Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

Louisiana’s flagship university lets oil firms influence research – for a price

News Feed
Sunday, April 21, 2024

For $5m, Louisiana’s flagship university will let an oil company weigh in on faculty research activities. Or, for $100,000, a corporation can participate in a research study, with “robust” reviewing powers and access to all resulting intellectual property.Those are the conditions outlined in a boilerplate document that Louisiana State University’s fundraising arm circulated to oil majors and chemical companies affiliated with the Louisiana Chemical Association, an industry lobbying group, according to emails disclosed in response to a public records request by the Lens.Records show that after Shell donated $25m in 2022 to LSU to create the Institute for Energy Innovation, the university gave the fossil fuel corporation license to influence research and coursework for the university’s new concentration in carbon capture, use and storage.Afterward, LSU’s fundraising entity, the LSU Foundation, used this partnership as a model to shop around to members of the Louisiana Chemical Association, such as ExxonMobil, Air Products and CF Industries, which have proposed carbon capture projects in Louisiana.For $2m, Exxon became the institute’s first “strategic partner-level donor”, a position that came with robust review of academic study output and with the ability to focus research activities. Another eight companies have discussed similar deals with LSU, according to a partnership update that LSU sent to Shell last summer.Some students, academics and experts said such relationships raise questions about academic freedom and public trust.Asked to comment, the Institute for Energy Innovation’s director, Brad Ives, defended the partnerships, as did the oil majors. Two more companies have since entered into partnerships with the Institute for Energy Innovation, said Ives. But Shell is the only company to have donated at the level that gave the company a seat on the advisory board that chooses the institute’s research. The head of the Louisiana Chemical Association and the Louisiana Mid-Continent Oil and Gas Association also sit on the advisory board, which can vote to stop a research project from moving forward.Ives said being able to work with oil and gas companies is “really a key to advancing energy innovation”.A spokesperson for Shell said: “We’re proud to partner with LSU to contribute to the growing compendium of peer-reviewed climate science and advance the effort to identify multiple pathways that can lead to more energy with fewer emissions.”An ExxonMobil spokesperson said: “Our collaboration with LSU and the Institute for Energy Innovation includes an allocation for research in carbon capture utilization and storage, as well as advanced recycling studies.”LSU has long had a close-relationship with oil majors, the names of which hang from buildings and equipment at the university. Nearly 40% of LSU funding comes from the state, which received a good chunk of its revenue from oil and gas activities until the 1980s. In recent years, oil and gas revenue has made up less than 10% of the state budget.But the new, highly visible partnership with Shell took the closeness a step further, promising corporations voting power over the Institute for Energy Innovation’s research activities in return for their investment.“I have a hard time seeing a faculty member engaged in legitimate research being eager for an oil company or representative of a chemical company to vote on his or her research agenda,” said Robert Mann, political commentator and former LSU journalism professor. “That is an egregious violation of academic freedom.“You don’t expect to see it written down like that,” Mann said, after the Lens asked him to review the boilerplate document that outlines what companies can expect in return for their donations to LSU’s Institute for Energy Innovation. It is not appropriate, Mann said, for faculty research to be driven by the decisions of the dean of a university, let alone an outside industry representative. “If you’re a faculty member in that unit you should know that the university is fine with auctioning off your academic freedom,” he said. “That’s what they’re doing.”Ives of LSU said its Institute for Energy Innovation is no different to similar institutes across the US, including the Texas Bureau of Economic Geology, which performs research supported by corporate donors. “I think researchers saying that somehow having corporate funding for research damages the integrity of that research is a little far-fetched,” Ives said.Research performed at the institute is subject to the faculty’s individual ethics training and subject to peer-review, he said. “A donor that provided money that goes to the institute isn’t going to be able to influence the outcome of that research in any way.”Asked