Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

New scientific interventions are here to fight climate change. But they aren't silver bullets

News Feed
Monday, April 22, 2024

TRACY, Calif. —  Behind a chain-link fence in a nondescript corner of San Joaquin County sits one of California’s — and perhaps the world’s — best hopes for combating climate change. Here at the nation’s first commercial direct air capture facility, towering trays of limestone mineral powder are working round-the-clock to remove carbon dioxide from the atmosphere. Robots skitter and whir around the 40-foot tall columns, which are part of a multi-step process that will ultimately convert the CO2 to concrete, rendering the planet-warming compound into nothing more harmful than a stone. “We need to do this all around the world,” said Vikrum Aiyer, head of public policy for Heirloom, the California-based company that owns and operates the facility. The good news, he said, is that “CO2 removed anywhere is CO2 removed everywhere.” Aggressive and impactful reporting on climate change, the environment, health and science. The idea for their carbon-removal technology was born in the wake of a 2018 special report from the Intergovernmental Panel on Climate Change, which found that limiting global warming to 1.5 degrees Celsius over preindustrial levels will require transformative innovations in energy, land, urban and industrial systems that go beyond national pledges to cut back on emissions. The 1.5-degree limit is an internationally-agreed-upon benchmark intended to prevent the worst effects of climate change. But the planet is already beginning to experience the effects of that warming, including worsening wildfires, simmering oceans, extreme heat waves, prolonged droughts, crop shortages and species loss. Last year was the planet’s hottest on record so far, with the global average temperature hovering around 2.67 degrees — or 1.48 degrees Celsius — warmer than the late 1800s. Maurisha Agustin, a production technician, works inside the 40-foot-tall carbon dioxide extractor. (Paul Kuroda / For The Times) While reducing the use of fossil fuels is the surest way to prevent that warming from getting worse, Aiyer and many other experts, researchers and public officials are converging around the notion that scientific intervention will be necessary. “We need to move fast, and we need more lawmakers to not move at the speed and scale of government, but rather at the speed and scale of our children’s generation, and the next generation, depending on it,” he said.The government is getting on board, however — as is Silicon Valley. The Tracy facility is capable of capturing 1,000 tons of CO2 per year, which will be stored for centuries in concrete that is already being used to build bridges, roads and other local infrastructure. The company makes a profit by selling carbon removal credits to buyers such as Microsoft, Stripe and Klarna, which are investing heavily in the technology.But it will take a lot more than 1,000 tons of annual CO2 removal to make a dent in global warming: Current CO2 levels in the atmosphere are 425 parts per million and counting. To truly make a difference will require carbon removal at the gigaton scale, or billions of tons each year, according to the IPCC. Trays layered with calcium hydroxide are designed to extract carbon dioxide from the atmosphere. (Paul Kuroda / For The Times) Christian Theuer, Heirloom’s policy communications manager, explains how carbon dioxide extraction works. (Paul Kuroda / For The Times) Earlier this year, the U.S. Department of Energy awarded $50 million to Heirloom and its partners to develop what will become a massive, million-ton direct air capture facility in Louisiana. The funding was part of a larger $1.2-billion investment into direct air capture technologies announced by the Biden administration last year. Several Los Angeles startups are also getting into the carbon removal game, including Captura, a company working to remove CO2 from the upper ocean, and Avnos, a company whose technology produces water while capturing carbon. Avnos also recently secured funding from the Department of Energy. The hope is that operating such projects around the country and the world will not only stop global warming, but eventually help reverse it, said Christian Theuer, Heirloom’s policy communications manager.“You halt it by getting to net zero, by not putting out any new CO2 emissions into the atmosphere,” Theuer said as he circled the towers in Tracy. “Then you can move into the negative emissions territory, where you’re cleaning up legacy pollution that is already warming the planet.”But direct air capture is only one of the many ways scientists, policymakers and researchers are hoping to alter the planet’s worrisome trajectory. Solar radiation modification — a form of geoengineering designed to artificially cool the planet — is also being seriously studied as a solution.There are many forms of solar radiation modification, including a concept known as marine cloud brightening, which uses sea salt particles to increase the reflectivity of clouds in order to reflect more sunlight away from Earth. A program run by the University of Washington recently initiated a test of the concept off the coast of San Francisco.But perhaps the most promising — or at least the most studied — geoengineering solution is known as stratospheric aerosol injections. Proposed methods for climate intervention include stratospheric aerosol injections and marine cloud brightening. (National Oceanic and Atmospheric Administration) The basic idea is to manually re-create the process of volcanic eruptions, which cool the planet by spewing sulfur and other particles into the stratosphere, temporarily blocking sunlight. Researchers already know from studying volcanoes that this infusion of sulfur creates a planetary cooling effect that can last two or three years. That and other forms of solar radiation modification are gaining so much attention that last year, the White House released a congressional report on the matter that not only considers its feasibility, but also outlines the urgent need for a framework to govern its research. Solar radiation modification “offers the possibility of cooling the planet significantly on a timescale of a few years,” the report says. “Such cooling would tend to reverse many of the negative consequences of climate change, albeit with ramifications which are now poorly understood.”Indeed, such a concept carries many potential benefits as well as potential risks, according to Chris Field, director of the Woods Institute for the Environment at Stanford University. Field led a major National Academies of Sciences report on solar geoengineering that is reflected in the White House’s findings. Towering structures of fans and trays capture carbon dioxide inside the Heirloom plant in Tracy. (Paul Kuroda / For The Times) “We have a pretty solid understanding that injecting aerosols in the stratosphere would make the average temperature cooler, but you would want to do a lot more than that if you were serious about a deployment of this stuff,” Field said. “You would want to know about the regional effects and you would want to know about the possibility of any unintended consequences outside the climate system. You’d also want to know a lot about what kinds of strategies you would have in place to make this governable.”Last year, a company called Make Sunsets made headlines when it began testing stratospheric aerosol injections by releasing sulfur-filled weather balloons from a launch site in Mexico. The move generated considerable opposition from the scientific community, which said it was too soon to conduct such experiments without more guardrails. An open letter signed by more than 110 physical and biological scientists in the wake of the incident affirmed “the importance of proceeding with responsible research.”Part of the reason for concern is that when sulfur dioxide leaves the stratosphere and sinks into the lower atmosphere, it can potentially fall as acid rain. That doesn’t mean the concept isn’t worth studying, but it does mean transparency about funding, research and results must be made available for broad discussion, Field said. Maurisha Agustin monitors a laptop inside the Heirloom plant. (Paul Kuroda / For The Times) “If it doesn’t have a certain level of public trust — especially in the world’s developing countries — there is essentially no way that it could be deployed and sustained over an extended period,” he said. He added that it is not really possible to design a stratospheric deployment that is limited to one part of the world’s geography, meaning that any injections would have global implications. Critically, Field and other experts said geoengineering should not take the place of decarbonization, or efforts to reduce or eliminate CO2 emissions around the world. California has committed to reaching carbon neutrality by 2045.