking the lead, she began drafting a summary of their life-detection ideas for an ambitious series of journal papers about exobiology (the study of the possibility of life on other planets) that she hoped would persuade either the US Congress or the British parliament to fund a 100-inch infrared telescope to search planetary atmospheres for evidence of life.

But nothing seemed to be going their way. In successive weeks, their jointly authored paper on life detection was rejected by two major journals: the Proceedings of the Royal Society in the UK and then Science in the US. The partners agreed to swallow their pride and submit their work to the little-known journal Icarus. Hitchcock admitted to feeling downhearted in a handwritten note from 11 November 1966: Enclosed is a copy of our masterpiece, now doubly blessed since it has been rejected by Science. No explanation so I suppose it got turned down by all the reviewers…Feel rather badly about the rejection. Have you ever had trouble like this, publishing anything?…As for going for Icarus, I can’t find anybody who’s even heard of the journal.”

Hitchcock refused to give up. In late 1966 and early 1967, she sent a flurry of long, intellectually vivacious letters to Lovelock about the papers they were working on together. Her correspondence during this period was obsessive, hesitant, acerbic, considerate, critical, encouraging and among the most brilliant in the Lovelock archives. These missives can be read as foundation stones for the Gaia hypothesis or as thinly disguised love letters.

The connection between life and the atmosphere, which was only intuited here, would be firmly established by climatologists.

In one she lamented that they were unable to meet in person to discuss their work, but she enthused about how far their intellectual journey had taken them. “I’m getting rather impressed with us as I read Biology and the Exploration of Mars—with the fantastic importance of the topic. Wow, if this works and we do find life on Mars we will be in the limelight,” she wrote. Further on, she portrayed the two of them as explorers, whose advanced ideas put them up against the world, or at least against the senior members of the JPL biology team.

The most impressive of these letters is a screed in which Hitchcock wrote to Lovelock with an eloquent summary of “our reasoning” and how this shared approach went beyond mainstream science. “We want to see whether a biota exists—not whether single animals exist,” she said. “It is also the nature of single species to affect their living and nonliving environments—to leave traces of themselves and their activity everywhere. Therefore we conclude that the biota must leave its characteristic signature on the ‘non-living’ portions of the environment.” Hitchcock then went on to describe how the couple had tried to identify life, in a letter dated December 13, 1966:

We started our search for the unmistakable physical signature of the terrestrial biota, believing that if we found it, it would—like all other effects of biological entities—be recognizable as such by virtue of the fact that it represents ‘information’ in the pure and simple sense of a state of affairs which is enormously improbable on nonbiological grounds…We picked the atmosphere as the most likely residence of the signature, on the grounds that the chemical interactions with atmospheres are probably characteristic of all biotas. We then tried to find something in our atmosphere which would, for example, tell a good Martian chemist that life exists here. We made false starts because we foolishly looked for one giveaway component. There are none. Came the dawn and we saw that the total atmospheric mixture is a peculiar one, which is in fact so information-full that it is improbable. And so forth. And now we tend to view the atmosphere almost as something itself alive, because it is the product of the biota and an essential channel by which elements of the great living animal communicate—it is indeed the milieu internal which is maintained by the biota as a whole for the wellbeing of its components. This is getting too long. Hope it helps. Will write again soon.”

With hindsight, these words are astonishingly prescient and poignant. Their view of the atmosphere “almost as something itself alive” was to become a pillar of Gaia theory. The connection between life and the atmosphere, which was only intuited here, would be firmly established by climatologists. It was not just the persuasiveness of the science that resonates in this letter, but the intellectual passion with which ideas are developed and given lyrical expression. The poetic conclusion—“came the dawn”—reads as a hopeful burst of illumination and a sad intimation that their night together may be drawing to a close.

Their joint paper, “Life detection by atmospheric analysis,” was submitted to Icarus in December 1966. Lovelock acknowledged it was superior to his earlier piece for Nature: “Anybody who was competent would see the difference, how the ideas had been cleared up and presented in a much more logical way.” He insisted Hitchcock be lead author. Although glad to have him on board because she had never before written a scientific paper and would have struggled to get the piece published if she had put it solely under her name, she told me she had no doubt she deserved most of the credit: “I remember when I wrote that paper, I hardly let him put a word in.”

