Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

The “Internet of Animals” Could Transform What We Know About Wildlife

News Feed
Saturday, August 10, 2024

This story was originally published by Yale Environment 360 and is reproduced here as part of the Climate Desk collaboration. Field biologists tend to be a patient lot, often resigned to long days and weeks in the field and committed to experiments that take years to yield results. But even among that dogged crowd, Martin Wikelski stands out. Back in 2001, sitting on a porch one evening in Panama, the German ornithologist had the germ of an idea for an “internet of animals,” a global system of sensor-wearing wildlife that would reveal the planet’s elusive, nonhuman worlds. He figured he could get it up and running by 2005. Nearly 20 years later, Wikelski may have finally succeeded—after surmounting roadblocks that range from bureaucratic mishaps to technical glitches to a geopolitical crisis. His space-based system, known as ICARUS (International Cooperation for Animal Research Using Space), is now scheduled to launch, in its latest, satellite-based incarnation, on a private rocket sometime in 2025. The underlying idea of the internet of animals is to tune into the planet’s hidden phenomena—the flight paths followed by sharp-shinned hawks, the precise fates befalling Arctic terns that die young, the exact landscape requirements of critically endangered saiga antelope—by attaching tiny, solar-powered tracking devices, some weighing less than a paperclip, to all kinds of organisms and even some inanimate objects (glaciers, ocean plastic debris). The inexpensive, globe-spanning system of animal tagging is meant to help scientists understand the precise drivers of global change, and much more, by tracking thousands of tagged animals from space and tying their experiences to the broader impacts facing whole populations or even species. Wikelski, the director of the Department of Migration at the Max Planck Institute of Animal Behavior, in Germany, said the prospect of having that data, and of “making people aware of the incredible beauty and richness of what’s happening out there,” has made the effort worthwhile, even urgent. It’s also true, as he wrote in his recent book The Internet of Animals: Discovering the Collective Intelligence of Life on Earth, that he “had no clue how many pitfalls there would be…how many times when we desperately wanted to give up, because the whole process had become so exquisitely frustrating that we just couldn’t stand it anymore.” In 2018, after years of working with designers, engineers, and government officials from multiple countries and continents, Wikelski’s team saw its ICARUS receiver launch aboard a Soyuz rocket from Kazakhstan to the International Space Station, where Russian cosmonauts attached it to their side of the orbiting lab. “We danced, cried, and hugged one another,” Wikelski wrote of the launch. “All the stress of nearly 20 years fell away.” The internet of animals went live in March 2020, but before the year was out, mechanical issues on the Russian ISS module took the system down. Nearly a year passed before it was up and running again. By the spring of 2021, the system was finally humming along, receiving data from roughly 3,500 tagged animals around the world. But then, in the winter of 2022, Russia invaded Ukraine, and the West cut ties with Russia. ICARUS’s transmission of data abruptly halted. Our nonhuman neighbors “can take a pulse of the planet and be detectors of change and help us understand the health of the environment.” After the ISS failure, Wikelski’s team set out to redesign the system to use satellite-based receivers, which had always been its long-term aim. In 2022, plans seemed almost set for an ICARUS receiver to orbit on the next GRACE (Gravity Recovery and Climate Experiment) satellite, a joint venture between NASA and the German space agency, scheduled to launch in 2028. But last-minute political haggling siphoned more than a third of the project’s German funding, leaving no money to include ICARUS. “We were totally devastated,” Wikelski recalled. He gave his project three months to find a solution or finally give up. “That’s when we scaled down and said, we need a CubeSat.” And so beginning sometime next year, the project plans to launch ICARUS receivers on five relatively low-cost CubeSats—miniature satellites roughly the size of a Rubik’s cube and weighing only a couple of pounds—using private launch companies. Funded by the Max Planck Society, the system will cost roughly $1.6 million to launch and have annual operating expenses of around $160,000. “The geopolitical aspect of this is pretty huge,” said Michael Wunder, a quantitative ecologist at the University of Colorado Denver who used the ISS tags to study the migration patterns of mountain plovers before the war in Ukraine cut off the research. Instead of involving government space agencies, the project’s new iteration keeps the scientists in control. The new system allows for greater global coverage—the ISS receiver couldn’t communicate with tags at the planet’s highest latitudes—and Wikelski’s team has used the intervening years to shrink the tags by several grams and design new ways for animals to “wear” them, vastly expanding the number of species scientists can study. The team is currently upgrading 4,000 older tags to work with the new system. The tags provide hourly accounts of the animal’s energy expenditure; measure environmental factors like air pressure, altitude, temperature, and humidity; and even use AI to help interpret the animal’s behavior. The trove of data “will open a lot of doors for researchers,” said Ashley Lohr, who coordinates North American projects for ICARUS through the North Carolina Museum of Natural Sciences. “How stressed was the animal? What were the environmental conditions when the animal was at this place at this time?” Wunder’s lab group tagged 17 mountain plovers in Colorado in 2021. Native to the plains of the north-central United Staes, the species has declined by 80 percent in the past six decades. But the birds are hard to study because of their habitat and behavior. “They’re singing and vociferous but