“There’s no world in which solar geoengineering is a solution to climate change — it’s kind of a Band-Aid so that we don’t experience the full range of impacts of the climate change that’s still there,” Field said. “And it’s really important to recognize that, because it’s just a Band-Aid, we really don’t want it to take attention away from decarbonization.”While direct air capture and aerosol injections do show potential, there are other concepts for cooling the planet that have garnered some interest — or at least raised some eyebrows.A Southern California-based organization called the Planetary Sunshade Foundation has posited that the best solution to climate change isn’t here on Earth, but rather in outer space, where a massive sail-like structure could reflect sunlight away from the planet.“We are on track to continue to see significant increases in global temperature, and so solar radiation modification will continue to be talked about more and more,” said Morgan Goodwin, the foundation’s executive director. “And the planetary sunshade, we believe, is the sustainable, long-term way of doing solar radiation modification.” The sail — or more likely, the collection of sails — would need to measure approximately 580,000 square miles in size to offset 1 degree Celsius of warming, Goodwin said. It would need to be located at the Lagrange 1 Point in space, nearly 1 million miles from Earth — a location where the gravitational pull of the sun and Earth would essentially pin the object in place.The design requirement calls for a material that is thin, light and capable of blocking sunlight. Basically “aluminum foil,” Goodwin said. Offsetting 1 degree Celsius of global warming would require approximately 580,000 square miles of sunshade material nearly 1 million miles from Earth. (Planetary Sunshade Foundation) The result would be shading that is diffuse and spread out evenly across the entire globe. The amount of solar shading — about 1% — would be less than what most people can perceive on Earth, and its effect would be less than what some high-altitude clouds already have on sunlight, he said. The concept is similar to a solar sail spacecraft, forms of which have already been deployed in space. A proposed NASA solar cruiser mission would fly a large solar sail to the Lagrange 1 Point, though the project has stalled due to lack of funding. Goodwin said the Sunshade Foundation is advocating for that mission to fly, and for the U.S. government and other agencies to consider their technological proposals.“There’s so much energy and so many resources in the space sector, and part of what we’re saying is that the space sector can play a role as part of the climate solution,” he said. But like other climate adaptation solutions, there are potential downsides. For one, such a project would be large and expensive, and would require constant upkeep and maintenance when meteorites and space debris impact the sails. What’s more, there are unknown unknowns, such as whether even a small percentage of sunlight reduction could affect photosynthesis and have an adverse impact on agricultural crops. But the idea is more “sustainable and responsible” than other forms of solar radiation modification, Goodwin said, although he stressed that it, too, should not take the place of emissions-reduction efforts.“I feel much more hopeful about the future knowing that I can help advance this and help make this a reality, and give us all a much better shot,” he said. “You know, the future is far from certain, and it will be far stranger than we imagined.” Newsletter Toward a more sustainable California Get Boiling Point, our newsletter exploring climate change, energy and the environment, and become part of the conversation — and the solution. You may occasionally receive promotional content from the Los Angeles Times. Back on Earth, the limestone towers are already up and running in Heirloom’s 50,000 square-foot direct air capture facility in Tracy. The process there involves heating limestone in a massive kiln, which turns it into a mineral powder that is spread onto the towering stacks of trays. The powder acts like a sponge for CO2 — pulling it from the air and hardening into a crust. Once saturated, it is returned to the kiln where the CO2 is extracted, and the cycle begins again. The extracted CO2 is transported off site where Heirloom’s partner, CarbonCure Technologies, injects it into recycled water that is used to make concrete that is now being used throughout Bay Area infrastructure. “Once it’s in that concrete, it’s not going back into the atmosphere,” Theuer said of the CO2. “It’s permanently a part of that product. Even if in some scenario you blew up the building associated with it, it would still stay embedded amid the rubble and wouldn’t reenter the atmosphere. It’s now a stone.” The process is different than carbon capture, which involves capturing CO2 at the source where it is emitted. Carbon capture plays a role in the state’s cap-and-trade program, which sets limits on greenhouse gas emissions and allows companies to buy and sell their unused credits. That program has seen mixed results, with some critics saying it ultimately enables more pollution and creates more allowances for emissions. As a commercial operation, Heirloom sells its carbon offsets to a voluntary market at a rate of $600 to $1,000 per net ton, and the company says it does not take investments from oil and gas businesses. Already, some fossil fuel companies have shown interest in direct air capture technology, including at least seven oil and gas producers that have invested in, or are working to develop, direct air capture projects. Aiyer said he is closely watching Senate Bill 308, new legislation in California that would create a framework by which the state government approves standards for carbon removal. It would also compel heavy emitters in the state to account for their emissions through offset purchases or removals, among other measures. But there are potential downsides to direct air capture, including its high energy costs, which could limit the technology’s ability to expand. The Heirloom facility and many others run on 100% renewable energy, including wind and solar power, but experts say fusion and geothermal energy could be potential sources for such technology in the future. And while concrete storage is currently the best available option for carbon sequestration in the U.S., cement is a known contributor to fossil fuel emissions. Heirloom officials said they anticipate transitioning to underground storage wells in the future, pending permitting approval from the Environmental Protection Agency. Geologic storage is already used in parts of Europe, and there are at least 506 billion tons of accessible pore space for permanent CO2 storage in the U.S., they said. What’s more, the interest from Big Oil has met with broader concerns that carbon removal, geoengineering and other climate change solutions could have the unintended consequence of enabling society to continue its reliance on fossil fuels. If these tools can clean CO2 or cool the planet, the logic goes, then the use of gas-guzzling cars, smog-producing products, and oil and gas drilling can continue as usual.It’s a refrain many working in the climate adaptation space have heard before. Still, the steady hum of progress has given even those most entrenched in the battle against global warming some semblance of optimism for the future. “These technologies — whether it is our pathway of direct air capture or other carbon removal technologies — should not be a fig leaf for additional fossil fuel expansion,” Aiyer said. “We need to make sure that we are reducing our reliance on emissions and fossil fuel production, and we need to do these removals.”