The year 1967 was to prove horrendous for them both, professionally and personally. In fact, it was a dire moment for the entire US space program. In January, three astronauts died in a flash fire during a test on an Apollo 204 spacecraft, prompting soul-searching and internal investigations. US politicians were no longer willing to write blank cheques for a race to Mars. Public priorities were shifting as the Vietnam war and the civil rights movement gained ground, and Congress slashed the Nasa budget.

“He just dropped me. I was puzzled and deeply hurt. It had to end, but he could have said something.”

The affair between Hitchcock and Lovelock was approaching an ugly end. Domestic pressures were becoming intense. Helen was increasingly prone to illness and resentment. On March 15, 1967, she wrote to Lovelock at JPL to say: “It seems as if you have been gone for ages,” and scornfully asked about Hitchcock: “Has Madam arrived yet?” Around this time, Lovelock’s colleague at JPL, Peter Simmonds, remembered things coming to a head. “He strayed from the fold. Helen told him to ‘get on a plane or you won’t have a marriage’ or some such ultimatum.”

Lovelock was forced into an agonising decision about Hitchcock. “We were in love with each other. It was very difficult. I think that was one of the worst times in my life. [Helen’s health] was getting much worse. She needed me. It was clear where duty led me and I had four kids. Had Helen been fit and well, despite the size of the family, it would have been easier to go off.” Instead, he decided to ditch Hitchcock. “I determined to break it off. It made me very miserable…I just couldn’t continue.”

The breakup, when it finally came, was brutal. Today, more than 50 years on, Hitchcock is still pained by the way things ended. “I think it was 1967. We were both checking into the Huntington and got rooms that were separated by a conference room. Just after I opened the door, a door on the opposite side was opened by Jim. We looked at each other and I said something like: ‘Look, Jim, this is really handy.’ Whereupon he closed the door and never spoke to me again. I was shattered. Probably ‘heartbroken’ is the appropriate term here. He didn’t give me any explanation. He didn’t say anything about Helen. He just dropped me. I was puzzled and deeply hurt. It had to end, but he could have said something…He could not possibly have been more miserable than I was.”

Hitchcock was reluctant to let go. That summer, she sent Lovelock a clipping of her interview with a newspaper in Connecticut, below the headline “A Telescopic Look at Life on Other Planets,” an article outlining the bid she and Lovelock were preparing in order to secure financial support for a telescope. In November, she wrote a memo for her company detailing the importance of her continued collaboration with Lovelock and stressing their work “must be published.”

But the flame had been extinguished. The last record of direct correspondence between the couple is an official invoice, dated March 18, 1968, and formally signed “consultant James E Lovelock.” Hitchcock was fired by Hamilton Standard soon after. “They were not pleased that I had anything at all to do with Mars,” she recalled. The same was probably also true for her relationship with Lovelock.

The doomed romance could not have been more symbolic. Hitchcock and Lovelock had transformed humanity’s view of its place in the universe. By revealing the interplay between life and the atmosphere, they had shown how fragile are the conditions for existence on this planet, and how unlikely are the prospects for life elsewhere in the solar system. They had brought romantic dreams of endless expansion back down to Earth with a bump.

This is an edited excerpt from The Many Lives of James Lovelock: Science, Secrets and Gaia Theory, published by Canongate on September 12 and available at guardianbookshop.com

Read the full story here.
Photos courtesy of

Costa Rica’s Tortuga Island Coral Garden Revives Reefs

The coral reefs off Tortuga Island in the Gulf of Nicoya are experiencing a remarkable revival, thanks to an innovative coral garden project spearheaded by local institutions and communities. Launched in August 2024, this initiative has made significant strides in restoring ecosystems devastated by both natural and human-induced degradation, offering hope amidst a global coral […] The post Costa Rica’s Tortuga Island Coral Garden Revives Reefs appeared first on The Tico Times | Costa Rica News | Travel | Real Estate.