about the relationship with the institute and industry, Karsten Thompson, the interim dean of the College of Engineering at LSU said: “To me, it’s not a conflict at all. It’s a partnership because they’re the ones that are going to make the largest initial impacts on reducing CO2 emissions.”Some observers, noting that fossil fuel companies have previously shown a vested interest in obscuring scientific conclusions, question the reliability of academic studies sponsored by fossil fuel companies. Exxon, for example, denied the risk of human-caused climate change for decades, noted Jane Patton, an LSU alumna and the US fossil economy campaign manager for the Center for International Environmental Law.After the Lens asked her to review LSU communication on the matter, Patton said she suspected that fossil fuel companies have had a say in what does and doesn’t get studied in relation to risky endeavors, such as carbon capture, which involves chemically stripping carbon dioxide from industrial emissions and piping it underground. For her, the LSU documents basically proved her fear. “This is the first time I’ve seen actual evidence of it,” Patton said. “This is a gross misuse of the public trust.”To Patton, the perceived blurring of academic objectivity could not come at a worse time in Louisiana, as the climate crisis makes the state less habitable and housing more expensive. “It’s just disheartening,” she said. “To find that the state’s flagship institution is allowing industry to determine the research agenda. No wonder it’s so hard to find peer-reviewed research about how bad this is.”Records show that Shell helped to tailor what LSU students would learn in the six courses offered under the institute’s carbon capture, use and storage (CCUS) concentration that debuted a couple years ago. The LSU alumnus Lee Stockwell, Shell’s general manager of CCUS, sat on the search committee for the Energy Institute executive director, served on the petroleum engineering advisory board, and was very involved in shaping the carbon capture curriculum.Stockwell directed questions about Shell’s partnership with the university to LSU.Stockwell was not the only oil representative to help design the curriculum. BP, Chevron, ConocoPhillips and ExxonMobil also had representatives on the ad hoc advisory committee that designed carbon capture coursework within the petroleum engineering department, according to a July 2022 email from Thompson. At least one cohort of students took two elective courses at LSU designed by the oil majors and another 10 students were expected to take the full concentration beginning in 2022.LSU is not alone in this practice, Thompson said. At most engineering departments in the country, an active Industrial Advisory Committee (IAC) weighs in on curricula, so that degrees evolve as technology changes, helping students land internships and jobs.LSU faculty has not been similarly engaged with renewable energy companies, because oil and gas companies have the resources to tackle the climate crisis now – and are not reliant on future technology, Thompson said. “Renewable energy is much more abstract,” he said. “So, I think that’s the difference. It’s not that we don’t care as much.”Fossil fuel companies have been finding their way into classrooms for decades, in part to help the industry retain a positive public image in the face of a heating planet.Some students do not approve of the university’s partnerships with fossil fuel companies, or any financial ties with them.For a decade now, students across the nation have filed complaints and demanded divestment from fossil fuels and hundreds of institutions have agreed. Locally, the LSU Climate Pelicans, an interdisciplinary group of students, have called for the university to divest endowment funds from the fossil fuel industry.Inspired by the Climate Pelicans’ work toward divestment, the LSU graduate student Alicia Cerquone, who sits on the LSU’s student senate, sponsored a divestment resolution. The measure passed in a 37-2 vote last year, according to LSU’s student newspaper. Though investment in fossil fuels amounts to only 2 to 3% of the endowment, it’s an important philosophical step, Cerquone said.Cerquone is also troubled by the influence that industry has on the Institute for Energy Innovation and fears other corporations could control other departments’ curriculums. “These entities are going to have a say in what we pay to learn here,” she said.The fossil fuel industry has made forays into academia beyond Louisiana. ExxonMobil and Shell have both helped fund a similar Energy Initiative at Massachusetts Institute of Technology (MIT), where the highest-level donors can have an office on MIT’s campus, according to Inside Climate News. In 2021, Exxon funded and co-wrote a research paper with MIT researchers with conclusions that supported the argument for federal subsidies for carbon capture and use.

