COP30’s biofuel gamble could cost the global food supply — and the planet
First the plant stalk is harvested, shredded, and crushed. The extracted juice is then combined with bacteria and yeast in large bioreactors, where the sugars are metabolized and converted into ethanol and carbon dioxide. From there, the liquid is typically distilled to maximize ethanol concentration, before it is blended with gasoline. You know the final products as biofuels — mostly made from food crops like sugarcane and corn, and endorsed by everyone from agricultural lobbyists to activists and billionaires. Biofuels were developed decades ago to be cheaper, greener alternatives to planet-polluting petrol. As adoption has expanded — now to the point of a pro-biofuel agenda being pushed this week at COP30 in Belém, Brazil — their environmental and food accessibility footprint has remained a source of fierce debate. The governments of Brazil, Italy, Japan, and India are spearheading a new pledge calling for the rapid global expansion of biofuels as a commitment to decarbonizing transportation energy. Though the text of the pledge itself is vague, as most COP pledges tend to be, the target embedded in an accompanying International Energy Agency report is clear: expand the global use of so-called sustainable fuels from 2024 levels by at least four times, so that by 2035, sustainable fuels cover 10 percent of all global road transport demand, 15 percent of aviation demand, and 35 percent of shipping fuel demand. By Friday, the last official day of COP30, at least 23 countries have joined the pledge — while Brazilian delegates have been working “hand in hand with industry groups” to get language backing biofuels into the final summit deal. “Latin America, South East Asia, Africa — they need to improve their efficiency, their energy, and Brazil has a model for this [in its rollout of biofuels],” Roberto Rodrigues, Brazil’s special envoy for agriculture at the summit, said on a COP panel last weekend. As of the time of this story’s publication, the pro-biofuel language hadn’t made it into the latest draft text that outlines the main outcome of the summit released Friday — although it appears the summit could end without a deal. Read Next At COP30 in Brazil, countries plan to armor themselves against a warming world Zoya Teirstein Though scientists continue to experiment with utilizing other raw materials for biofuels — a list which includes agricultural and forestry waste, cooking oils, and algae — the bulk of feedstocks almost exclusively come from the fields. Different types of food crops are used for different types of biofuels; sugary and starchy crops, such as sugar cane, wheat, and corn, are often made into ethanol; while oily crops, like soybeans, rapeseed, and palm oil, are largely used for biodiesel. The cycle goes a little like this: Farmers, desperate to replace cropland lost to biofuel production, raze more forests and plow up more grasslands, resulting in deforestation that tends to release far more carbon than burning biofuels saves. But as large-scale production continues to expand, there may be insufficient land, water, and energy available for another big biofuel boom — prompting many researchers and climate activists to question whether countries should be aiming to scale these markets at all. (Thomson Reuters reported that global biofuel production has increased ninefold since 2000.) Biofuels account for the vast majority of “sustainable fuels” currently used worldwide. An analysis by a clean transport advocacy organization published last month found that, because of the indirect impacts to farming and land use, biofuels are responsible globally for 16 percent more CO2 emissions than the planet-polluting fossil fuels they replace. In fact, the report surmises that by 2030, biofuel crops could require land equivalent to the size of France. More than 40 million hectares of Earth’s cropland is already devoted to biofuel feedstocks, an area roughly the size of Paraguay. The EU Deforestation-Free Regulation, or EUDR, cites soybeans among the commodities driving deforestation worldwide. “While countries are right to transition away from fossil fuels, they also need to ensure their plans don’t trigger unintended consequences, such as more deforestation either at home or abroad,” said Janet Ranganathan, managing director of strategy, learning, and results at the World Resources Institute in a statement responding to the Belém pledge. She added that rapidly expanding global biofuel production would have “significant implications for the world’s land, especially without guardrails to prevent large-scale expansion of land dedicated to biofuels, which drives ecosystem loss.” Other environmental issues found to be associated with converting food crops into biofuels include water pollution from fertilizers and pesticides, air pollution, and soil erosion. One study, conducted a decade ago, showed that, when accounting for all the inputs needed to produce different varieties of ethanol or biodiesel — machinery, seeds, water, electricity, fertilizers, transportation, and more — producing fuel-grade ethanol or biodiesel requires significantly more energy input than it creates. Read Next ‘Everyone is exhausted’: First week of COP30 marked by frustration with slow progress Bob Berwyn, Inside Climate News Nonetheless, it’s not a shock to