The coral reefs off Tortuga Island in the Gulf of Nicoya are experiencing a remarkable revival, thanks to an innovative coral garden project spearheaded by local institutions and communities. Launched in August 2024, this initiative has made significant strides in restoring ecosystems devastated by both natural and human-induced degradation, offering hope amidst a global coral bleaching crisis. The project, a collaborative effort led by the State Distance University (UNED) Puntarenas branch, the Nautical Fishing Nucleus of the National Learning Institute (INA), the PROLAB laboratory, and Bay Island Cruises, has transplanted 1,050 coral fragments from June to September 2024, with an additional 300 corals added in early 2025. This builds on earlier efforts, bringing the total volume of cultivated coral to approximately 9,745.51 cm³, a promising indicator of recovery for the region’s coral and fish populations. The initiative employs advanced coral gardening techniques, including “coral trees” — multi-level frames where coral fragments are suspended — and “clotheslines,” which allow corals to grow in optimal conditions with ample light, oxygenation, and protection from predators. These structures are anchored to the seabed, floating about 5 meters below the surface. Rodolfo Vargas Ugalde, a coral reef gardening specialist at INA’s Nautical Fishing Nucleus, explained that these methods, introduced by INA in 2013, accelerate coral growth, enabling maturity in just one year compared to the natural rate of 2.5 cm annually. “In the Pacific, three coral species adapt well to these structures, thriving under the favorable conditions they provide,” Vargas noted. The project was born out of necessity following a diagnosis that revealed Tortuga Island’s reefs were completely degraded due to sedimentation, pollution, and overexploitation. “Corals are the tropical forests of the ocean,” Vargas emphasized, highlighting their role as ecosystems that support at least 25% of marine life and 33% of fish diversity, while also driving tourism, a key economic pillar for the region. Sindy Scafidi, a representative from UNED, underscored the project’s broader impact: “Research in this area allows us to rescue, produce, and multiply corals, contributing to the sustainable development of the region so that these species, a major tourist attraction, are preserved.” The initiative actively involves local communities, fostering a sense of stewardship and ensuring long-term conservation. This local success story contrasts with a grim global outlook. A recent report by the International Coral Reef Initiative (ICRI) revealed that 84% of the world’s coral reefs have been affected by the most intense bleaching event on record, driven by warming oceans. Since January 2023, 82 countries have reported damage, with the crisis ongoing. In Costa Rica, 77% of coral reef ecosystems face serious threats, primarily from human activities like sedimentation, pollution, and resource overexploitation. Despite these challenges, the Tortuga Island project demonstrates resilience. By focusing on species suited to the Gulf of Nicoya’s conditions and leveraging innovative cultivation techniques, the initiative is rebuilding reefs that can withstand environmental stressors. The collaboration with Bay Island Cruises has also facilitated logistical support, enabling divers and researchers to access the site efficiently. The project aligns with broader coral restoration efforts across Costa Rica, such as the Samara Project, which planted 2,000 corals by January and aims for 3,000 by year-end. Together, these initiatives highlight Costa Rica’s commitment to marine conservation, offering a model for other regions grappling with reef degradation. As global temperatures continue to rise, with oceans absorbing much of the excess heat, experts stress the urgency of combining restoration with climate action. The Tortuga Island coral garden project stands as a ray of hope, proving that targeted, community-driven efforts can revive vital ecosystems even in the face of unprecedented challenges. The post Costa Rica’s Tortuga Island Coral Garden Revives Reefs appeared first on The Tico Times | Costa Rica News | Travel | Real Estate.

More women view climate change as their number one political issue

A new report shows a growing gender gap among people who vote with environmental issues in mind.