Giant sun shades, 40-foot-tall air filters, stratospheric sulfur injections: Here are some of the wild and wondrous ways we might save the planet.

TRACY, Calif. — 

Behind a chain-link fence in a nondescript corner of San Joaquin County sits one of California’s — and perhaps the world’s — best hopes for combating climate change.

Here at the nation’s first commercial direct air capture facility, towering trays of limestone mineral powder are working round-the-clock to remove carbon dioxide from the atmosphere. Robots skitter and whir around the 40-foot tall columns, which are part of a multi-step process that will ultimately convert the CO2 to concrete, rendering the planet-warming compound into nothing more harmful than a stone.

“We need to do this all around the world,” said Vikrum Aiyer, head of public policy for Heirloom, the California-based company that owns and operates the facility. The good news, he said, is that “CO2 removed anywhere is CO2 removed everywhere.”

Aggressive and impactful reporting on climate change, the environment, health and science.

The idea for their carbon-removal technology was born in the wake of a 2018 special report from the Intergovernmental Panel on Climate Change, which found that limiting global warming to 1.5 degrees Celsius over preindustrial levels will require transformative innovations in energy, land, urban and industrial systems that go beyond national pledges to cut back on emissions.

The 1.5-degree limit is an internationally-agreed-upon benchmark intended to prevent the worst effects of climate change. But the planet is already beginning to experience the effects of that warming, including worsening wildfires, simmering oceans, extreme heat waves, prolonged droughts, crop shortages and species loss. Last year was the planet’s hottest on record so far, with the global average temperature hovering around 2.67 degrees — or 1.48 degrees Celsius — warmer than the late 1800s.

A production technician inside a towering structure with fans

Maurisha Agustin, a production technician, works inside the 40-foot-tall carbon dioxide extractor.

(Paul Kuroda / For The Times)

While reducing the use of fossil fuels is the surest way to prevent that warming from getting worse, Aiyer and many other experts, researchers and public officials are converging around the notion that scientific intervention will be necessary.

“We need to move fast, and we need more lawmakers to not move at the speed and scale of government, but rather at the speed and scale of our children’s generation, and the next generation, depending on it,” he said.

The government is getting on board, however — as is Silicon Valley. The Tracy facility is capable of capturing 1,000 tons of CO2 per year, which will be stored for centuries in concrete that is already being used to build bridges, roads and other local infrastructure. The company makes a profit by selling carbon removal credits to buyers such as Microsoft, Stripe and Klarna, which are investing heavily in the technology.

But it will take a lot more than 1,000 tons of annual CO2 removal to make a dent in global warming: Current CO2 levels in the atmosphere are 425 parts per million and counting. To truly make a difference will require carbon removal at the gigaton scale, or billions of tons each year, according to the IPCC.

Trays layered with calcium hydroxide are designed to extract carbon dioxide from the atmosphere.

Trays layered with calcium hydroxide are designed to extract carbon dioxide from the atmosphere.

(Paul Kuroda / For The Times)

A man in a black jacket and blue hard hat stands beside a bank of trays

Christian Theuer, Heirloom’s policy communications manager, explains how carbon dioxide extraction works.

(Paul Kuroda / For The Times)

Earlier this year, the U.S. Department of Energy awarded $50 million to Heirloom and its partners to develop what will become a massive, million-ton direct air capture facility in Louisiana. The funding was part of a larger $1.2-billion investment into direct air capture technologies announced by the Biden administration last year.

Several Los Angeles startups are also getting into the carbon removal game, including Captura, a company working to remove CO2 from the upper ocean, and Avnos, a company whose technology produces water while capturing carbon. Avnos also recently secured funding from the Department of Energy.

The hope is that operating such projects around the country and the world will not only stop global warming, but eventually help reverse it, said Christian Theuer, Heirloom’s policy communications manager.

“You halt it by getting to net zero, by not putting out any new CO2 emissions into the atmosphere,” Theuer said as he circled the towers in Tracy. “Then you can move into the negative emissions territory, where you’re cleaning up legacy pollution that is already warming the planet.”

But direct air capture is only one of the many ways scientists, policymakers and researchers are hoping to alter the planet’s worrisome trajectory. Solar radiation modification — a form of geoengineering designed to artificially cool the planet — is also being seriously studied as a solution.

There are many forms of solar radiation modification, including a concept known as marine cloud brightening, which uses sea salt particles to increase the reflectivity of clouds in order to reflect more sunlight away from Earth. A program run by the University of Washington recently initiated a test of the concept off the coast of San Francisco.

But perhaps the most promising — or at least the most studied — geoengineering solution is known as stratospheric aerosol injections.

Graphic showing proposed methods for climate intervention, including modifying incoming or outgoing solar radiation

Proposed methods for climate intervention include stratospheric aerosol injections and marine cloud brightening.

(National Oceanic and Atmospheric Administration)

The basic idea is to manually re-create the process of volcanic eruptions, which cool the planet by spewing sulfur and other particles into the stratosphere, temporarily blocking sunlight. Researchers already know from studying volcanoes that this infusion of sulfur creates a planetary cooling effect that can last two or three years.

That and other forms of solar radiation modification are gaining so much attention that last year, the White House released a congressional report on the matter that not only considers its feasibility, but also outlines the urgent need for a framework to govern its research.

Solar radiation modification “offers the possibility of cooling the planet significantly on a timescale of a few years,” the report says. “Such cooling would tend to reverse many of the negative consequences of climate change, albeit with ramifications which are now poorly understood.”

Indeed, such a concept carries many potential benefits as well as potential risks, according to Chris Field, director of the Woods Institute for the Environment at Stanford University. Field led a major National Academies of Sciences report on solar geoengineering that is reflected in the White House’s findings.

Towering structures of fans and trays that capture carbon dioxide

Towering structures of fans and trays capture carbon dioxide inside the Heirloom plant in Tracy.

(Paul Kuroda / For The Times)

“We have a pretty solid understanding that injecting aerosols in the stratosphere would make the average temperature cooler, but you would want to do a lot more than that if you were serious about a deployment of this stuff,” Field said. “You would want to know about the regional effects and you would want to know about the possibility of any unintended consequences outside the climate system. You’d also want to know a lot about what kinds of strategies you would have in place to make this governable.”

Last year, a company called Make Sunsets made headlines when it began testing stratospheric aerosol injections by releasing sulfur-filled weather balloons from a launch site in Mexico. The move generated considerable opposition from the scientific community, which said it was too soon to conduct such experiments without more guardrails. An open letter signed by more than 110 physical and biological scientists in the wake of the incident affirmed “the importance of proceeding with responsible research.”

Part of the reason for concern is that when sulfur dioxide leaves the stratosphere and sinks into the lower atmosphere, it can potentially fall as acid rain. That doesn’t mean the concept isn’t worth studying, but it does mean transparency about funding, research and results must be made available for broad discussion, Field said.

An Heirloom worker monitors a laptop

Maurisha Agustin monitors a laptop inside the Heirloom plant.

(Paul Kuroda / For The Times)

“If it doesn’t have a certain level of public trust — especially in the world’s developing countries — there is essentially no way that it could be deployed and sustained over an extended period,” he said. He added that it is not really possible to design a stratospheric deployment that is limited to one part of the world’s geography, meaning that any injections would have global implications.

Critically, Field and other experts said geoengineering should not take the place of decarbonization, or efforts to reduce or eliminate CO2 emissions around the world. California has committed to reaching carbon neutrality by 2045.

“There’s no world in which solar geoengineering is a solution to climate change — it’s kind of a Band-Aid so that we don’t experience the full range of impacts of the climate change that’s still there,” Field said. “And it’s really important to recognize that, because it’s just a Band-Aid, we really don’t want it to take attention away from decarbonization.”

While direct air capture and aerosol injections do show potential, there are other concepts for cooling the planet that have garnered some interest — or at least raised some eyebrows.