not in your face,” Wunder said, and in breeding season they like their space, living in densities of only about three birds per square kilometer. The plovers often occupy private ranchlands, which makes them hard to find without trespassing. And they breed in late March and April, while bird surveys, timed to count migratory songbirds, happen in May. Wunder has long sought to understand whether mountain plovers follow distinct, structured migration patterns or whether birds from different areas mix together in winter flocks. He also wants to learn what drives the birds to migrate. “Are they moving away from something or toward something else?” he asks. He also hopes to determine exactly where the birds are running into trouble. Before the ISS receiver went dark in 2022, the ICARUS tags revealed that the plovers didn’t follow fixed migration routes and that birds from around the country were mingling in the winter. When several transmitting birds died, Wunder was able to dispatch researchers to their locations and discover the cause of death—predation. The birds started returning to Colorado in February, and Wunder was eager to see which ones would come back—but then the war in Ukraine began. “We were cut off, there was no more information,” he said. Biologist Martin Wikelski tags a scarlet macaw with an ICARUS transmitter. Courtesy of Martin WikelskiCourtesy of Martin Wikelski Ellen Aikens, a biologist at the University of Wyoming who did her postdoctoral research on animal migration at the Max Planck Institute, believes that ICARUS could serve as a “democratizing force” in ecology and biology. It’s a way to level the playing field, she says, so that “folks that have a smaller budget or are working on species that are a bit more obscure and there’s not as much funding behind can start to get the same kind of information, baseline info, about where those [animals] are going.” In her lab, Aikens is studying golden eagles using a tag made by the German company e-obs. “It’s the gold standard of biologging in bird research, if you can afford it and your bird is big enough to carry the transformer”—like geese, storks, and eagles. A single e-obs tag costs more than $1,500 and works over a cellular network, meaning researchers must also pay the cost of data transmission for as long as the animal lives. “If you want to get a good sample size that will allow you to publish your research, that adds up really quickly,” Aikens said. “ICARUS tags are cheaper by an order of magnitude.” Aikens believes that ICARUS will help transform the way scientists study animals. Our nonhuman neighbors “can take a pulse of the planet and be detectors of change and help us understand the health of the environment,” she said. “As [animals] move these vast distances, they can collect detailed environmental information that can better inform climate models and collect information in places that are difficult to monitor,” whether high in the sky, deep in the ocean, or under a thick layer of ice. ICARUS tags are solar-powered, whereas some existing tagging systems run on batteries, which can die—ending the research on that individual or requiring recapture to change them out. Other tagging systems rely on animals passing by a signal tower. It works for certain animals, like birds and bats, but not for others. “Because ICARUS is satellite-powered, you don’t have to wait for your animal to go back on the grid and pass by a tower,” said Lohr. Instead, each time a satellite passes over an area, data from nearby tagged animals will be uploaded to Movebank, an open-access database. A year of animal movements as tracked by ICARUS and other research groups around the world. Data compiled by Movebank. Ultimately, researchers hope that ICARUS data can “help us pinpoint effective conservation strategies,” Aikens said. “It can help us identify pinch points on the landscape.” While this is already happening for some species, including North American ungulates like elk and pronghorn antelope, whose migrations researchers have tracked for years, for most of the planet’s species “we lack this data and this wide coverage of information, which makes these fine-scale interventions a lot harder to achieve. That’s a place that ICARUS can help fill in a lot of gaps.” And if the internet of animals can zero in on specific issues—for instance, a bird species dying out because a particular insect it eats is being killed by a particular chemical being sprayed in an area—Wikelski believes such information could drive people to act. “People are willing to do something about it if they know that what they do is really helpful,” he said. For now, Wikelski continues to practice patience. When I spoke to him in early July, he was dealing with the latest hurdle: satellite launch delays, including one caused by a payload issue and another caused by an ill-timed summer holiday that delayed authorization of the $30,000 payment needed to secure a launch reservation. “Our project is now too small to really be on everybody’s horizon,” he said. “Before, it was too large.” Nevertheless, Wikelski was hopeful. His team was studying and perfecting the lowest-stress methods of tagging animals and even testing automatic tagging systems, like one for deer involving a salt lick and a tiny elastic band. He remained confident of ICARUS’s potential. “One really important aspect we think is transformative in biology is the scaling up of tagging,” he said. “So you don’t have one animal but 50 or 100, or you do it across a continent.” Over the next two years he plans to tag 9,000 animals in Europe, including blackbirds, storm thrushes, swifts, and sparrows in a study already underway. Roughly 7,000 of those 9,000 would die in the first year, he said, based on general patterns. “That means we are finally understanding where they disappear. Where are the death traps? These tags are so smart, they can tell us if a female is nesting and if the clutch disappears. So we can not only get information on where the adults are living and dying, but have the adults been successful in hatching or clutching? Is there a massive problem in a certain area? Then we can link individuals to populations and understand the drivers of change.”