Louisiana State University allowed Shell to influence studies after a $25m donation and sought funds from other fossil fuel firmsThis story is co-published with the Lens, a non-profit newsroom in New OrleansFor $5m, Louisiana’s flagship university will let an oil company weigh in on faculty research activities. Or, for $100,000, a corporation can participate in a research study, with “robust” reviewing powers and access to all resulting intellectual property.Those are the conditions outlined in a boilerplate document that Louisiana State University’s fundraising arm circulated to oil majors and chemical companies affiliated with the Louisiana Chemical Association, an industry lobbying group, according to emails disclosed in response to a public records request by the Lens. Continue reading...

For $5m, Louisiana’s flagship university will let an oil company weigh in on faculty research activities. Or, for $100,000, a corporation can participate in a research study, with “robust” reviewing powers and access to all resulting intellectual property.

Those are the conditions outlined in a boilerplate document that Louisiana State University’s fundraising arm circulated to oil majors and chemical companies affiliated with the Louisiana Chemical Association, an industry lobbying group, according to emails disclosed in response to a public records request by the Lens.

Records show that after Shell donated $25m in 2022 to LSU to create the Institute for Energy Innovation, the university gave the fossil fuel corporation license to influence research and coursework for the university’s new concentration in carbon capture, use and storage.

Afterward, LSU’s fundraising entity, the LSU Foundation, used this partnership as a model to shop around to members of the Louisiana Chemical Association, such as ExxonMobil, Air Products and CF Industries, which have proposed carbon capture projects in Louisiana.

For $2m, Exxon became the institute’s first “strategic partner-level donor”, a position that came with robust review of academic study output and with the ability to focus research activities. Another eight companies have discussed similar deals with LSU, according to a partnership update that LSU sent to Shell last summer.

Some students, academics and experts said such relationships raise questions about academic freedom and public trust.

Asked to comment, the Institute for Energy Innovation’s director, Brad Ives, defended the partnerships, as did the oil majors. Two more companies have since entered into partnerships with the Institute for Energy Innovation, said Ives. But Shell is the only company to have donated at the level that gave the company a seat on the advisory board that chooses the institute’s research. The head of the Louisiana Chemical Association and the Louisiana Mid-Continent Oil and Gas Association also sit on the advisory board, which can vote to stop a research project from moving forward.

Ives said being able to work with oil and gas companies is “really a key to advancing energy innovation”.

A spokesperson for Shell said: “We’re proud to partner with LSU to contribute to the growing compendium of peer-reviewed climate science and advance the effort to identify multiple pathways that can lead to more energy with fewer emissions.”

An ExxonMobil spokesperson said: “Our collaboration with LSU and the Institute for Energy Innovation includes an allocation for research in carbon capture utilization and storage, as well as advanced recycling studies.”

LSU has long had a close-relationship with oil majors, the names of which hang from buildings and equipment at the university. Nearly 40% of LSU funding comes from the state, which received a good chunk of its revenue from oil and gas activities until the 1980s. In recent years, oil and gas revenue has made up less than 10% of the state budget.

But the new, highly visible partnership with Shell took the closeness a step further, promising corporations voting power over the Institute for Energy Innovation’s research activities in return for their investment.

“I have a hard time seeing a faculty member engaged in legitimate research being eager for an oil company or representative of a chemical company to vote on his or her research agenda,” said Robert Mann, political commentator and former LSU journalism professor. “That is an egregious violation of academic freedom.

“You don’t expect to see it written down like that,” Mann said, after the Lens asked him to review the boilerplate document that outlines what companies can expect in return for their donations to LSU’s Institute for Energy Innovation. It is not appropriate, Mann said, for faculty research to be driven by the decisions of the dean of a university, let alone an outside industry representative. “If you’re a faculty member in that unit you should know that the university is fine with auctioning off your academic freedom,” he said. “That’s what they’re doing.”