A Southern California-based organization called the Planetary Sunshade Foundation has posited that the best solution to climate change isn’t here on Earth, but rather in outer space, where a massive sail-like structure could reflect sunlight away from the planet.

“We are on track to continue to see significant increases in global temperature, and so solar radiation modification will continue to be talked about more and more,” said Morgan Goodwin, the foundation’s executive director. “And the planetary sunshade, we believe, is the sustainable, long-term way of doing solar radiation modification.”

The sail — or more likely, the collection of sails — would need to measure approximately 580,000 square miles in size to offset 1 degree Celsius of warming, Goodwin said. It would need to be located at the Lagrange 1 Point in space, nearly 1 million miles from Earth — a location where the gravitational pull of the sun and Earth would essentially pin the object in place.

The design requirement calls for a material that is thin, light and capable of blocking sunlight. Basically “aluminum foil,” Goodwin said.

An illustration of the sun's rays being deflected by a giant sunshade

Offsetting 1 degree Celsius of global warming would require approximately 580,000 square miles of sunshade material nearly 1 million miles from Earth.

(Planetary Sunshade Foundation)

The result would be shading that is diffuse and spread out evenly across the entire globe. The amount of solar shading — about 1% — would be less than what most people can perceive on Earth, and its effect would be less than what some high-altitude clouds already have on sunlight, he said.

The concept is similar to a solar sail spacecraft, forms of which have already been deployed in space. A proposed NASA solar cruiser mission would fly a large solar sail to the Lagrange 1 Point, though the project has stalled due to lack of funding. Goodwin said the Sunshade Foundation is advocating for that mission to fly, and for the U.S. government and other agencies to consider their technological proposals.

“There’s so much energy and so many resources in the space sector, and part of what we’re saying is that the space sector can play a role as part of the climate solution,” he said.

But like other climate adaptation solutions, there are potential downsides. For one, such a project would be large and expensive, and would require constant upkeep and maintenance when meteorites and space debris impact the sails. What’s more, there are unknown unknowns, such as whether even a small percentage of sunlight reduction could affect photosynthesis and have an adverse impact on agricultural crops.

But the idea is more “sustainable and responsible” than other forms of solar radiation modification, Goodwin said, although he stressed that it, too, should not take the place of emissions-reduction efforts.

“I feel much more hopeful about the future knowing that I can help advance this and help make this a reality, and give us all a much better shot,” he said. “You know, the future is far from certain, and it will be far stranger than we imagined.”

Newsletter

Toward a more sustainable California

Get Boiling Point, our newsletter exploring climate change, energy and the environment, and become part of the conversation — and the solution.

You may occasionally receive promotional content from the Los Angeles Times.

Back on Earth, the limestone towers are already up and running in Heirloom’s 50,000 square-foot direct air capture facility in Tracy.

The process there involves heating limestone in a massive kiln, which turns it into a mineral powder that is spread onto the towering stacks of trays. The powder acts like a sponge for CO2 — pulling it from the air and hardening into a crust. Once saturated, it is returned to the kiln where the CO2 is extracted, and the cycle begins again.

The extracted CO2 is transported off site where Heirloom’s partner, CarbonCure Technologies, injects it into recycled water that is used to make concrete that is now being used throughout Bay Area infrastructure.

“Once it’s in that concrete, it’s not going back into the atmosphere,” Theuer said of the CO2. “It’s permanently a part of that product. Even if in some scenario you blew up the building associated with it, it would still stay embedded amid the rubble and wouldn’t reenter the atmosphere. It’s now a stone.”

The process is different than carbon capture, which involves capturing CO2 at the source where it is emitted. Carbon capture plays a role in the state’s cap-and-trade program, which sets limits on greenhouse gas emissions and allows companies to buy and sell their unused credits. That program has seen mixed results, with some critics saying it ultimately enables more pollution and creates more allowances for emissions.

As a commercial operation, Heirloom sells its carbon offsets to a voluntary market at a rate of $600 to $1,000 per net ton, and the company says it does not take investments from oil and gas businesses. Already, some fossil fuel companies have shown interest in direct air capture technology, including at least seven oil and gas producers that have invested in, or are working to develop, direct air capture projects.

Aiyer said he is closely watching Senate Bill 308, new legislation in California that would create a framework by which the state government approves standards for carbon removal. It would also compel heavy emitters in the state to account for their emissions through offset purchases or removals, among other measures.

But there are potential downsides to direct air capture, including its high energy costs, which could limit the technology’s ability to expand. The Heirloom facility and many others run on 100% renewable energy, including wind and solar power, but experts say fusion and geothermal energy could be potential sources for such technology in the future.

And while concrete storage is currently the best available option for carbon sequestration in the U.S., cement is a known contributor to fossil fuel emissions. Heirloom officials said they anticipate transitioning to underground storage wells in the future, pending permitting approval from the Environmental Protection Agency. Geologic storage is already used in parts of Europe, and there are at least 506 billion tons of accessible pore space for permanent CO2 storage in the U.S., they said.

What’s more, the interest from Big Oil has met with broader concerns that carbon removal, geoengineering and other climate change solutions could have the unintended consequence of enabling society to continue its reliance on fossil fuels. If these tools can clean CO2 or cool the planet, the logic goes, then the use of gas-guzzling cars, smog-producing products, and oil and gas drilling can continue as usual.

It’s a refrain many working in the climate adaptation space have heard before. Still, the steady hum of progress has given even those most entrenched in the battle against global warming some semblance of optimism for the future.

“These technologies — whether it is our pathway of direct air capture or other carbon removal technologies — should not be a fig leaf for additional fossil fuel expansion,” Aiyer said. “We need to make sure that we are reducing our reliance on emissions and fossil fuel production, and we need to do these removals.”

Read the full story here.
Photos courtesy of

Controversial UK oil field publishes full scale of climate impact

The impact from the Rosebank oil field is estimated at nearly 250 million tonnes of planet warming CO2.

The UK's largest undeveloped oil field has revealed the full scale of its environmental impact, should it gain approval by the government.Developers of the Rosebank oil field said nearly 250 million tonnes of planet warming gas would be released from using oil products from the field.The amount would vary each year, but by comparison the UK's annual emissions in 2024 were 371 million tonnes.The field's developer said its emissions were "not significant" considering the UK's international climate commitments.Rosebank is an oil and gas field which lies about 80 miles north-west of Shetland and is one of the largest undeveloped discoveries of fossil fuels in UK waters.It is said to contain up to 300 million barrels of oil and some gas, and is owned by Norwegian energy giant Equinor and British firm Ithaca Energy.The field was originally approved in 2023, but in July a court ruled that a more detailed assessment of the field's environmental impact was required, taking into account the effect on the climate of burning any fossil fuels extracted from it.A public consultation has now been opened, and will run until 20th November 2025.The final decision on whether to approve the field will be made by the Energy Secretary.Until recently such projects were only required to consider the impact on the environment from extracting the fossil fuels.But in June last year the Supreme Court ruled that authorities must take account of the impact from also using the products, after a woman in Surrey challenged the development of her local gas project.This ruling was then used in a further challenge to the Rosebank oil field by environmental campaigners Uplift and Greenpeace - which was subsequently successful in January. Equinor was required to recalculate the "full impact" of the field and it now estimates that it will contribute an additional 249 million tonnes of the planet warming gas CO2 over the next 25 years. This is more than 50 times greater than the original figure of 4.5 million tonnes it gave from extracting the oil and gas.The UK has a target to produce no additional emissions by 2050 and Energy Secretary Ed Miliband has been vocal about the need to move away from fossil fuels. On Tuesday, he told an industry conference that the UK's dependence on fossil fuels was its "Achilles' heel" and argued clean power was the only way to reduce bills.The fossil fuels for the Rosebank field are not guaranteed to be used in the UK but would be sold on the international market.As such the project is unlikely to have an impact on lowering gas prices. The UK's independent climate advisors said in 2022 that any more domestic oil and gas extraction would have "at most, a marginal effect on prices".But Arne Gurtner, Equinor's senior vice president for the UK, has previously said that: "If the UK needs Rosebank oil, it will go to the UK through open market mechanisms."