This story was originally published by Yale Environment 360 and is reproduced here as part of the Climate Desk collaboration. Field biologists tend to be a patient lot, often resigned to long days and weeks in the field and committed to experiments that take years to yield results. But even among that dogged crowd, Martin Wikelski stands out. Back in […]

This story was originally published by Yale Environment 360 and is reproduced here as part of the Climate Desk collaboration.

Field biologists tend to be a patient lot, often resigned to long days and weeks in the field and committed to experiments that take years to yield results. But even among that dogged crowd, Martin Wikelski stands out.

Back in 2001, sitting on a porch one evening in Panama, the German ornithologist had the germ of an idea for an “internet of animals,” a global system of sensor-wearing wildlife that would reveal the planet’s elusive, nonhuman worlds. He figured he could get it up and running by 2005. Nearly 20 years later, Wikelski may have finally succeeded—after surmounting roadblocks that range from bureaucratic mishaps to technical glitches to a geopolitical crisis. His space-based system, known as ICARUS (International Cooperation for Animal Research Using Space), is now scheduled to launch, in its latest, satellite-based incarnation, on a private rocket sometime in 2025.

The underlying idea of the internet of animals is to tune into the planet’s hidden phenomena—the flight paths followed by sharp-shinned hawks, the precise fates befalling Arctic terns that die young, the exact landscape requirements of critically endangered saiga antelope—by attaching tiny, solar-powered tracking devices, some weighing less than a paperclip, to all kinds of organisms and even some inanimate objects (glaciers, ocean plastic debris). The inexpensive, globe-spanning system of animal tagging is meant to help scientists understand the precise drivers of global change, and much more, by tracking thousands of tagged animals from space and tying their experiences to the broader impacts facing whole populations or even species.

Wikelski, the director of the Department of Migration at the Max Planck Institute of Animal Behavior, in Germany, said the prospect of having that data, and of “making people aware of the incredible beauty and richness of what’s happening out there,” has made the effort worthwhile, even urgent.

It’s also true, as he wrote in his recent book The Internet of Animals: Discovering the Collective Intelligence of Life on Earth, that he “had no clue how many pitfalls there would be…how many times when we desperately wanted to give up, because the whole process had become so exquisitely frustrating that we just couldn’t stand it anymore.”

In 2018, after years of working with designers, engineers, and government officials from multiple countries and continents, Wikelski’s team saw its ICARUS receiver launch aboard a Soyuz rocket from Kazakhstan to the International Space Station, where Russian cosmonauts attached it to their side of the orbiting lab. “We danced, cried, and hugged one another,” Wikelski wrote of the launch. “All the stress of nearly 20 years fell away.”

The internet of animals went live in March 2020, but before the year was out, mechanical issues on the Russian ISS module took the system down. Nearly a year passed before it was up and running again. By the spring of 2021, the system was finally humming along, receiving data from roughly 3,500 tagged animals around the world. But then, in the winter of 2022, Russia invaded Ukraine, and the West cut ties with Russia. ICARUS’s transmission of data abruptly halted.

Our nonhuman neighbors “can take a pulse of the planet and be detectors of change and help us understand the health of the environment.”

After the ISS failure, Wikelski’s team set out to redesign the system to use satellite-based receivers, which had always been its long-term aim. In 2022, plans seemed almost set for an ICARUS receiver to orbit on the next GRACE (Gravity Recovery and Climate Experiment) satellite, a joint venture between NASA and the German space agency, scheduled to launch in 2028. But last-minute political haggling siphoned more than a third of the project’s German funding, leaving no money to include ICARUS. “We were totally devastated,” Wikelski recalled. He gave his project three months to find a solution or finally give up. “That’s when we scaled down and said, we need a CubeSat.”

And so beginning sometime next year, the project plans to launch ICARUS receivers on five relatively low-cost CubeSats—miniature satellites roughly the size of a Rubik’s cube and weighing only a couple of pounds—using private launch companies. Funded by the Max Planck Society, the system will cost roughly $1.6 million to launch and have annual operating expenses of around $160,000.

“The geopolitical aspect of this is pretty huge,” said Michael Wunder, a quantitative ecologist at the University of Colorado Denver who used the ISS tags to study the migration patterns of mountain plovers before the war in Ukraine cut off the research. Instead of involving government space agencies, the project’s new iteration keeps the scientists in control.

The new system allows for greater global coverage—the ISS receiver couldn’t communicate with tags at the planet’s highest latitudes—and Wikelski’s team has used the intervening years to shrink the tags by several grams and design new ways for animals to “wear” them, vastly expanding the number of species scientists can study. The team is currently upgrading 4,000 older tags to work with the new system. The tags provide hourly accounts of the animal’s energy expenditure; measure environmental factors like air pressure, altitude, temperature, and humidity; and even use AI to help interpret the animal’s behavior.

The trove of data “will open a lot of doors for researchers,” said Ashley Lohr, who coordinates North American projects for ICARUS through the North Carolina Museum of Natural Sciences. “How stressed was the animal? What were the environmental conditions when the animal was at this place at this time?”