A new report from the Environmental Voter Project (EVP), shared first with The 19th, finds that far more women than men are listing climate and environmental issues as their top priority in voting. The nonpartisan nonprofit, which focuses on tailoring get out the vote efforts to low-propensity voters who they’ve identified as likely to list climate and environmental issues as a top priority, found that women far outpace men on the issue. Overall 62 percent of these so-called climate voters are women, compared to 37 percent of men. The gender gap is largest among young people, Black and Indigenous voters.  The nonprofit identifies these voters through a predictive model built based on surveys it conducts among registered voters. It defines a climate voter as someone with at least an 85 percent likelihood of listing climate change or the environment as their number one priority.  “At a time when other political gender gaps, such as [presidential] vote choice gender gaps, are staying relatively stable, there’s something unique going on with gender and public opinion about climate change,” said Nathaniel Stinnett, founder of the organization.  While the models can predict the likelihood of a voter viewing climate as their number one issue, it can’t actually determine whether these same people then cast a vote aligned with that viewpoint. The report looks at data from 21 states that are a mix of red and blue. Read Next Where did all the climate voters go? Sachi Kitajima Mulkey Based on polling from the AP-NORC exit poll, 7 percent of people self-reported that climate change was their number one priority in the 2024 general election, Stinnett said. Of those who listed climate as their top priority, they voted for former Vice President Kamala Harris by a 10 to 1 margin.  The EVP findings are important, Stinnett says, because they also point the way to who might best lead the country in the fight against the climate crisis. “If almost two thirds of climate voters are women, then all of us need to get better at embracing women’s wisdom and leadership skills,” Stinnett said. “That doesn’t just apply to messaging. It applies to how we build and lead a movement of activists and voters.”  Though the data reveals a trend, it’s unclear why the gender gap grew in recent years. In the six years that EVP has collected data, the gap has gone from 20 percent in 2019, and then shrunk to 15 percent in 2022 before beginning to rise in 2024. In 2025, the gap grew to 25 percentage points. “I don’t know if men are caring less about climate change. I do know that they are much, much less likely now than they were before, to list it as their number one priority,” he said. “Maybe men don’t care less about climate change than they did before, right? Maybe it’s just that other things have jumped priorities over that.” A survey conducted by the Yale Program on Climate Change Communication, a nonprofit that gauges the public’s attitude toward climate change has seen a similar trend in its work. Marija Verner, a researcher with the organization, said in 2014 there was a 7 percent gap between the number of men and women in the U.S. who said they were concerned by global warming. A decade later in 2024, that gap had nearly doubled to 12 percent.  Read Next What do climate protests actually achieve? More than you think. Kate Yoder There is evidence that climate change and pollution impact women more than men both in the United States and globally. This is because women make up a larger share of those living in poverty, with less resources to protect themselves, and the people they care for, from the impacts of climate change. Women of color in particular live disproportionately in low-income communities with greater climate risk.  This could help explain why there is a bigger gender gap between women of color and their male counterparts. In the EVP findings there is a 35 percent gap between Black women and men climate voters, and a 29 percent gap between Indigenous women and men.  Jasmine Gil, associate senior director at Hip Hop Caucus, a nonprofit that mobilizes communities of color, said she’s not really surprised to see that Black women are prioritizing the issue. Gil works on environmental and climate justice issues, and she hears voters talk about climate change as it relates to everyday issues like public safety, housing, reproductive health and, more recently, natural disasters.  “Black women often carry the weight of protecting their families and communities,” she said. “They’re the ones navigating things like school closures and skyrocketing bills; they are the ones seeing the direct impacts of these things. It is a kitchen table issue.” The EVP survey also found a larger gender gap among registered voters in the youngest demographic, ages 18 to 24.  Cristina Tzintzún Ramirez, the president of youth voting organization NextGen America, said that in addition to young women obtaining higher levels of education and becoming more progressive than men, a trend that played out in the election, she also thinks the prospect of motherhood could help explain the gap.  She’s seen how young mothers, particularly in her Latino community, worry about the health of their kids who suffer disproportionately from health issues like asthma. Her own son has asthma, she said: “That really made me think even more about air quality and the climate crisis and the world we’re leaving to our little ones.” It’s a point that EVP theorizes is worth doing more research on. While the data cannot determine whether someone is a parent or grandparent, it does show that women between ages of 25 to 45 and those 65 and over make up nearly half of all climate voters. Still, Ramirez wants to bring more young men into the conversation. Her organization is working on gender-based strategies to reach this demographic too. Last cycle, they launched a campaign focused on men’s voter power and one of the core issues they are developing messaging around is the climate crisis. She said she thinks one way progressive groups could bring more men into the conversation is by focusing more on the positives of masculinity to get their messaging across.  “There are great things about healthy masculinity … about wanting to protect those you love and those that are more vulnerable,” she said. There are opportunities to tap into that idea of “men wanting to protect their families or those they love or their communities from the consequences of the climate crisis.” This story was originally published by Grist with the headline More women view climate change as their number one political issue on Apr 26, 2025.