The Blue-State Governors Who’ve Gone Weak on Climate Policy

If you scroll California Governor Gavin Newsom’s press releases, a portrait emerges of a undaunted climate fighter. One day he’s “paving [the] way for climate pollution-cutting technology”; another he’s launching “new international climate partnerships as Trump unleashes unhinged UN rant.” Last month, he announced the signing of a suite of measures “saving billions on electric bills, stabilizing [the] gas market and cutting pollution.” But look under the hood, and his heroic self-image dims somewhat. That big legislative package, for instance, also increases oil drilling and sets up a regional electricity market that “could tether California to fossil-fuel states at a time when the Trump administration is moving to roll back clean energy,” CalMatters reported.With Trump in death-drive mode on climate, canceling renewable energy projects left and right and even forbidding federal agencies to use language such as “climate change,” “green,”or “sustainable,” blue-state governors are well positioned to distinguish themselves and their party on the issue. They also have a responsibility: The states are our best hope for policy at a scale to match the problem. Yet a worrying trend is taking shape: Blue-state governors are making a big show of battling the Trump administration, but on climate issues they’ve been disappointing—and sometimes downright infuriating. Last month’s climate package wasn’t the California Democrats’ first flub this year. Over the summer, in what Politico dubbed the state’s “Great Climate Retreat,” they weakened limits on the carbon intensity of transportation fuels, rolled back environmental reviews for new housing, and lifted a cap on oil industry profits. “California was the vocal climate leader during the first Trump administration,” Chris Chavez, deputy policy director for the Coalition for Clean Air, told Politico. “It’s questionable whether or not that leadership is still there.” In Maryland, a climate advisory panel appointed by Governor Wes Moore has hit the brakes on a carbon trading measure, and late last month the state Department of the Environment, or MDE, appeared to cave to the Trump administration in abandoning some environmental justice metrics, which many fear means abandoning Black and brown communities to the whims of polluters. “It just appears to me that MDE blatantly does not want to be accountable in the massive pollution and the overburden of these heavy industrial industries,” Kamita Gray, a community leader in Brandywine—a majority-Black town that’s home to gas-fired power plants, a coal ash dump, and a Superfund site—told Maryland Matters.Governor Josh Shapiro of Pennsylvania too is under fire from climate critics. As attorney general, he authored a solid road map for protecting Pennsylvanians from the harmful environmental and health effects of fracking, but in his two years as governor he has allowed companies to be secretive about the chemicals used in fracking, and has not pushed to pass any laws curbing the industry. The Environmental Health Project, a Pittsburgh-based nonprofit, said “residents are still waiting for meaningful action. Our assessment concludes that the Shapiro administration has not fulfilled the commitments the governor made to Pennsylvanians in general and to frontline communities in particular.”And then there’s New York. Governor Kathy Hochul has been failing to follow the decarbonization timeline that was outlined in the state’s 2019 climate law, prompting environmental justice groups to sue her. She has delayed plans for “cap and invest” and is dragging her feet on building public renewables (despite the state’s landmark Build Public Renewables Act, which passed in 2023). She has seemingly caved to Trump by going ahead with gas pipelines she previously rejected. And it’s unclear whether she will sign a repeal of the outdated “100 foot rule,” which requires utility ratepayers to subsize the cost of connecting new customers to the gas system, a reform that has long been a priority of the state’s climate movement.Part of what’s so self-destructive here is that energy affordability is a highly salient issue for voters, taking center stage, for example in the governor’s race in New Jersey, where electricity rates have risen 22 percent. Interviewed in Friday’s New York Times on this subject, David Springe of the National Association of State Utility Consumer Advocates described electricity as “the new eggs,” an indicator of how costly daily life is for most Americans. Republicans in New York have seized on the problem as an opportunity to blame Democrats and climate-friendly policies. Stephan Edel of New York Renews, a progressive coalition fighting for clean energy, told me the governor “has spoken really eloquently about the need to do something about affordability.” Indeed, she endorsed Zohran Mamdani, the democratic socialist, for New York City mayor, partly for this reason. She often uses “affordability” to justify rightward shifts or retreats from climate policy, he said, adding that, inexplicably, she also shies away from touting the affordability benefits of climate policies that she does support. For example, in the state budget last year, she agreed to invest over a billion dollars in funding for climate programs, including one that will help make homes for low-income New Yorkers more energy efficient and another that will save school districts money by shifting to electric school buses. Instead of touting those wins for affordability—or embracing the potential of publicly owned renewables to do the same—she’s embraced the Republican narrative that climate policy and affordability are at odds.By contrast, Mikie Sherill in New Jersey has been touting clean energy as a solution to energy affordability woes. If she gets elected and continues this path, more blue state governors should follow her lead. The Democratic base is desperate to see its leaders stand up to Trump on both climate and affordability. (And when Democratic governors do stand up to Trump on anything—Illinois’s JB Pritzker on the militarization of Chicago, Maine’s Janet Mills on health care—their poll numbers spike.)And the reverse is also true—failing to differentiate themselves from Trump has been political suicide for many Democrats. “Every time one of these elected officials says, ‘I’m going to stand up to Trump, I’m going to protect affordability, I’m going to address climate change,’ and then doesn’t do it,” that’s a win for the Republicans, Edel said, because it fuels low turnout for Democratic voters. Climate offers an obvious opportunity to isolate the Republicans on a matter of broad concern, renew Americans’ faith in government, and make real progress. The Democratic governors flailing so badly on this issue have not only a moral obligation to change course, but also a political one.