Wunder’s lab group tagged 17 mountain plovers in Colorado in 2021. Native to the plains of the north-central United Staes, the species has declined by 80 percent in the past six decades. But the birds are hard to study because of their habitat and behavior. “They’re singing and vociferous but not in your face,” Wunder said, and in breeding season they like their space, living in densities of only about three birds per square kilometer. The plovers often occupy private ranchlands, which makes them hard to find without trespassing. And they breed in late March and April, while bird surveys, timed to count migratory songbirds, happen in May.

Wunder has long sought to understand whether mountain plovers follow distinct, structured migration patterns or whether birds from different areas mix together in winter flocks. He also wants to learn what drives the birds to migrate. “Are they moving away from something or toward something else?” he asks. He also hopes to determine exactly where the birds are running into trouble.

Before the ISS receiver went dark in 2022, the ICARUS tags revealed that the plovers didn’t follow fixed migration routes and that birds from around the country were mingling in the winter. When several transmitting birds died, Wunder was able to dispatch researchers to their locations and discover the cause of death—predation. The birds started returning to Colorado in February, and Wunder was eager to see which ones would come back—but then the war in Ukraine began. “We were cut off, there was no more information,” he said.

Biologist Martin Wikelski tags a scarlet macaw with an ICARUS transmitter. Courtesy of Martin WikelskiCourtesy of Martin Wikelski

Ellen Aikens, a biologist at the University of Wyoming who did her postdoctoral research on animal migration at the Max Planck Institute, believes that ICARUS could serve as a “democratizing force” in ecology and biology. It’s a way to level the playing field, she says, so that “folks that have a smaller budget or are working on species that are a bit more obscure and there’s not as much funding behind can start to get the same kind of information, baseline info, about where those [animals] are going.”

In her lab, Aikens is studying golden eagles using a tag made by the German company e-obs. “It’s the gold standard of biologging in bird research, if you can afford it and your bird is big enough to carry the transformer”—like geese, storks, and eagles. A single e-obs tag costs more than $1,500 and works over a cellular network, meaning researchers must also pay the cost of data transmission for as long as the animal lives. “If you want to get a good sample size that will allow you to publish your research, that adds up really quickly,” Aikens said. “ICARUS tags are cheaper by an order of magnitude.”

Aikens believes that ICARUS will help transform the way scientists study animals. Our nonhuman neighbors “can take a pulse of the planet and be detectors of change and help us understand the health of the environment,” she said. “As [animals] move these vast distances, they can collect detailed environmental information that can better inform climate models and collect information in places that are difficult to monitor,” whether high in the sky, deep in the ocean, or under a thick layer of ice.

ICARUS tags are solar-powered, whereas some existing tagging systems run on batteries, which can die—ending the research on that individual or requiring recapture to change them out. Other tagging systems rely on animals passing by a signal tower. It works for certain animals, like birds and bats, but not for others. “Because ICARUS is satellite-powered, you don’t have to wait for your animal to go back on the grid and pass by a tower,” said Lohr. Instead, each time a satellite passes over an area, data from nearby tagged animals will be uploaded to Movebank, an open-access database.

A year of animal movements as tracked by ICARUS and other research groups around the world. Data compiled by Movebank.

Ultimately, researchers hope that ICARUS data can “help us pinpoint effective conservation strategies,” Aikens said. “It can help us identify pinch points on the landscape.” While this is already happening for some species, including North American ungulates like elk and pronghorn antelope, whose migrations researchers have tracked for years, for most of the planet’s species “we lack this data and this wide coverage of information, which makes these fine-scale interventions a lot harder to achieve. That’s a place that ICARUS can help fill in a lot of gaps.”

And if the internet of animals can zero in on specific issues—for instance, a bird species dying out because a particular insect it eats is being killed by a particular chemical being sprayed in an area—Wikelski believes such information could drive people to act. “People are willing to do something about it if they know that what they do is really helpful,” he said.

For now, Wikelski continues to practice patience. When I spoke to him in early July, he was dealing with the latest hurdle: satellite launch delays, including one caused by a payload issue and another caused by an ill-timed summer holiday that delayed authorization of the $30,000 payment needed to secure a launch reservation. “Our project is now too small to really be on everybody’s horizon,” he said. “Before, it was too large.”

Nevertheless, Wikelski was hopeful. His team was studying and perfecting the lowest-stress methods of tagging animals and even testing automatic tagging systems, like one for deer involving a salt lick and a tiny elastic band. He remained confident of ICARUS’s potential.

“One really important aspect we think is transformative in biology is the scaling up of tagging,” he said. “So you don’t have one animal but 50 or 100, or you do it across a continent.”

Over the next two years he plans to tag 9,000 animals in Europe, including blackbirds, storm thrushes, swifts, and sparrows in a study already underway. Roughly 7,000 of those 9,000 would die in the first year, he said, based on general patterns. “That means we are finally understanding where they disappear. Where are the death traps? These tags are so smart, they can tell us if a female is nesting and if the clutch disappears. So we can not only get information on where the adults are living and dying, but have the adults been successful in hatching or clutching? Is there a massive problem in a certain area? Then we can link individuals to populations and understand the drivers of change.”