see Brazil betting big on biofuels at COP30. In Brazil, biofuels make up roughly a quarter of transportation fuels — a remarkably high proportion compared to most other countries. And that share, dominated by sugarcane ethanol, is still on an upward climb, with the Belém pledge evidence of the country’s intended trajectory. A spokesperson from Brazil’s foreign affairs ministry told The Guardian that the “proponents of the pledge (which include Japan, Italy, India, among others) are calling upon countries to support quadrupling production and use of sustainable fuels — a group of gaseous and liquid fuels that include e-fuels, biogases, biofuels, hydrogen and its derivatives.” They added that the goal is based on the new IEA report that underscores the production increase as necessary to aggressively reduce emissions. That report suggests that if current and proposed national and international policies are implemented and fully legislated, global biofuel use and production would double by 2035. “The word ‘sustainable’ is not used lightly, neither in the report nor in the pledge,” the spokesperson said. The issue, of course, is in how emissions footprints of something like ethanol fuel production are even measured. Much like many other climate sources, scientists argue that tracking greenhouse gas emissions linked to ethanol fuel should account for emissions at every stage — production, processing, distribution, and vehicle use. Yet that isn’t often the case: in fact, a 2024 paper found that Brazil’s national biofuel policy does not account for all direct and indirect emissions in its calculation. The exclusions are evident of a larger trend, according to University of Minnesota environmental scientist Jason Hill. “Overall, either those studies have not included [direct and indirect emissions], or they found ways to spread those impacts over anticipated production, decades, centuries, or so forth, that tend to dilute those effects. So the accounting methods aren’t really consistent with what the best science shows,” said Hill, who studies the environmental and economic consequences of food, energy, and biofuel production. In short: More biofuels means either more intensive agriculture on a smaller share of available cropland, which has its own detrimental environmental effects, or expansion of cropland, and the land-use emissions and environmental impacts that can carry. “Biofuel production today is already a bad idea. And doubling [that] is doubling down on an existing problem,” said Hill. Read Next COP30 has big plans to save the rainforest. Indigenous activists say it’s not enough. Frida Garza & Miacel Spotted Elk Moreover, diverting crops like corn and soybeans from dinner plates to fuel tanks doesn’t just spark brutal competition for land and resources, it can also spike food prices and leave the world’s most vulnerable populations with less to eat. A 2022 analysis of the U.S. Renewable Fuel Standard, the world’s largest biofuel program, found that it has led to increased food prices for Americans, with corn prices rising by 30 percent and other crops such as soybean and wheat spiking by around 20 percent. This then set off a domino effect: Increasing annual nationwide fertilizer use by up to 8 percent and water quality degradants by up to 5 percent. The carbon intensity of corn ethanol produced under the mandate has ended up at least equaling the planet-polluting effects of gasoline. “Biofuel mandates essentially create a baseline demand that can leave food crops by the wayside,” says Ginni Braich, a data scientist at the University of Colorado Boulder who has worked as a senior advisor to government clean technology and emission reduction programs. That’s because of the issue with supply and demand of food crops — higher competition for feedstocks hikes up the prices of food, feed, and farming inputs. When there are biofuel mandates, which the IEA report underlying the Belém pledge recommends, demand remains inelastic — no matter the changes in yields, growing and weather conditions, prices, or markets. Say there is a huge drought that decimates crop yields, as one example, the baseline demand of biofuels still needs to be met despite depleted food stocks. In terms of supply, increasing growing area for biofuels typically means less area available to grow food crops — which can cause prices to surge alongside supply shortages, and spike costs of seed, inputs, and land. Nutritional implications should also be taken into account, according to Braich. Not only do people’s diets tend to shift when food gets more costly, but cropping patterns are already revealing adverse shifts in dietary diversity, which could be exacerbated by a further concentration on fewer crops. The Belém pledge, and Brazil’s intention to lead a global expansion of the biofuels market, does not bode well for people’s food accessibility nor for the future of the planet, warns Braich. “It seems quite paradoxical for Brazil to promote the large-scale expansion of biofuels and also be seen as a protector of forests,” she said. “Is it better than decarbonization and fossil fuel divestment rhetoric without actual transition pathways? Yes, but in a lot of ways it is also greenwashing.” This story was originally published by Grist with the headline COP30’s biofuel gamble could cost the global food supply — and the planet on Nov 21, 2025.