If you scroll California Governor Gavin Newsom’s press releases, a portrait emerges of a undaunted climate fighter. One day he’s “paving [the] way for climate pollution-cutting technology”; another he’s launching “new international climate partnerships as Trump unleashes unhinged UN rant.” Last month, he announced the signing of a suite of measures “saving billions on electric bills, stabilizing [the] gas market and cutting pollution.” But look under the hood, and his heroic self-image dims somewhat. That big legislative package, for instance, also increases oil drilling and sets up a regional electricity market that “could tether California to fossil-fuel states at a time when the Trump administration is moving to roll back clean energy,” CalMatters reported.With Trump in death-drive mode on climate, canceling renewable energy projects left and right and even forbidding federal agencies to use language such as “climate change,” “green,”or “sustainable,” blue-state governors are well positioned to distinguish themselves and their party on the issue. They also have a responsibility: The states are our best hope for policy at a scale to match the problem. Yet a worrying trend is taking shape: Blue-state governors are making a big show of battling the Trump administration, but on climate issues they’ve been disappointing—and sometimes downright infuriating. Last month’s climate package wasn’t the California Democrats’ first flub this year. Over the summer, in what Politico dubbed the state’s “Great Climate Retreat,” they weakened limits on the carbon intensity of transportation fuels, rolled back environmental reviews for new housing, and lifted a cap on oil industry profits. “California was the vocal climate leader during the first Trump administration,” Chris Chavez, deputy policy director for the Coalition for Clean Air, told Politico. “It’s questionable whether or not that leadership is still there.” In Maryland, a climate advisory panel appointed by Governor Wes Moore has hit the brakes on a carbon trading measure, and late last month the state Department of the Environment, or MDE, appeared to cave to the Trump administration in abandoning some environmental justice metrics, which many fear means abandoning Black and brown communities to the whims of polluters. “It just appears to me that MDE blatantly does not want to be accountable in the massive pollution and the overburden of these heavy industrial industries,” Kamita Gray, a community leader in Brandywine—a majority-Black town that’s home to gas-fired power plants, a coal ash dump, and a Superfund site—told Maryland Matters.Governor Josh Shapiro of Pennsylvania too is under fire from climate critics. As attorney general, he authored a solid road map for protecting Pennsylvanians from the harmful environmental and health effects of fracking, but in his two years as governor he has allowed companies to be secretive about the chemicals used in fracking, and has not pushed to pass any laws curbing the industry. The Environmental Health Project, a Pittsburgh-based nonprofit, said “residents are still waiting for meaningful action. Our assessment concludes that the Shapiro administration has not fulfilled the commitments the governor made to Pennsylvanians in general and to frontline communities in particular.”And then there’s New York. Governor Kathy Hochul has been failing to follow the decarbonization timeline that was outlined in the state’s 2019 climate law, prompting environmental justice groups to sue her. She has delayed plans for “cap and invest” and is dragging her feet on building public renewables (despite the state’s landmark Build Public Renewables Act, which passed in 2023). She has seemingly caved to Trump by going ahead with gas pipelines she previously rejected. And it’s unclear whether she will sign a repeal of the outdated “100 foot rule,” which requires utility ratepayers to subsize the cost of connecting new customers to the gas system, a reform that has long been a priority of the state’s climate movement.Part of what’s so self-destructive here is that energy affordability is a highly salient issue for voters, taking center stage, for example in the governor’s race in New Jersey, where electricity rates have risen 22 percent. Interviewed in Friday’s New York Times on this subject, David Springe of the National Association of State Utility Consumer Advocates described electricity as “the new eggs,” an indicator of how costly daily life is for most Americans. Republicans in New York have seized on the problem as an opportunity to blame Democrats and climate-friendly policies. Stephan Edel of New York Renews, a progressive coalition fighting for clean energy, told me the governor “has spoken really eloquently about the need to do something about affordability.” Indeed, she endorsed Zohran Mamdani, the democratic socialist, for New York City mayor, partly for this reason. She often uses “affordability” to justify rightward shifts or retreats from climate policy, he said, adding that, inexplicably, she also shies away from touting the affordability benefits of climate policies that she does support. For example, in the state budget last year, she agreed to invest over a billion dollars in funding for climate programs, including one that will help make homes for low-income New Yorkers more energy efficient and another that will save school districts money by shifting to electric school buses. Instead of touting those wins for affordability—or embracing the potential of publicly owned renewables to do the same—she’s embraced the Republican narrative that climate policy and affordability are at odds.By contrast, Mikie Sherill in New Jersey has been touting clean energy as a solution to energy affordability woes. If she gets elected and continues this path, more blue state governors should follow her lead. The Democratic base is desperate to see its leaders stand up to Trump on both climate and affordability. (And when Democratic governors do stand up to Trump on anything—Illinois’s JB Pritzker on the militarization of Chicago, Maine’s Janet Mills on health care—their poll numbers spike.)And the reverse is also true—failing to differentiate themselves from Trump has been political suicide for many Democrats. “Every time one of these elected officials says, ‘I’m going to stand up to Trump, I’m going to protect affordability, I’m going to address climate change,’ and then doesn’t do it,” that’s a win for the Republicans, Edel said, because it fuels low turnout for Democratic voters. Climate offers an obvious opportunity to isolate the Republicans on a matter of broad concern, renew Americans’ faith in government, and make real progress. The Democratic governors flailing so badly on this issue have not only a moral obligation to change course, but also a political one.

Nations Meet to Consider Regulations to Drive a Green Transition in Shipping

Maritime nations are meeting in London to discuss regulations that could shift the shipping industry away from fossil fuels