Climate change could deliver considerable blows to US corn growers, insurers: Study

Federal corn crop insurers could see a 22 percent spike in claims filed by 2030 and a nearly 29 percent jump by mid-century, thanks to the impacts of climate change, a new study has found. Both U.S. corn growers and their insurers are poised to face a future with mounting economic uncertainty, according to the...

Federal corn crop insurers could see a 22 percent spike in claims filed by 2030 and a nearly 29 percent jump by mid-century, thanks to the impacts of climate change, a new study has found. Both U.S. corn growers and their insurers are poised to face a future with mounting economic uncertainty, according to the research, published on Friday in the Journal of Data Science, Statistics, and Visualisation. “Crop insurance has increased 500 percent since the early 2000s, and our simulations show that insurance costs will likely double again by 2050,” lead author Sam Pottinger, a senior researcher at the University of California Berkeley’s Center for Data Science & Environment, said in a statement. “This significant increase will result from a future in which extreme weather events will become more common, which puts both growers and insurance companies at substantial risk,” he warned. Pottinger and his colleagues at both UC Berkeley and the University of Arkansas developed an open-source, AI-powered tool through which they were able to simulate growing conditions through 2050 under varying scenarios. They found that if growing conditions remained unchanged, federal crop insurance companies would see a continuation of current claim rates in the next three decades. However, under different climate change scenarios, claims could rise by anywhere from 13 to 22 percent by 2030, before reaching about 29 percent by 2050, according to the data. Federal crop insurance, distributed by the U.S. Department of Agriculture (USDA), provides economic stability to U.S. farmers and other agricultural entities, the researchers explained. Most U.S. farmers receive their primary insurance through this program, with coverage determined by a grower’s annual crop yield, per the terms of the national Farm Bill. “Not only do we see the claims’ rate rise significantly in a future under climate change, but the severity of these claims increases too,” co-author Lawson Conner, an assistant professor in agricultural economics at the University of Arkansas, said in a statement. “For example, we found that insurance companies could see the average covered portion of a claim increase up to 19 percent by 2050,” Conner noted. The researchers stressed the utility of their tool for people who want to understand how crop insurance prices are established and foresee potential neighborhood-level impacts. To achieve greater security for growers and reduce financial liability for companies in the future, the authors suggested two possible avenues. The first, they contended, could involve a small change to the Farm Bill text that could incentivize farmers to adopt practices such as cover cropping and crop rotation. Although these approaches can lead to lower annual yields, they bolster crop resilience over time, the authors noted. Their second recommendation would  involve including similar such incentives in an existing USDA Risk Management Agency mechanism called 508(h), through which private companies recommend alternative and supplemental insurance products for the agency’s consideration. “We are already seeing more intense droughts, longer heat waves, and more catastrophic floods,” co-author Timothy Bowles, associate professor in environmental science at UC Berkeley, said in a statement.  “In a future that will bring even more of these, our recommendations could help protect growers and insurance providers against extreme weather impacts,” Bowles added.

From Greenland to Ghana, Indigenous youth work for climate justice

“No matter what happens we will stand and we will fight, and we will keep pushing for solutions.”