Ives of LSU said its Institute for Energy Innovation is no different to similar institutes across the US, including the Texas Bureau of Economic Geology, which performs research supported by corporate donors. “I think researchers saying that somehow having corporate funding for research damages the integrity of that research is a little far-fetched,” Ives said.

Research performed at the institute is subject to the faculty’s individual ethics training and subject to peer-review, he said. “A donor that provided money that goes to the institute isn’t going to be able to influence the outcome of that research in any way.”

Asked about the relationship with the institute and industry, Karsten Thompson, the interim dean of the College of Engineering at LSU said: “To me, it’s not a conflict at all. It’s a partnership because they’re the ones that are going to make the largest initial impacts on reducing CO2 emissions.”

Some observers, noting that fossil fuel companies have previously shown a vested interest in obscuring scientific conclusions, question the reliability of academic studies sponsored by fossil fuel companies. Exxon, for example, denied the risk of human-caused climate change for decades, noted Jane Patton, an LSU alumna and the US fossil economy campaign manager for the Center for International Environmental Law.

After the Lens asked her to review LSU communication on the matter, Patton said she suspected that fossil fuel companies have had a say in what does and doesn’t get studied in relation to risky endeavors, such as carbon capture, which involves chemically stripping carbon dioxide from industrial emissions and piping it underground. For her, the LSU documents basically proved her fear. “This is the first time I’ve seen actual evidence of it,” Patton said. “This is a gross misuse of the public trust.”

To Patton, the perceived blurring of academic objectivity could not come at a worse time in Louisiana, as the climate crisis makes the state less habitable and housing more expensive. “It’s just disheartening,” she said. “To find that the state’s flagship institution is allowing industry to determine the research agenda. No wonder it’s so hard to find peer-reviewed research about how bad this is.”

Records show that Shell helped to tailor what LSU students would learn in the six courses offered under the institute’s carbon capture, use and storage (CCUS) concentration that debuted a couple years ago. The LSU alumnus Lee Stockwell, Shell’s general manager of CCUS, sat on the search committee for the Energy Institute executive director, served on the petroleum engineering advisory board, and was very involved in shaping the carbon capture curriculum.

Stockwell directed questions about Shell’s partnership with the university to LSU.

Stockwell was not the only oil representative to help design the curriculum. BP, Chevron, ConocoPhillips and ExxonMobil also had representatives on the ad hoc advisory committee that designed carbon capture coursework within the petroleum engineering department, according to a July 2022 email from Thompson. At least one cohort of students took two elective courses at LSU designed by the oil majors and another 10 students were expected to take the full concentration beginning in 2022.

LSU is not alone in this practice, Thompson said. At most engineering departments in the country, an active Industrial Advisory Committee (IAC) weighs in on curricula, so that degrees evolve as technology changes, helping students land internships and jobs.

LSU faculty has not been similarly engaged with renewable energy companies, because oil and gas companies have the resources to tackle the climate crisis now – and are not reliant on future technology, Thompson said. “Renewable energy is much more abstract,” he said. “So, I think that’s the difference. It’s not that we don’t care as much.”

Fossil fuel companies have been finding their way into classrooms for decades, in part to help the industry retain a positive public image in the face of a heating planet.

Some students do not approve of the university’s partnerships with fossil fuel companies, or any financial ties with them.

For a decade now, students across the nation have filed complaints and demanded divestment from fossil fuels and hundreds of institutions have agreed. Locally, the LSU Climate Pelicans, an interdisciplinary group of students, have called for the university to divest endowment funds from the fossil fuel industry.

Inspired by the Climate Pelicans’ work toward divestment, the LSU graduate student Alicia Cerquone, who sits on the LSU’s student senate, sponsored a divestment resolution. The measure passed in a 37-2 vote last year, according to LSU’s student newspaper. Though investment in fossil fuels amounts to only 2 to 3% of the endowment, it’s an important philosophical step, Cerquone said.