What was once considered a climate holy grail comes with serious tradeoffs. The world wants more of it anyway.
First the plant stalk is harvested, shredded, and crushed. The extracted juice is then combined with bacteria and yeast in large bioreactors, where the sugars are metabolized and converted into ethanol and carbon dioxide. From there, the liquid is typically distilled to maximize ethanol concentration, before it is blended with gasoline.
You know the final products as biofuels — mostly made from food crops like sugarcane and corn, and endorsed by everyone from agricultural lobbyists to activists and billionaires. Biofuels were developed decades ago to be cheaper, greener alternatives to planet-polluting petrol. As adoption has expanded — now to the point of a pro-biofuel agenda being pushed this week at COP30 in Belém, Brazil — their environmental and food accessibility footprint has remained a source of fierce debate.
The governments of Brazil, Italy, Japan, and India are spearheading a new pledge calling for the rapid global expansion of biofuels as a commitment to decarbonizing transportation energy.
Though the text of the pledge itself is vague, as most COP pledges tend to be, the target embedded in an accompanying International Energy Agency report is clear: expand the global use of so-called sustainable fuels from 2024 levels by at least four times, so that by 2035, sustainable fuels cover 10 percent of all global road transport demand, 15 percent of aviation demand, and 35 percent of shipping fuel demand. By Friday, the last official day of COP30, at least 23 countries have joined the pledge — while Brazilian delegates have been working “hand in hand with industry groups” to get language backing biofuels into the final summit deal.
“Latin America, South East Asia, Africa — they need to improve their efficiency, their energy, and Brazil has a model for this [in its rollout of biofuels],” Roberto Rodrigues, Brazil’s special envoy for agriculture at the summit, said on a COP panel last weekend. As of the time of this story’s publication, the pro-biofuel language hadn’t made it into the latest draft text that outlines the main outcome of the summit released Friday — although it appears the summit could end without a deal.
Though scientists continue to experiment with utilizing other raw materials for biofuels — a list which includes agricultural and forestry waste, cooking oils, and algae — the bulk of feedstocks almost exclusively come from the fields. Different types of food crops are used for different types of biofuels; sugary and starchy crops, such as sugar cane, wheat, and corn, are often made into ethanol; while oily crops, like soybeans, rapeseed, and palm oil, are largely used for biodiesel.
The cycle goes a little like this: Farmers, desperate to replace cropland lost to biofuel production, raze more forests and plow up more grasslands, resulting in deforestation that tends to release far more carbon than burning biofuels saves. But as large-scale production continues to expand, there may be insufficient land, water, and energy available for another big biofuel boom — prompting many researchers and climate activists to question whether countries should be aiming to scale these markets at all. (Thomson Reuters reported that global biofuel production has increased ninefold since 2000.) Biofuels account for the vast majority of “sustainable fuels” currently used worldwide.
An analysis by a clean transport advocacy organization published last month found that, because of the indirect impacts to farming and land use, biofuels are responsible globally for 16 percent more CO2 emissions than the planet-polluting fossil fuels they replace. In fact, the report surmises that by 2030, biofuel crops could require land equivalent to the size of France. More than 40 million hectares of Earth’s cropland is already devoted to biofuel feedstocks, an area roughly the size of Paraguay. The EU Deforestation-Free Regulation, or EUDR, cites soybeans among the commodities driving deforestation worldwide.
“While countries are right to transition away from fossil fuels, they also need to ensure their plans don’t trigger unintended consequences, such as more deforestation either at home or abroad,” said Janet Ranganathan, managing director of strategy, learning, and results at the World Resources Institute in a statement responding to the Belém pledge. She added that rapidly expanding global biofuel production would have “significant implications for the world’s land, especially without guardrails to prevent large-scale expansion of land dedicated to biofuels, which drives ecosystem loss.”
Other environmental issues found to be associated with converting food crops into biofuels include water pollution from fertilizers and pesticides, air pollution, and soil erosion. One study, conducted a decade ago, showed that, when accounting for all the inputs needed to produce different varieties of ethanol or biodiesel — machinery, seeds, water, electricity, fertilizers, transportation, and more — producing fuel-grade ethanol or biodiesel requires significantly more energy input than it creates.