Read the full story here.
Photos courtesy of

Contributor: 'Save the whales' worked for decades, but now gray whales are starving

The once-booming population that passed California twice a year has cratered because of retreating sea ice. A new kind of intervention is needed.

Recently, while sailing with friends on San Francisco Bay, I enjoyed the sight of harbor porpoises, cormorants, pelicans, seals and sea lions — and then the spouting plume and glistening back of a gray whale that gave me pause. Too many have been seen inside the bay recently.California’s gray whales have been considered an environmental success story since the passage of the 1972 Marine Mammal Protection Act and 1986’s global ban on commercial whaling. They’re also a major tourist attraction during their annual 12,000-mile round-trip migration between the Arctic and their breeding lagoons in Baja California. In late winter and early spring — when they head back north and are closest to the shoreline, with the moms protecting the calves — they can be viewed not only from whale-watching boats but also from promontories along the California coast including Point Loma in San Diego, Point Lobos in Monterey and Bodega Head and Shelter Cove in Northern California.In 1972, there were some 10,000 gray whales in the population on the eastern side of the Pacific. Generations of whaling all but eliminated the western population — leaving only about 150 alive today off of East Asia and Russia. Over the four decades following passage of the Marine Mammal Protection Act, the eastern whale numbers grew steadily to 27,000 by 2016, a hopeful story of protection leading to restoration. Then, unexpectedly over the last nine years, the eastern gray whale population has crashed, plummeting by more than half to 12,950, according to a recent report by the National Oceanic and Atmospheric Administration, the lowest numbers since the 1970s.Today’s changing ocean and Arctic ice conditions linked to fossil-fuel-fired climate change are putting this species again at risk of extinction.While there has been some historical variation in their population, gray whales — magnificent animals that can grow up to 50 feet long and weigh as much as 80,000 pounds — are now regularly starving to death as their main food sources disappear. This includes tiny shrimp-like amphipods in the whales’ summer feeding grounds in the Arctic. It’s there that the baleen filter feeders spend the summer gorging on tiny crustaceans from the muddy bottom of the Bering, Chuckchi and Beaufort seas, creating shallow pits or potholes in the process. But, with retreating sea ice, there is less under-ice algae to feed the amphipods that in turn feed the whales. Malnourished and starving whales are also producing fewer offspring.As a result of more whales washing up dead, NOAA declared an “unusual mortality event” in California in 2019. Between 2019 and 2025, at least 1,235 gray whales were stranded dead along the West Coast. That’s eight times greater than any previous 10-year average.While there seemed to be some recovery in 2024, 2025 brought back the high casualty rates. The hungry whales now come into crowded estuaries like San Francisco Bay to feed, making them vulnerable to ship traffic. Nine in the bay were killed by ship strikes last year while another 12 appear to have died of starvation.Michael Stocker, executive director of the acoustics group Ocean Conservation Research, has been leading whale-viewing trips to the gray whales’ breeding ground at San Ignacio Lagoon in Baja California since 2006. “When we started going, there would be 400 adult whales in the lagoon, including 100 moms and their babies,” he told me. “This year we saw about 100 adult whales, only five of which were in momma-baby pairs.” Where once the predators would not have dared to hunt, he said that more recently, “orcas came into the lagoon and ate a couple of the babies because there were not enough adult whales to fend them off.”Southern California’s Gray Whale Census & Behavior Project reported record-low calf counts last year.The loss of Arctic sea ice and refusal of the world’s nations recently gathered at the COP30 Climate Summit in Brazil to meet previous commitments to reduce greenhouse gas emissions suggest that the prospects for gray whales and other wildlife in our warming seas, including key food species for humans such as salmon, cod and herring, look grim.California shut down the nation’s last whaling station in 1971. And yet now whales that were once hunted for their oil are falling victim to the effects of the petroleum or “rock oil” that replaced their melted blubber as a source of light and lubrication. That’s because the burning of oil, coal and gas are now overheating our blue planet. While humans have gone from hunting to admiring whales as sentient beings in recent decades, our own intelligence comes into question when we fail to meet commitments to a clean carbon-free energy future. That could be the gray whales’ last best hope, if there is any.David Helvarg is the executive director of Blue Frontier, an ocean policy group, and co-host of “Rising Tide: The Ocean Podcast.” He is the author of the forthcoming “Forest of the Sea: The Remarkable Life and Imperiled Future of Kelp.”

Pills that communicate from the stomach could improve medication adherence

MIT engineers designed capsules with biodegradable radio frequency antennas that can reveal when the pill has been swallowed.