For the last week,  Indigenous leaders from around the world have converged in New York for the United Nations Permanent Forum on Indigenous Issues, or UNPFI. It’s the largest global gathering of Indigenous peoples and the Forum provides space for participants to bring their issues to international authorities, often when their own governments have refused to take action. This year’s Forum focuses on how U.N. member states’ have, or have not, protected the rights of Indigenous peoples, and conversations range from the environmental effects of extractive industries, to climate change, and violence against women. The Forum is an intergenerational space. Young people in attendance often work alongside elders and leaders to come up with solutions and address ongoing challenges. Grist interviewed seven Indigenous youth attending UNPFII this year hailing from Africa, the Pacific, North and South America, Asia, Eastern Europe, and the Arctic. Joshua Amponsem, 33, is Asante from Ghana and the founder of Green Africa Youth Organization, a youth-led group in Africa that promotes energy sustainability. He also is the co-director of the Youth Climate Justice Fund which provides funding opportunities to bolster youth participation in climate change solutions.  Since the Trump administration pulled all the funding from the U.S. Agency for International Development, or USAID, Amponsem has seen the people and groups he works with suffer from the loss of financial help. Courtesy of Joshua Amponsem It’s already hard to be a young person fighting climate change. Less than one percent of climate grants go to youth-led programs, according to the Youth Climate Justice Fund.   “I think everyone is very much worried,” he said. “That is leading to a lot of anxiety.”  Amponsem specifically mentioned the importance of groups like Africa Youth Pastoralist Initiatives — a coalition of youth who raise animals like sheep or cattle. Pastoralists need support to address climate change because the work of herding sheep and cattle gets more difficult as drought and resource scarcity persist, according to one report.  “No matter what happens we will stand and we will fight, and we will keep pushing for solutions,” he said. Janell Dymus-Kurei, 32, is Māori from the East Coast of Aotearoa New Zealand. She is a fellow with the Commonwealth Fund, a group that promotes better access to healthcare for vulnerable populations. At this year’s UNPFII, Dymus-Kurei hopes to bring attention to legislation aimed at diminishing Māori treaty rights. While one piece of legislation died this month, she doesn’t think it’s going to stop there. She hopes to remind people about the attempted legislation that would have given exclusive Maori rights to everyone in New Zealand. Courtesy of Janell Dymus-Kurei The issue gained international attention last Fall when politician Hana-Rawhiti Maipi-Clarke performed a Haka during parliament, a traditional dance that was often done before battle. The demonstration set off other large-scale Māori protests in the country.  “They are bound by the Treaty of Waitangi,” she said. Countries can address the forum, but New Zealand didn’t make it to the UNPFII.  “You would show up if you thought it was important to show up and defend your actions in one way, shape, or form,” she said. This year, she’s brought her two young children — TeAio Nitana, which means “peace and divinity” and Te Haumarangai, or “forceful wind”. Dymus-Kurei said it’s important for children to be a part of the forum, especially with so much focus on Indigenous women. “Parenting is political in every sense of the word,” she said. Avery Doxtator, 22, is Oneida, Anishinaabe and Dakota and the president of the National Association of Friendship Centres, or NAFC, which promotes cultural awareness and resources for urban Indigenous youth throughout Canada’s territories. She attended this year’s Forum to raise awareness about the rights of Indigenous peoples living in urban spaces. The NAFC brought 23 delegates from Canada this year representing all of the country’s regions. It’s the biggest group they’ve ever had, but Doxtator said everyone attending was concerned when crossing the border into the United States due to the Trump Administration’s border and immigration restrictions. Taylar Dawn Stagner “It’s a safety threat that we face as Indigenous peoples coming into a country that does not necessarily want us here,” she said. “That was our number one concern. Making sure youth are safe being in the city, but also crossing the border because of the color of our skin.” The United Nations Declaration on the Rights of Indigenous Peoples, or UNDRIP, protects Indigenous peoples fundamental rights of self-determination, and these rights extend to those living in cities, perhaps away from their territories. She said that she just finished her 5th year on the University of Toronto’s Water Polo Team, and will be playing on a professional team in Barcelona next year.  Around half of Indigenous peoples in Canada live in cities. In the United States around 70 percent live in cities. As a result, many can feel disconnected from their cultures, and that’s what she hopes to shed light on at the forum — that resources for Indigenous youth exist even in urban areas. Liudmyla Korotkykh, 26, is Crimean Tatar from Kyiv, one of the Indigenous peoples of Ukraine. She spoke at UNPFII about the effects of the Ukraine war on her Indigenous community. She is a manager and attorney at the Crimean Tatar Resource Center. The history of the Crimean Tatars are similar to other Indigenous populations. They have survived colonial oppression from both the Russian Empire and the Soviet Union — and as a result their language and way of life is constantly under threat. Crimea is a country that was annexed by Russia around a decade ago.  