Cerquone is also troubled by the influence that industry has on the Institute for Energy Innovation and fears other corporations could control other departments’ curriculums. “These entities are going to have a say in what we pay to learn here,” she said.

The fossil fuel industry has made forays into academia beyond Louisiana. ExxonMobil and Shell have both helped fund a similar Energy Initiative at Massachusetts Institute of Technology (MIT), where the highest-level donors can have an office on MIT’s campus, according to Inside Climate News. In 2021, Exxon funded and co-wrote a research paper with MIT researchers with conclusions that supported the argument for federal subsidies for carbon capture and use.

Read the full story here.
Photos courtesy of

James Watson, Co-Discoverer of DNA's Double Helix, Dead at 97

(Reuters) -James D. Watson, the brilliant but controversial American biologist whose 1953 discovery of the structure of DNA, the molecule of...

(Reuters) -James D. Watson, the brilliant but controversial American biologist whose 1953 discovery of the structure of DNA, the molecule of heredity, ushered in the age of genetics and provided the foundation for the biotechnology revolution of the late 20th century, has died at the age of 97.His death was confirmed by Cold Spring Harbor Laboratory on Long Island, where he worked for many years. The New York Times reported that Watson died this week at a hospice on Long Island.In his later years, Watson's reputation was tarnished by comments on genetics and race that led him to be ostracized by the scientific establishment.Even as a younger man, he was known as much for his writing and for his enfant-terrible persona - including his willingness to use another scientist's data to advance his own career - as for his science.His 1968 memoir, "The Double Helix," was a racy, take-no-prisoners account of how he and British physicist Francis Crick were first to determine the three-dimensional shape of DNA. The achievement won the duo a share of the 1962 Nobel Prize in medicine and eventually would lead to genetic engineering, gene therapy and other DNA-based medicine and technology.Crick complained that the book "grossly invaded my privacy" and another colleague, Maurice Wilkins, objected to what he called a "distorted and unfavorable image of scientists" as ambitious schemers willing to deceive colleagues and competitors in order to make a discovery.In addition, Watson and Crick, who did their research at Cambridge University in England, were widely criticized for using raw data collected by X-ray crystallographer Rosalind Franklin to construct their model of DNA - as two intertwined staircases - without fully acknowledging her contribution. As Watson put it in "Double Helix," scientific research feels "the contradictory pulls of ambition and the sense of fair play."In 2007, Watson again caused widespread anger when he told the Times of London that he believed testing indicated the intelligence of Africans was "not really ... the same as ours."Accused of promoting long-discredited racist theories, he was shortly afterwards forced to retire from his post as chancellor of New York's Cold Spring Harbor Laboratory (CSHL). Although he later apologized, he made similar comments in a 2019 documentary, calling different racial attainment on IQ tests - attributed by most scientists to environmental factors - "genetic."James Dewey Watson was born in Chicago on April 6, 1928, and graduated from the University of Chicago in 1947 with a zoology degree. He received his doctorate from Indiana University, where he focused on genetics. In 1951, he joined Cambridge's Cavendish Lab, where he met Crick and began the quest for the structural chemistry of DNA.Just waiting to be found, the double helix opened the doors to the genetics revolution. In the structure Crick and Watson proposed, the steps of the winding staircase