In an advance that could help ensure people are taking their medication on schedule, MIT engineers have designed a pill that can report when it has been swallowed.The new reporting system, which can be incorporated into existing pill capsules, contains a biodegradable radio frequency antenna. After it sends out the signal that the pill has been consumed, most components break down in the stomach while a tiny RF chip passes out of the body through the digestive tract.This type of system could be useful for monitoring transplant patients who need to take immunosuppressive drugs, or people with infections such as HIV or TB, who need treatment for an extended period of time, the researchers say.“The goal is to make sure that this helps people receive the therapy they need to help maximize their health,” says Giovanni Traverso, an associate professor of mechanical engineering at MIT, a gastroenterologist at Brigham and Women’s Hospital, and an associate member of the Broad Institute of MIT and Harvard.Traverso is the senior author of the new study, which appears today in Nature Communications. Mehmet Girayhan Say, an MIT research scientist, and Sean You, a former MIT postdoc, are the lead authors of the paper.A pill that communicatesPatients’ failure to take their medicine as prescribed is a major challenge that contributes to hundreds of thousands of preventable deaths and billions of dollars in health care costs annually.To make it easier for people to take their medication, Traverso’s lab has worked on delivery capsules that can remain in the digestive tract for days or weeks, releasing doses at predetermined times. However, this approach may not be compatible with all drugs.“We’ve developed systems that can stay in the body for a long time, and we know that those systems can improve adherence, but we also recognize that for certain medications, we can’t change the pill,” Traverso says. “The question becomes: What else can we do to help the person and help their health care providers ensure that they’re receiving the medication?”In their new study, the researchers focused on a strategy that would allow doctors to more closely monitor whether patients are taking their medication. Using radio frequency — a type of signal that can be easily detected from outside the body and is safe for humans — they designed a capsule that can communicate after the patient has swallowed it.There have been previous efforts to develop RF-based signaling devices for medication capsules, but those were all made from components that don’t break down easily in the body and would need to travel through the digestive system.To minimize the potential risk of any blockage of the GI tract, the MIT team decided to create an RF-based system that would be bioresorbable, meaning that it can be broken down and absorbed by the body. The antenna that sends out the RF signal is made from zinc, and it is embedded into a cellulose particle.“We chose these materials recognizing their very favorable safety profiles and also environmental compatibility,” Traverso says.The zinc-cellulose antenna is rolled up and placed inside a capsule along with the drug to be delivered. The outer layer of the capsule is made from gelatin coated with a layer of cellulose and either molybdenum or tungsten, which blocks any RF signal from being emitted.Once the capsule is swallowed, the coating breaks down, releasing the drug along with the RF antenna. The antenna can then pick up an RF signal sent from an external receiver and, working with a small RF chip, sends back a signal to confirm that the capsule was swallowed. This communication happens within 10 minutes of the pill being swallowed.The RF chip, which is about 400 by 400 micrometers, is an off-the-shelf chip that is not biodegradable and would need to be excreted through the digestive tract. All of the other components would break down in the stomach within a week.“The components are designed to break down over days using materials with well-established safety profiles, such as zinc and cellulose, which are already widely used in medicine,” Say says. “Our goal is to avoid long-term accumulation while enabling reliable confirmation that a pill was taken, and longer-term safety will continue to be evaluated as the technology moves toward clinical use.”Promoting adherenceTests in an animal model showed that the RF signal was successfully transmitted from inside the stomach and could be read by an external receiver at a distance up to 2 feet away. If developed for use in humans, the researchers envision designing a wearable device that could receive the signal and then transmit it to the patient’s health care team.The researchers now plan to do further preclinical studies and hope to soon test the system in humans. One patient population that could benefit greatly from this type of monitoring is people who have recently had organ transplants and need to take immunosuppressant drugs to make sure their body doesn’t reject the new organ.“We want to prioritize medications that, when non-adherence is present, could have a really detrimental effect for the individual,” Traverso says.Other populations that could benefit include people who have recently had a stent inserted and need to take medication to help prevent blockage of the stent, people with chronic infectious diseases such as tuberculosis, and people with neuropsychiatric disorders whose conditions may impair their ability to take their medication.The research was funded by Novo Nordisk, MIT’s Department of Mechanical Engineering, the Division of Gastroenterology at Brigham and Women’s Hospital, and the U.S. Advanced Research Projects Agency for Health (ARPA-H), which notes that the views and conclusions contained in this article are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the United States Government.

Costa Rica Rescues Orphaned Manatee Calf in Tortuguero

A young female manatee washed up alone on a beach in Tortuguero National Park early on January 5, sparking a coordinated effort by local authorities to save the animal. The calf, identified as a Caribbean manatee, appeared separated from its mother, with no immediate signs of her in the area. Park rangers received the first […] The post Costa Rica Rescues Orphaned Manatee Calf in Tortuguero appeared first on The Tico Times | Costa Rica News | Travel | Real Estate.