Taylar Dawn Stagner In 2021, President Zelensky passed legislation to establish better rights for Indigenous peoples, but months later Russia continued its campaign against Ukraine.  Korotkykh said Crimean Tatars have been conscripted to fight for Russia against the Tatars that are now in Ukraine.  “Now we are in the situation where our peoples are divided by a frontline and our peoples are fighting against each other because some of us joined the Russian army and some joined the Ukrainian army,” she said.  Korotkykh said even though many, including the Trump Administration, consider Crimea a part of Russia, hopes that Crimean Tatars won’t be left out of future discussions of their homes.  “This is a homeland of Indigenous peoples. We don’t accept the Russian occupation,” she said. “So, when the [Trump] administration starts to discuss how we can recognize Crimea as a part of Russia, it is not acceptable to us.” Toni Chiran, 30, is Garo from Bangladesh, and a member of the Bangladesh Indigenous Youth Forum, an organization focused on protecting young Indigenous people. The country has 54 distinct Indigenous peoples, and their constitution does not recognize Indigenous rights.  In January, Chiran was part of a protest in Dhaka, the capital of Bangladesh, where he and other Indigenous people were protesting how the state was erasing the word “Indigenous” — or Adivasi in Hindi — from text books. Chiran says the move is a part of an ongoing assault by the state to erase Indigenous peoples from Bangladesh. Courtesy of Toni Chiran He said that he sustained injuries to his head and chest during the protest as counter protesters assaulted their group, and 13 protesters sustained injuries. He hopes bringing that incident, and more, to the attention of Forum members will help in the fight for Indigenous rights in Bangladesh. “There is an extreme level of human rights violations in my country due to the land related conflicts because our government still does not recognize Indigenous peoples,” he said.  The student group Students for Sovereignty were accused of attacking Chiran and his fellow protesters. During a following protest a few days later in support of Chiran and the others injured Bangladesh police used tear gas and batons to disperse the crowd.  “We are still demanding justice on these issues,” he said. Aviaaija Baadsgaard, 27, is Inuit and a member of the Inuit Circumpolar Council Youth Engagement Program, a group that aims to empower the next generation of leaders in the Arctic. Baadsgaard is originally from Nuunukuu, the capital of Greenland, and this is her first year attending the UNPFII. Just last week she graduated from the University of Copenhagen with her law degree. She originally began studying law to help protect the rights of the Inuit of Greenland.. Recently, Greenland has been a global focal point due to the Trump Administration’s interest in acquiring the land and its resources – including minerals needed for the green transition like lithium and neodymium: both crucial for electric vehicles. “For me, it’s really important to speak on behalf of the Inuit of Greenland,” Baadsgaard said. Taylar Dawn Stagner Greenland is around 80 percent Indigenous, and a vast majority of the population there do not want the Greenland is around 80 percent Indigenous, and a vast majority of the population there do not want the U.S. to wrest control of the country from the Kingdom of Denmark. Many more want to be completely independent.  “I don’t want any administration to mess with our sovereignty,” she said.  Baadsgaard said her first time at the forum has connected her to a broader discussion about global Indigenous rights — a conversation she is excited to join. She wants to learn more about the complex system at the United Nations, so this trip is about getting ready for the future. Cindy Sisa Andy Aguinda, 30, is Kitchwa from Ecuador in the Amazon. She is in New York to talk about climate change, women’s health and the climate crisis. She spoke on a panel with a group of other Indigenous women about how the patriarchy and colonial violence affect women at a time of growing global unrest. Especially in the Amazon where deforestation is devastating the forests important to the Kitchwa tribe.  She said international funding is how many protect the Amazon Rainforest. As an example, last year the United States agreed to send around 40 million dollars to the country through USAID — but then the Trump administration terminated most of the department in March. Courtesy of Cindy Sisa Andy Aguinda “To continue working and caring for our lands, the rainforest, and our people, we need help,” she said through a translator. Even when international funding goes into other countries for the purposes to protect Indigenous land, only around 17 percent ends up in the hands of Indigenous-led initiatives. “In my country, it’s difficult for the authorities to take us into account,” she said.  She said despite that she had hope for the future and hopes to make it to COP30 in Brazil, the international gathering that addresses climate change, though she will probably have to foot the bill herself. She said that Indigenous tribes of the Amazon are the ones fighting everyday to protect their territories, and she said those with this relationship with the forest need to share ancestral knowledge with the world at places like the UNPFII and COP30.  “We can’t stop if we want to live well, if we want our cultural identity to remain alive,” she said. This story was originally published by Grist with the headline From Greenland to Ghana, Indigenous youth work for climate justice on Apr 25, 2025.