were made of pairs of chemicals called nucleotides or bases. As they noted at the end of their 1953 paper, "It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material."That sentence, often called the greatest understatement in the history of biology, meant that the base-and-helix structure provided the mechanism by which genetic information can be precisely copied from one generation to the next. That understanding led to the discovery of genetic engineering and numerous other DNA techniques.Watson and Crick went their separate ways after their DNA research. Watson was only 25 years old then and while he never made another scientific discovery approaching the significance of the double helix, he remained a scientific force."He had to figure out what to do with his life after achieving what he did at such a young age," biologist Mark Ptashne, who met Watson in the 1960s and remained a friend, told Reuters in a 2012 interview. "He figured out how to do things that played to his strength."That strength was playing "the tough Irishman," as Ptashne put it, to become one of the leaders of the U.S. leap to the forefront of molecular biology. Watson joined the biology department at Harvard University in 1956."The existing biology department felt that molecular biology was just a flash in the pan," Harvard biochemist Guido Guidotti related. But when Watson arrived, Guidotti said he immediately told everyone in the biology department – scientists whose research focused on whole organisms and populations, not cells and molecules – "that they were wasting their time and should retire."That earned Watson the decades-long enmity of some of those traditional biologists, but he also attracted young scientists and graduate students who went on to forge the genetics revolution.In 1968 Watson took his institution-building drive to CSHL on Long Island, splitting his time between CSHL and Harvard for eight years. The lab at the time was "just a mosquito-infested backwater," said Ptashne. As director, "Jim turned it into a vibrant, world-class institution."In 1990, Watson was named to lead the Human Genome Project, whose goal was to determine the order of the 3 billion chemical units that constitute humans' full complement of DNA. When the National Institutes of Health, which funded the project, decided to seek patents on some DNA sequences, Watson attacked the NIH director and resigned, arguing that genome knowledge should remain in the public domain.In 2007 he became the second person in the world to have his full genome sequenced. He made the sequence publicly available, arguing that concerns about "genetic privacy" were overwrought but made an exception by saying he did not want to know if he had a gene associated with an increased risk of Alzheimer's disease. Watson did have a gene associated with novelty-seeking.His proudest accomplishment, Watson told an interviewer for Discover magazine in 2003, was not discovering the double helix - which "was going to be found in the next year or two" anyway - but his books."My heroes were never scientists," he said. "They were Graham Greene and Christopher Isherwood - you know, good writers."Watson cherished the bad-boy image he presented to the world in "Double Helix," friends said, and he emphasized it in his 2007 book, "Avoid Boring People."Married with two sons, he often disparaged women in public statements and boasted of chasing what he called "popsies." But he personally encouraged many female scientists, including biologist Nancy Hopkins of the Massachusetts Institute of Technology."I certainly couldn't have had a career in science without his support, I believe," said Hopkins, long outspoken about anti-woman bias in science. "Jim was hugely supportive of me and other women. It's an odd thing to understand."(Editing by Bill Trott and Rosalba O'Brien)Copyright 2025 Thomson Reuters.Photos You Should See – Oct. 2025