A young female manatee washed up alone on a beach in Tortuguero National Park early on January 5, sparking a coordinated effort by local authorities to save the animal. The calf, identified as a Caribbean manatee, appeared separated from its mother, with no immediate signs of her in the area. Park rangers received the first alert around 8 a.m. from visitors who spotted the stranded calf. Staff from the National System of Conservation Areas (SINAC) quickly arrived on site. They secured the animal to prevent further harm and began searching nearby waters and canals for the mother. Despite hours of monitoring, officials found no evidence of her presence. “The calf showed no visible injuries but needed prompt attention due to its age and vulnerability,” said a SINAC official involved in the operation. Without a parent nearby, the young manatee faced risks from dehydration and predators in the open beach environment. As the day progressed, the Ministry of Environment and Energy (MINAE) joined the response. They decided to relocate the calf for specialized care. In a first for such rescues in the region, teams arranged an aerial transport to move the animal safely to a rehabilitation facility. This step aimed to give the manatee the best chance at survival while experts assess its health. Once at the center, the calf received immediate feeding and medical checks. During one session, it dozed off mid-meal, a sign that it felt secure in the hands of caretakers. Biologists now monitor the animal closely, hoping to release it back into the wild if conditions allow. Manatees, known locally as manatíes, inhabit the coastal waters and rivers of Costa Rica’s Caribbean side. They often face threats from boat strikes, habitat loss, and pollution. Tortuguero, with its network of canals and protected areas, serves as a key habitat for the species. Recent laws have strengthened protections, naming the manatee a national marine symbol to raise awareness. This incident highlights the ongoing challenges for wildlife in the area. Local communities and tourists play a key role in reporting sightings, which can lead to timely interventions. Authorities encourage anyone spotting distressed animals to contact SINAC without delay. The rescue team expressed gratitude to those who reported the stranding. Their quick action likely saved the calf’s life. As investigations continue, officials will determine if environmental factors contributed to the separation. For now, the young manatee rests under professional care, a small win for conservation efforts in Limón. The post Costa Rica Rescues Orphaned Manatee Calf in Tortuguero appeared first on The Tico Times | Costa Rica News | Travel | Real Estate.

New Records Reveal the Mess RFK Jr. Left When He Dumped a Dead Bear in Central Park

Robert F. Kennedy Jr. says he left a bear cub's corpse in Central Park in 2014 to "be fun." Records newly obtained by WIRED show what he left New York civil servants to clean up.

This story contains graphic imagery.On August 4, 2024, when now-US health secretary Robert F. Kennedy Jr. was still a presidential candidate, he posted a video on X in which he admitted to dumping a dead bear cub near an old bicycle in Central Park 10 years prior, in a mystifying attempt to make the young bear’s premature death look like a cyclist’s hit and run.WIRED's Guide to How the Universe WorksYour weekly roundup of the best stories on health care, the climate crisis, new scientific discoveries, and more. At the time, Kennedy said he was trying to get ahead of a story The New Yorker was about to publish that mentioned the incident. But in coming clean, Kennedy solved a decade-old New York City mystery: How and why had a young black bear—a wild animal native to the state, but not to modern-era Manhattan—been found dead under a bush near West 69th Street in Central Park?WIRED has obtained documents that shed new light on the incident from the New York City Department of Parks and Recreation via a public records request. The documents—which include previously unseen photos of the bear cub—resurface questions about the bizarre choices Kennedy says he made, which left city employees dealing with the aftermath and lamenting the cub’s short life and grim fate.A representative for Kennedy did not respond for comment. The New York Police Department (NYPD) and the Parks Department referred WIRED to the New York Department of Environmental Conservation (NYDEC). NYDEC spokesperson Jeff Wernick tells WIRED that its investigation into the death of the bear cub was closed in late 2014 “due to a lack of sufficient evidence” to determine if state law was violated. They added that New York’s environmental conservation law forbids “illegal possession of a bear without a tag or permit and illegal disposal of a bear,” and that “the statute of limitations for these offenses is one year.”The first of a number of emails between local officials coordinating the handling of the baby bear’s remains was sent at 10:16 a.m. on October 6, 2014. Bonnie McGuire, then-deputy director at Urban Park Rangers (UPR), told two colleagues that UPR sergeant Eric Handy had recently called her about a “dead black bear” found in Central Park.“NYPD told him they will treat it like a crime scene so he can’t get too close,” McGuire wrote. “I’ve asked him to take pictures and send them over and to keep us posted.”“Poor little guy!” McGuire wrote in a separate email later that morning.According to emails obtained by WIRED, Handy updated several colleagues throughout the day, noting that the NYDEC had arrived on scene, and that the agency was planning to coordinate with the NYPD to transfer the body to the Bronx Zoo, where it would be inspected by the NYPD’s animal cruelty unit and the ASPCA. (This didn’t end up happening, as the NYDEC took the bear to a state lab near Albany.)Imagery of the bear has been public before—local news footage from October 2014 appears to show it from a distance. However, the documents WIRED obtained show previously unpublished images that investigators took of the bear on the scene, which Handy sent as attachments in emails to McGuire. The bear is seen laying on its side in an unnatural position. Its head protrudes from under a bush and rests next to a small patch of grass. Bits of flesh are visible through the bear’s black fur, which was covered in a few brown leaves.Courtesy of NYC Parks