Harris County commissioners approve climate justice plan

Nearly three years in the works, the Harris County Climate Justice Plan is a 59-page document that creates long-term strategies addressing natural resource conservation, infrastructure resiliency and flood control.

Sarah GrunauFlood waters fill southwest Houston streets during Hurricane Beryl on July 8, 2024.Harris County commissioners this month approved what’s considered the county’s most comprehensive climate justice plan to date. Nearly three years in the works, the Harris County Climate Justice Plan is a 59-page document that creates long-term strategies addressing natural resource conservation, infrastructure resiliency and flood control in the Houston area. The climate justice plan was created by the Office of County Administration’s Office of Sustainability and an environmental nonprofit, Coalition for Environment, Equity and Resilience. The plan sets goals in five buckets, said Stefania Tomaskovic, the coalition director for the nonprofit. Those include ecology, infrastructure, economy, community and culture. County officials got feedback from more than 340 residents and organizations to ensure the plans reflect the needs of the community. “We held a number of community meetings to really outline the vision and values for this process and then along the way we’ve integrated more and more community members into the process of helping to identify the major buckets of work,” Tomaskovic told Hello Houston. Feedback from those involved in the planning process of the climate justice plan had a simple message — people want clean air, strong infrastructure in their communities, transparency and the opportunity to live with dignity, according to the plan. It outlines plans to protect from certain risks through preventative floodplain and watershed management, land use regulations and proactive disaster preparation. Infrastructure steps in the plan include investing in generators and solar power battery backup, and expanding coordination of programs that provide rapid direct assistance after disasters. Economic steps in the plan including expanding resources with organizations to support programs that provide food, direct cash assistance and housing. Tomaskovic said the move could be cost effective because some studies show that for every dollar spent on mitigation, you’re actually saving $6. “It can be cost effective but also if you think about, like, the whole line of costs, if we are implementing programs that help keep people out of the emergency room, we could be saving in the long run, too,” she said. Funds that will go into implementing the projects have yet to be seen. The more than $700,000 climate plan was funded by nonprofit organizations, including the Jacob & Terese Hershey Foundation. “Some of them actually are just process improvements,” Lisa Lin, director of sustainability with Harris County, told Hello Houston. “Some of them are actually low-cost, no-cost actions. Some of them are kind of leaning on things that are happening in the community or happening in the county. Some of them might be new and then we’ll be looking at different funding sources.” The county will now be charged with bringing the plan into reality, which includes conducting a benefits and impacts analysis. County staffers will also develop an implementation roadmap to identify specific leaders and partners and a plan to track its success, according to the county. “This initiative is the first time a U.S. county has prepared a resiliency plan that covers its entire population, as opposed to its bureaucracy alone," Harris County Judge Lina Hidalgo said in a statement. "At the heart of this plan are realistic steps to advance issues like clean air, resilient infrastructure, and housing affordability and availability. Many portions of the plan are already in progress, and I look forward to continued advancement over the years."

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.