The world’s largest maritime nations are gathering in London on Tuesday to consider adopting regulations that would move the shipping industry away from fossil fuels to slash emissions.If the deal is adopted, this will be the first time a global fee is imposed on planet-warming greenhouse gas emissions. Most ships today run on heavy fuel oil that releases carbon dioxide and other pollutants as it’s burned. That would be a major win for the climate, public health, the ocean and marine life, said Delaine McCullough at the Ocean Conservancy. For too long, ships have run on crude, dirty oil, she said.“This agreement provides a lesson for the world that legally-binding climate action is possible," McCullough, shipping program director for the nonprofit environmental advocacy group, said. Shipping emissions have grown over the last decade to about 3% of the global total as trade has grown and vessels use immense amounts of fossil fuels to transport cargo over long distances. The regulations would set a pricing system for gas emissions The regulations, or “Net-zero Framework,” sets a marine fuel standard that decreases, over time, the amount of greenhouse gas emissions allowed from using shipping fuels. The regulations also establish a pricing system that would impose fees for every ton of greenhouse gases emitted by ships above allowable limits, in what is effectively the first global tax on greenhouse gas emissions.There's a base-level of compliance for the allowable greenhouse gas intensity of fuels. There's a more stringent direct compliance target that requires further reduction in the greenhouse gas intensity.If ships sail on fuels with lower emissions than what's required under the direct compliance target, they earn “surplus units," effectively credits. Ships with the highest emissions would have to buy those credits from other ships under the pricing system, or from the IMO at $380 per ton of carbon dioxide equivalent to reach the base level of compliance. In addition, there's a penalty of $100 per ton of carbon dioxide equivalent to reach direct compliance. Ships that meet the base target but not the direct compliance one must pay the $100 per ton penalty, too. Ships whose greenhouse gas intensity is below a certain threshold will receive rewards for their performance.The fees could generate $11 billion to $13 billion in revenue annually. That would go into an IMO fund to invest in fuels and technologies needed to transition to green shipping, reward low-emission ships and support developing countries so they aren’t left behind with dirty fuels and old ships. Looking for alternative fuels Ships could lower their emissions by using alternative fuels, running on electricity or using onboard carbon capture technologies. Wind propulsion and other energy efficiency advancements can also help reduce fuel consumption and emissions as part of an energy transition. Large ships last about 25 years, so the industry would need to make changes and investments now to reach net-zero around 2050.If adopted, the regulations will enter into force in 2027. Large oceangoing ships over 5,000 gross tonnage, which emit 85% of the total carbon emissions from international shipping, would have to pay penalties for their emissions starting in 2028, according to the IMO. The International Chamber of Shipping, which represents over 80% of the world’s merchant fleet, is advocating for adoption. Concerns over biofuels produced from food crops Heavy fuel oil, liquefied natural gas and biodiesel will be dominant for most of the 2030s and 2040s, unless the IMO further incentivizes green alternatives, according to modeling from Transport and Environment, a Brussels-based environmental nongovernmental organization. The way the rules are designed essentially make biofuels the cheapest fuel to use to comply, but biofuels require huge amounts of crops, pushing out less profitable food production, often leading to additional land clearance and deforestation, said Faig Abbasov, shipping director at T&E. They are urging the IMO to promote scalable green alternatives, not recklessly promote biofuels produced from food crops, Abbasov said. As it stands now, the deal before the IMO won't deliver net-zero emissions by 2050, he added.Green ammonia will get to a price that it’s appealing to ship owners in the late 2040s — quite late in the transition, according to the modeling. The NGO also sees green methanol playing an important role in the long-term transition. The vote at the London meeting The IMO aims for consensus in decision-making but it's likely nations will vote on adopting the regulations. At the April meeting, a vote was called to approve the contents of the regulations. The United States was notably absent in April, but plans to participate in this meeting. Teresa Bui at Pacific Environment said she's optimistic “global momentum is on our side” and a majority of countries will support adoption. Bui is senior climate campaign director for the environmental nonprofit, which has consultative, or non-voting, status at the IMO. If it fails, shipping’s decarbonization will be further delayed.“It's difficult to know for sure what the precise consequences will be, but failure this week will certainly lead to delay, which means ships will emit more greenhouse gases than they would have done and for longer, continuing their outsized contribution to the climate crisis,” said John Maggs, of the Clean Shipping Coalition, who is at the London meeting. The Associated Press’ climate and environmental coverage receives financial support from multiple private foundations. AP is solely responsible for all content. Find AP’s standards for working with philanthropies, a list of supporters and funded coverage areas at AP.org.Copyright 2025 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.Photos You Should See – Oct. 2025

For the first time, we linked a new fossil fuel project to hundreds of deaths. Here’s the impact of Woodside’s Scarborough gas project

The results challenge claims that the climate risks posed by an individual fossil fuel project are negligible or cannot be quantified.

Massimo Valicchia/NurPhoto via Getty ImagesGlobal warming from Woodside’s massive Scarborough gas project off Western Australia would lead to 484 additional heat-related deaths in Europe alone this century, and kill about 16 million additional corals on the Great Barrier Reef during each future mass bleaching event, our new research has revealed. The findings were made possible by a robust, well-established formula that can determine the extent to which an individual fossil fuel project will warm the planet. The results can be used to calculate the subsequent harms to society and nature. The results close a fundamental gap between science and decision-making about fossil fuel projects. They also challenge claims by proponents that climate risks posed by a fossil fuel project are negligible or cannot be quantified. Each new investment in coal and gas, such as the Scarborough project, can now be linked to harmful effects both today and in the future. It means decision-makers can properly assess the range of risks a project poses to humanity and the planet, before deciding if it should proceed. Each new investment in coal and gas extraction can now be linked to harmful effects. Shutterstock Every tonne of CO₂ matters Scientists know every tonne of carbon dioxide (CO₂) emissions makes global warming worse. But proponents of new fossil fuel projects in Australia routinely say their future greenhouse gas emissions are negligible compared to the scale of global emissions, or say the effects of these emissions on global warming can’t be measured. The Scarborough project is approved for development and is expected to produce gas from next year. Located off WA, it includes wells connected by a 430km pipeline to an onshore processing facility. The gas will be liquefied and burned for energy, both in Australia and overseas. Production is expected to last more than 30 years. When natural gas is burned, more than 99% of it converts to CO₂. Woodside – in its own evaluation of the Scarborough gas project – claimed: it is not possible to link GHG [greenhouse gas] emissions from Scarborough with climate change or any particular climate-related impacts given the estimated […] emissions associated with Scarborough are negligible in the context of existing and future predicted global GHG concentrations. But what if there was a way to measure the harms? That’s the question our research set out to answer. A method already exists to directly link global emissions to the climate warming they cause. It uses scientific understanding of Earth’s systems, direct observations and climate model simulations. According to the IPCC, every 1,000 billion tonnes of CO₂ emissions causes about 0.45°C of additional global warming. This arithmetic forms the basis for calculating how much more CO₂ humanity can emit to keep warming within the Paris Agreement goals. But decisions about future emissions are not made at the global scale. Instead, Earth’s climate trajectory will be determined by the aggregation of decisions on many individual projects. That’s why our research extended the IPCC method to the level of individual projects – an approach that we illustrate using the Scarborough gas project. Scarborough’s harms laid bare Over its lifetime, the Scarborough project is expected to emit 876 million tonnes of CO₂. We estimate these emissions will cause 0.00039°C of additional global warming. Estimates such as these are typically expressed as a range, alongside a measure of confidence in the projection. In this case, there is a 66–100% likelihood that the Scarborough project will cause additional global warming of between 0.00024°C and 0.00055°C. This additional warming might seem small – but it will cause tangible damage. The human cost of global warming can be quantified by considering how many people will be left outside the “human climate niche” – in other words, the climate conditions in which societies have historically thrived. We calculated that the additional warming from the Scarborough project will expose 516,000 people globally to a local climate that’s beyond the hot extreme of the human climate niche. We drilled down into specific impacts in Europe, where suitable health data was available across 854 cities. Our best estimate is that this project would cause an additional 484 heat-related deaths in Europe by the end of this century. The project would cause an additional 484 heat-related deaths in Europe by the end of this century. Antonio Masiello/Getty Images And what about harm to nature? Using research into how accumulated exposure to heat affects coral reefs, we found about 16 million corals on the Great Barrier Reef would be lost in each new mass bleaching. The existential threat to the Great Barrier Reef from human-caused global warming is already being realised. Additional warming instigated by new fossil fuel projects will ratchet up pressure on this natural wonder. As climate change worsens, countries are seeking to slash emissions to meet their commitments under the Paris Agreement. So, we looked at the impact of Scarborough’s emissions on Australia’s climate targets. We calculated that by 2049, the anticipated emissions from the Scarborough project alone – from production, processing and domestic use – will comprise 49% of Australia’s entire annual CO₂ emissions budget under our commitment to net-zero by 2050. Beyond the 2050 deadline, all emissions from the Scarborough project would require technologies to permanently remove CO₂ from the atmosphere. Achieving that would require a massive scale-up of current technologies. It would be more prudent to reduce greenhouse gas emissions where possible. ‘Negligible’ impacts? Hardly Our findings mean the best-available scientific evidence can now be used by companies, governments and regulators when deciding if a fossil fuel project will proceed. Crucially, it is no longer defensible for companies proposing new or extended fossil fuel projects to claim the climate harms will be negligible. Our research shows the harms are, in fact, tangible and quantifiable – and no project is too small to matter. In response to issues raised in this article, a spokesperson for Woodside said: Woodside is committed to playing a role in the energy transition. The Scarborough reservoir contains less than 0.1% carbon dioxide. Combined with processing design efficiencies at the offshore floating production unit and onshore Pluto Train 2, the project is expected to be one of the lowest carbon intensity sources of LNG delivered into north Asian markets. We will reduce the Scarborough Energy Project’s direct greenhouse gas emissions to as low as reasonably practicable by incorporating energy efficiency measures in design and operations. Further information on how this is being achieved is included in the Scarborough Offshore Project Proposal, sections 4.5.4.1 and 7.1.3 and in approved Australian Government environment plans, available on the regulator’s website. A report prepared by consultancy ACIL Allen has found that Woodside’s Scarborough Energy Project is expected to generate an estimated A$52.8 billion in taxation and royalty payments, boost GDP by billions of dollars between 2024 and 2056 and employ 3,200 people during peak construction in Western Australia. Sarah Perkins-Kirkpatrick receives funding from the Australian Research CouncilAndrew King receives funding from the Australian Research Council (Future Fellowship and Centre of Excellence for 21st Century Weather) and the National Environmental Science Program. Nicola Maher receives funding from the Australian Research Council. Wesley Morgan is a fellow with the Climate Council of Australia