U.S. Military Ends Practice of Shooting Live Animals to Train Medics to Treat Battlefield Wounds

The 2026 National Defense Authorization Act bans the use of live animals in live fire training exercises and prohibits "painful" research on domestic cats and dogs

U.S. Military Ends Practice of Shooting Live Animals to Train Medics to Treat Battlefield Wounds The 2026 National Defense Authorization Act bans the use of live animals in live fire training exercises and prohibits “painful” research on domestic cats and dogs Sarah Kuta - Daily Correspondent January 5, 2026 12:00 p.m. The U.S. military will no longer shoot live goats and pigs to help combat medics learn to treat battlefield injuries. Pexels The United States military is no longer shooting live animals as part of its trauma training exercises for combat medics. The 2026 National Defense Authorization Act, which was enacted on December 18, bans the use of live animals—including dogs, cats, nonhuman primates and marine mammals—in any live fire trauma training conducted by the Department of Defense. It directs military leaders to instead use advanced simulators, mannequins, cadavers or actors. According to the Associated Press’ Ben Finley, the bill ends the military’s practice of shooting live goats and pigs to help combat medics learn to treat battlefield injuries. However, the military is allowed to continue other practices involving animals, including stabbing, burning and testing weapons on them. In those scenarios, the animals are supposed to be anesthetized, per the AP. “With today’s advanced simulation technology, we can prepare our medics for the battlefield while reducing harm to animals,” says Florida Representative Vern Buchanan, who advocated for the change, in a statement shared with the AP. He described the military’s practices as “outdated and inhumane” and called the move a “major step forward in reducing unnecessary suffering.” Quick fact: What is the National Defense Authorization Act? The National Defense Authorization Act, or NDAA, is a law passed each year that authorizes the Department of Defense’s appropriated funds, greenlights the Department of Energy’s nuclear weapons programs and sets defense policies and restrictions, among other activities, for the upcoming fiscal year. Organizations have opposed the military’s use of live animals in trauma training, too, including the Physicians Committee for Responsible Medicine and the People for the Ethical Treatment of Animals. PETA, a nonprofit animal advocacy group, described the legislation as a “major victory for animals” that will “save countless animals from heinous cruelty” in a statement. The legislation also prohibits “painful research” on domestic cats and dogs, though exceptions can be made under certain circumstances, such as interests of national security. “Painful” research includes any training, experiments or tests that fall into specific pain categories outlined by the U.S. Department of Agriculture. For example, military cats and dogs can no longer be exposed to extreme environmental conditions or noxious stimuli they cannot escape, nor can they be forced to exercise to the point of distress or exhaustion. The bill comes amid a broader push to end the use of live animals in federal tests, studies and training, reports Linda F. Hersey for Stars and Stripes. After temporarily suspending live tissue training with animals in 2017, the U.S. Coast Guard made the ban permanent in 2018. In 2024, U.S. lawmakers directed the Department of Veterans Affairs to end its experiments on cats, dogs and primates. And in May 2025, the U.S. Navy announced it would no longer conduct research testing on cats and dogs. As the Washington Post’s Ernesto Londoño reported in 2013, the U.S. military has used animals for medical training since at least the Vietnam War. However, the practice largely went unnoticed until 1983, when the U.S. Army planned to anesthetize dogs, hang them from nylon mesh slings and shoot them at an indoor firing range in Maryland. When activists and lawmakers learned of the proposal, they decried the practice and convinced then-Defense Secretary Caspar Weinberger to ban the shooting of dogs. However, in 1984, the AP reported the U.S. military would continue shooting live goats and pigs for wound treatment training, with a military medical study group arguing “there is no substitute for the live animals as a study object for hands-on training.” In the modern era, it’s not clear how often and to what extent the military uses animals, per the AP. And despite the Department of Defense’s past efforts to minimize the use of animals for trauma training, a 2022 report from the Government Accountability Office, the watchdog agency charged with providing fact-based, nonpartisan information to Congress, determined that the agency was “unable to fully demonstrate the extent to which it has made progress.” The Defense Health Agency, the U.S. government entity responsible for the military’s medical training, says in a statement shared with the AP that it “remains committed to replacement of animal models without compromising the quality of medical training,” including the use of “realistic training scenarios to ensure medical providers are well-prepared to care for the combat-wounded.” Animal activists say technology has come a long way in recent decades so, beyond the animal welfare concerns, the military simply no longer needs to use live animals for training. Instead, military medics can simulate treating battlefield injuries using “cut suits,” or realistic suits with skin, blood and organs that are worn by a live person to mimic traumatic injuries. However, not everyone agrees. Michael Bailey, an Army combat medic who served two tours in Iraq, told the Washington Post in 2013 that his training with a sedated goat was invaluable. “You don’t get that [sense of urgency] from a mannequin,” he told the publication. “You don’t get that feeling of this mannequin is going to die. When you’re talking about keeping someone alive when physics and the enemy have done their best to do the opposite, it’s the kind of training that you want to have in your back pocket.” Get the latest stories in your inbox every weekday.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.