How dry cleaning might raise the risk of cancer, and what to do about it

A new study found links between a toxic dry cleaning chemical and liver cancer. Trump officials are reconsidering an EPA plan to phase it out.

Environmental and health advocates have long sought to curb dangerous chemicals used in dry cleaning. Now a new study adds to the evidence of harms, linking a common dry cleaning chemical to liver disease and cancer.Here’s what you need to know about the risks.How dry cleaning worksDespite the name, clothes don’t stay “dry” when dry-cleaned. Instead, garments are loaded into drums and soaked in chemicals that dissolve stains.Before modern cleaning systems were developed, workers would manually move solvent-soaked garments from washer to dryer, creating a direct exposure route and increasing the chances of environmental contamination. Today, cleaners wash and dry everything in the same drum. Clothes are then pressed or steamed.What are the health risks?One of the most widely used dry cleaning chemicals is an industrial solvent called PCE, also known as tetrachloroethylene, perchloroethylene and perc. The Environmental Protection Agency considers PCE a probable human carcinogen, and it has been linked to bladder cancer, multiple myeloma and non-Hodgkin lymphoma.Follow Climate & environmentLast year, the EPA announced a new rule banning PCE for most uses and giving dry cleaners a 10-year phaseout period. The Trump administration is reconsidering this decision, according to an EPA spokesperson.But a recent study found that exposure to PCE tripled the risk of liver fibrosis, excessive scarring that can lead to liver disease and liver cancer. Researchers found that repeated exposure to PCE, which is detectable in an estimated 7 percent of the U.S. population, increased the likelihood of liver damage.“If you’ve been exposed to PCE, talk to your doctor about it,” said Brian P. Lee, associate professor of medicine at the University of Southern California and the study’s lead author.The study found that higher-income households faced the most risk from PCE exposure because they are more likely to use dry cleaning. People who work in cleaning facilities or live nearby also face an elevated risk due to prolonged exposure. Once the chemical gets into a building or the ground, it’s very difficult to remove. The EPA estimates that roughly 6,000 dry cleaners, mostly small businesses, still use PCE in the United States.Lee said the study adds to the growing list of harms associated with the chemical.Studies have also shown that PCE can linger on clothing after dry cleaning and that it builds up over time after repeated cleanings and can contaminate indoor air as it vaporizes.“We now have decades of studies confirming that these widespread dry cleaning chemicals are exposing people to unacceptable risks of cancer and other serious diseases,” said Jonathan Kalmuss-Katz, a senior attorney at the advocacy group Earthjustice. “Those harms are entirely avoidable.”Jon Meijer, director of membership at the Drycleaning & Laundry Institute International, a trade association, said the group supports the original rule passed under the Biden administration and explained that those who still use the chemical do so because of financial challenges.“It’s time for a phaseout of perchloroethylene,” Meijer said. “There are so many alternatives out there.”Safer alternativesExperts say there are plenty of alternatives to using harmful dry cleaning chemicals, but some are safer than others.Go dry-clean free: Try purchasing clothes that don’t need to be dry-cleaned. Selecting cotton blazers and other professional attire, for example, can reduce dry cleaning visits, said Tasha Stoiber, a senior scientist at the Environmental Working Group, an advocacy group. “The easiest thing is to look for professional staples that don’t need to be dry-cleaned,” Stoiber said.Hand-washing: Some “dry-clean only” garments can be delicately hand-washed in cold water with a gentle detergent specific to the particular fabric you’re using. Hanging delicate clothes to dry after a wash can avoid damage from heated air dryers.Steaming: Steam cleaning can freshen up clothes by removing odors, bacteria and small stains without needing a full wash.Commercial wet cleaning: Commercial wet cleaning relies on biodegradable detergents and water instead of toxic solvents.Liquid carbon dioxide: Experts suggest selecting dry cleaners that use liquid carbon dioxide as a solvent to remove dirt and avoid toxic chemicals.Watch out for greenwashingSome businesses advertise eco-friendly or “green” alternatives to dry cleaning. But experts warn that new chemicals can have their own downsides.Diana Ceballos, an assistant professor in the University of Washington’s Department of Environmental and Occupational Health Sciences, said that dry cleaning technology has improved dramatically and that new solvents and machinery can be more effective than PCE.Still, Cebellos said that there can be a lot of “regrettable substitution” when it comes to alternatives to PCE and that some that are billed as “safe” or “organic” could also be toxic.“Most options are far better,” Cebellos said. “But there’s a lot of greenwashing” out there, so people should ask questions and do “a little bit of research.”

Emergency Crews Respond to Ammonia Leak at Mississippi Fertilizer Plant

(Reuters) -Emergency teams responded on Wednesday to a chemical leak, possibly caused by an explosion, at a fertilizer plant in Central Mississippi...