Emissions linked to Woodside’s Scarborough gas project could lead to at least 480 deaths, research suggests

Scientists have examined the $16.5bn project’s climate impact and found it could expose more than half a million people to unprecedented heatSign up for climate and environment editor Adam Morton’s free Clear Air newsletter hereGreenhouse emissions linked to a gas field being developed by Australian fossil fuel company Woodside could lead to the death of at least 480 people and expose more than half a million to unprecedented heat, new research suggests.Scientists from six universities have examined the climate impact of the $16.5bn Scarborough project, which is expected to start production off the northern Western Australian coast next year and could result in 876m tonnes of carbon dioxide being released into the atmosphere over three decades. Continue reading...

Greenhouse emissions linked to a gas field being developed by Australian fossil fuel company Woodside could lead to the death of at least 480 people and expose more than half a million to unprecedented heat, new research suggests.Scientists from six universities have examined the climate impact of the $16.5bn Scarborough project, which is expected to start production off the northern Western Australian coast next year and could result in 876m tonnes of carbon dioxide being released into the atmosphere over three decades.Emissions from the project would contribute 0.00039C to global heating, they estimate. Using recently developed techniques known as climate attribution, they suggest that fraction of warming would expose an additional 516,000 people globally to unprecedented heat, and result in the loss of an extra 16m coral colonies in the Great Barrier Reef in every future bleaching event.It would also push 356,000 people outside the “human climate niche” – the reasonable zone for human survival, with an upper limit for average annual temperature of 29C.The study, published in the journal Climate Action, forms part of a new focus in climate science that aims to quantify the impacts of individual fossil fuel projects and emitters.A Woodside spokesperson said the company would reduce the Scarborough project’s “direct greenhouse gas emissions to as low as reasonably practicable by incorporating energy efficiency measures in design and operations”.“Climate change is caused by the net global concentration of greenhouse gases in the atmosphere,” they added. “It cannot be attributed to any one event, country, industry or activity.” Sign up to get climate and environment editor Adam Morton’s Clear Air column as a free newsletterBut study co-author Andrew King, an associate professor in climate science at the University of Melbourne, said the research illustrated that individual projects had tangible climate impacts.“Often the argument made for individual projects that would involve greenhouse gas emissions is that they are quite small [in the global context],” he said. “But really, especially with larger fossil fuel projects, we can very clearly say that the impacts are not negligible.”Study co-author Sarah Perkins-Kirkpatrick, a professor of climate science at the Australian National University, said that given Australia’s emission reductions requirements, in the coming decades Scarborough would also constitute a greater proportion of the country’s CO2 emissions budget.“By 2049, assuming that the Scarborough project emits the same amount year on year, it’s going to be chewing up half of our emissions budget,” Perkins-Kirkpatrick said. “That’s the stuff that we burn here, let alone what we export overseas.”Beyond 2050, emissions from Scarborough would require CO2 removal from the atmosphere – “technologies that either don’t exist yet, or that we can’t scale up”, she said.skip past newsletter promotionSign up to Clear Air AustraliaAdam Morton brings you incisive analysis about the politics and impact of the climate crisisPrivacy Notice: Newsletters may contain information about charities, online ads, and content funded by outside parties. If you do not have an account, we will create a guest account for you on theguardian.com to send you this newsletter. You can complete full registration at any time. For more information about how we use your data see our Privacy Policy. We use Google reCaptcha to protect our website and the Google Privacy Policy and Terms of Service apply.after newsletter promotionUnder a middle-of-the-road emissions scenario, warming contributed by Scarborough would cause an additional 484 heat-related deaths in Europe alone by the end of the century, the researchers calculated. Taking into account a reduction in cold-related deaths in Europe, they estimate a net contribution of 118 additional deaths.The researchers calculated the project’s climate impacts with a tool used by the Intergovernmental Panel on Climate Change, called the Transient Climate Response to CO2 Emissions (TCRE). The TCRE estimates that every 1,000 gigatonnes of CO2 emissions causes 0.45C of additional global heating.Scarborough’s contribution to global heating had a likely range between 0.00024C and 0.00055C, the study’s authors estimated, but they noted “direct measurement of global mean temperature changes is not possible with this level of precision”.The approach could be used by governments and companies to assess whether future “projects fall within acceptable levels of environmental and societal risk”, the researchers suggest. The tool “could be part of the process for determining whether a project should be approved”, King said.Yuming Guo, a professor of global environmental health and biostatistics at Monash University, who was not involved in the study, said the study provided “a valuable tool for conducting environmental risk assessments”.“Considering the vast number of fossil fuel projects operating globally, the cumulative contribution of these emissions to climate change is substantial and should not be overlooked,” he said.Dr Kat O’Mara, a senior lecturer in environmental management and sustainability at Edith Cowan University, who was not part of the study, said: “With the International Court of Justice’s advisory opinion a few months ago that countries need to take action to protect the climate, this new research reinforces the need to consider climate impacts beyond just how much carbon is being produced.”

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.