Nonetheless, it’s not a shock to see Brazil betting big on biofuels at COP30. In Brazil, biofuels make up roughly a quarter of transportation fuels — a remarkably high proportion compared to most other countries. And that share, dominated by sugarcane ethanol, is still on an upward climb, with the Belém pledge evidence of the country’s intended trajectory.
A spokesperson from Brazil’s foreign affairs ministry told The Guardian that the “proponents of the pledge (which include Japan, Italy, India, among others) are calling upon countries to support quadrupling production and use of sustainable fuels — a group of gaseous and liquid fuels that include e-fuels, biogases, biofuels, hydrogen and its derivatives.” They added that the goal is based on the new IEA report that underscores the production increase as necessary to aggressively reduce emissions. That report suggests that if current and proposed national and international policies are implemented and fully legislated, global biofuel use and production would double by 2035. “The word ‘sustainable’ is not used lightly, neither in the report nor in the pledge,” the spokesperson said.
The issue, of course, is in how emissions footprints of something like ethanol fuel production are even measured. Much like many other climate sources, scientists argue that tracking greenhouse gas emissions linked to ethanol fuel should account for emissions at every stage — production, processing, distribution, and vehicle use. Yet that isn’t often the case: in fact, a 2024 paper found that Brazil’s national biofuel policy does not account for all direct and indirect emissions in its calculation.
The exclusions are evident of a larger trend, according to University of Minnesota environmental scientist Jason Hill. “Overall, either those studies have not included [direct and indirect emissions], or they found ways to spread those impacts over anticipated production, decades, centuries, or so forth, that tend to dilute those effects. So the accounting methods aren’t really consistent with what the best science shows,” said Hill, who studies the environmental and economic consequences of food, energy, and biofuel production.
In short: More biofuels means either more intensive agriculture on a smaller share of available cropland, which has its own detrimental environmental effects, or expansion of cropland, and the land-use emissions and environmental impacts that can carry. “Biofuel production today is already a bad idea. And doubling [that] is doubling down on an existing problem,” said Hill.
Moreover, diverting crops like corn and soybeans from dinner plates to fuel tanks doesn’t just spark brutal competition for land and resources, it can also spike food prices and leave the world’s most vulnerable populations with less to eat.
A 2022 analysis of the U.S. Renewable Fuel Standard, the world’s largest biofuel program, found that it has led to increased food prices for Americans, with corn prices rising by 30 percent and other crops such as soybean and wheat spiking by around 20 percent. This then set off a domino effect: Increasing annual nationwide fertilizer use by up to 8 percent and water quality degradants by up to 5 percent. The carbon intensity of corn ethanol produced under the mandate has ended up at least equaling the planet-polluting effects of gasoline.
“Biofuel mandates essentially create a baseline demand that can leave food crops by the wayside,” says Ginni Braich, a data scientist at the University of Colorado Boulder who has worked as a senior advisor to government clean technology and emission reduction programs. That’s because of the issue with supply and demand of food crops — higher competition for feedstocks hikes up the prices of food, feed, and farming inputs.
When there are biofuel mandates, which the IEA report underlying the Belém pledge recommends, demand remains inelastic — no matter the changes in yields, growing and weather conditions, prices, or markets. Say there is a huge drought that decimates crop yields, as one example, the baseline demand of biofuels still needs to be met despite depleted food stocks. In terms of supply, increasing growing area for biofuels typically means less area available to grow food crops — which can cause prices to surge alongside supply shortages, and spike costs of seed, inputs, and land.
Nutritional implications should also be taken into account, according to Braich. Not only do people’s diets tend to shift when food gets more costly, but cropping patterns are already revealing adverse shifts in dietary diversity, which could be exacerbated by a further concentration on fewer crops. The Belém pledge, and Brazil’s intention to lead a global expansion of the biofuels market, does not bode well for people’s food accessibility nor for the future of the planet, warns Braich.
“It seems quite paradoxical for Brazil to promote the large-scale expansion of biofuels and also be seen as a protector of forests,” she said. “Is it better than decarbonization and fossil fuel divestment rhetoric without actual transition pathways? Yes, but in a lot of ways it is also greenwashing.”
This story was originally published by Grist with the headline COP30’s biofuel gamble could cost the global food supply — and the planet on Nov 21, 2025.