(Reuters) -Emergency teams responded on Wednesday to a chemical leak, possibly caused by an explosion, at a fertilizer plant in Central Mississippi, according to Governor Tate Reeves and media reports. No injuries were immediately reported.A tall cloud of orange vapor could be seen rising over the facility in a photo from the scene of the plant posted online by television station WJTV, a CBS News affiliate in Jackson, Mississippi, the state capital.The governor identified the leaking chemical as anhydrous ammonia, a toxic substance that can cause irritation to the eyes and lungs.Fertilizer manufacturer CF Industries said in statement that "all employees and contractors on site at the time of the incident have been safely accounted for, with no injuries reported."It said it had notified government officials of an "incident" that occurred at its Yazoo City Complex at about 4:25 p.m. CT (2225 GMT).Reeves said in a statement posted on social media that state authorities were "actively responding to the anhydrous ammonia leak" at the plant, located about 50 miles (80.5 km) north of Jackson."Initial reports indicate the leak is due to an explosion. At this time, no deaths or injuries have been reported," the governor said.Personnel from the Mississippi Department of Environmental Quality were among various teams dispatched to the scene, WJTV reported.The governor said residents living along two nearby streets should be evacuated, while other residents in the vicinity were encouraged to shelter in place.(Reporting by Steve Gorman in Los Angeles; Additional reporting by Costas Pita in Los Angeles and Angela Christy in Bengaluru; Editing by Himani Sarkar and Stephen Coates)Copyright 2025 Thomson Reuters.

EPA Proposes Approving Fifth ‘Forever Chemical’ Pesticide

November 5, 2025 – In line with its plan to continue pesticide approvals despite the government shutdown, the Environmental Protection Agency (EPA) announced this week that it will register a new weedkiller for use in corn, soybean, wheat, and canola fields. The herbicide, epyrifenacil, is the fifth pesticide set to be approved by the agency […] The post EPA Proposes Approving Fifth ‘Forever Chemical’ Pesticide appeared first on Civil Eats.

November 5, 2025 – In line with its plan to continue pesticide approvals despite the government shutdown, the Environmental Protection Agency (EPA) announced this week that it will register a new weedkiller for use in corn, soybean, wheat, and canola fields. The herbicide, epyrifenacil, is the fifth pesticide set to be approved by the agency within the last few months that fits into the group of chemicals called PFAS (per- and polyfluoroalkyl substances), based on a commonly used definition. And the agency is moving fast. The first pesticide was proposed for registration in April; that pesticide, called cyclobutrifluram, was finalized today. PFAS are linked to a wide range of health harms and are commonly called “forever chemicals” because they don’t break down easily and they accumulate in soil and water. In 2023, however, the EPA officially adopted a narrower definition. With the proposed approval of epyrifenacil, the agency for the first time has waded into the debate over which pesticides are PFAS and whether concerns voiced over other recent registrations of similar pesticides are warranted. In its announcement, the agency noted that epyrifenacil “contains a fluorinated carbon” and directed the public to a new website where it lays out its position on pesticides that contain fluorinated carbons. Whether those chemicals fit the definition of PFAS doesn’t matter, the agency argues, because under the law, the EPA evaluates the risks of each chemical individually. “Regardless of whether a chemical meets a specific structural definition or is part of a category or class of chemicals, the Agency utilizes a comprehensive assessment process under [the Federal Insecticide, Fungicide, and Rodenticide Act] to evaluate the potential risks of pesticide use,” it said. “This robust, chemical-specific process considers both hazard and exposure in determining whether the pesticide under review may pose risk to human health or the environment.” Epyrifenacil was developed by Japan-based Sumitomo Chemical, which owns Valent U.S.A. in the U.S. It’s one of a new class of herbicides designed to help farmers kill weeds that have developed resistance to popular chemicals like glyphosate. It’s also specifically designed for farmers to spray on cover crops and in no-till systems to prep fields for planting. The pesticide industry has lobbied in recent years to get the EPA to approve new chemicals to address what it calls an “innovation backlog.” Nathan Donley, environmental health science director at the Center for Biological Diversity, said in a statement that an “office run by chemical lobbyists” is whitewashing what is already known about the risks of PFAS. “Not only did the pesticide industry get a proposed approval of its dangerous new product,” he said, “but it also got a shiny new government website parroting its misleading talking points.” (Link to this post.) The post EPA Proposes Approving Fifth ‘Forever Chemical’ Pesticide appeared first on Civil Eats.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.