Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

Wondering what Australia might look like in a hotter world? Take a glimpse into the distant past

News Feed
Tuesday, April 30, 2024

ShutterstockCurrent concentrations of carbon dioxide (CO₂) in Earth’s atmosphere are unprecedented in human history. But CO₂ levels today, and those that might occur in coming decades, did occur millions of years ago. Wouldn’t it be useful to go back in time and see what Australia looked like during those periods in the distant past? Well, scientists – including us – have done just that. These studies, which largely involve examining sediments and fossils, reveal a radically different Australia to the one we inhabit. The continent was warmer and wetter, and filled with unfamiliar plant and animal species. It suggests Australia may be much wetter, and look very different, in centuries and millennia to come. Studying fossils helps us understand past climates. Shutterstock Then and now: measuring CO₂ Atmospheric CO₂ is measured in “parts per million” – in other words, how many CO₂ molecules are present in each million molecules of dry air. The concentration of CO₂ influences Earth’s climate. The more CO₂ present, the warmer it gets. Right now, atmospheric CO₂ is about 420 parts per million. This concentration last occurred on Earth between 3 million and 5 million years ago – a period known as the Pliocene. If humanity keeps burning fossil fuels at the current rate, by mid-century CO₂ concentrations will be around 550 parts per million. This level was last approached 14 million to 17 million years ago, in the mid-Miocene period. In both these periods, Earth was warmer than it is today, and sea levels were far higher. In the Pliocene, research shows CO₂ was the cause of about half the elevated temperatures. Much of the rest was due to changes in ice sheets and vegetation, for which CO₂ was indirectly responsible. In the mid-Miocene, the link between CO₂ and warmer temperatures is less certain. But climate modelling does suggest CO₂ was the primary driver of temperature increases in this period. By examining the plants and animals that lived in Australia during these epochs, we can gain insight into what a warmer Australia might look like. Obviously, the Pliocene and mid-Miocene far predate humans, and CO₂ concentrations in the atmosphere in those periods increased for natural reasons, such as volcanic eruptions. Today, humans are causing the CO₂ increases, and it’s happening at a much faster rate than in the past. Read more: Humanity is compressing millions of years of natural change into just a few centuries Today, humans are the cause of high CO2 levels in the atmosphere. Shutterstock Australia in the Pliocene The fossil and sediment record from the Pliocene period in Australia is limited. But the available data suggest much of the continent – and Earth generally – was more humid and warm than today. This helped determine the species that existed in Australia. For example, the Nullarbor Plain, which stretches from South Australia to Western Australia, is today extremely dry. But studies of fossilised pollen show during the Pliocene it was home to Gymea lilies, banksias and angophoras – plants found around Sydney today. Similarly, the western Murray-Darling Basin is today largely saltbush and grassland. But fossil pollen records show in the Pliocene, it was home to araucaria and the southern beech – rainforest trees found in high-rainfall climates. And preserved remains of marsupials dating back to the Pliocene have been found near Hamilton in western Victoria. They include a dorcopsis wallaby – the nearest living relative of which lives in New Guinea’s ever-wet mountains. The nearest relative of the dorcopsis lives in New Guinea. Shutterstock Hot and moist in the mid-Miocene A rich fossil and sediment record exists from the mid-Miocene. Marine sediments off WA suggest the west and southwest part of Australia was arid. In contrast, the continent’s east was very wet. For example, the Riversleigh World Heritage area in Queensland is today a semi-arid limestone plateau. But research has found in the mid-Miocene, seven species of folivorous ringtail possums lived there at the same time. The only place more than two ringtail possum species coexist today is in rainforests. This suggests the Riversleigh plateau once supported a diverse rainforest ecosystem. Similarly, McGraths Flat, near Gulgong in New South Wales, is today an open woodland. But mid-Miocene fossils from the site include rainforest trees with pointed leaves that help shed water. And mid-Miocene fossils from the Yallourn Formation, in Victoria’s Latrobe Valley, also include the remains of rainforest plants. Before colonisation it supported eucalypt forests and grasslands. This evidence of rainforest suggests far wetter conditions in the mid-Miocene than exist today. Read more: If warming exceeds 2°C, Antarctica's melting ice sheets could raise seas 20 metres in coming centuries Dry parts of Australia were once rainforest. Shutterstock An uncertain future You may be wondering, when climate change projections tell us Australia will be drier in future, why we are suggesting the continent will be wetter. We concede there is a real contradiction here, and it requires further research to unravel. There’s another important point to note. While conditions in the Pliocene or Miocene can help us understand how Earth’s systems respond to elevated CO₂ levels, we can’t say Australia’s future climate will exactly replicate those conditions. And there are lags in the climate system, so while CO₂ concentrations in the Pliocene are similar to today’s levels, Earth hasn’t yet experienced the same extent of warming and rainfall. The uncertainty comes down to the complexities of the climate system. Some components, such as air temperature, respond to increased CO₂ levels relatively quickly. But other components will require centuries or millennia to fully respond. For example, ice sheets over Greenland and Antarctica are kilometres thick and as big as continents, which means they take a long time to melt. So, even if CO₂ levels remain high, we shouldn’t expect a Pliocene-like climate to develop for centuries or millennia yet. However, every day we add CO₂ to Earth’s atmosphere, the climate system moves closer to a Pliocene-like state – and it cannot be easily turned around. Tim Flannery is affiliated with the Australian Museum Research Institute and Ambassador to Regen Aqua, water treatment company, and Odonata, biodiversity restoration on private landsJosephine Brown receives funding from the National Environmental Science Program and the Australian Research Council.Kale Sniderman receives funding from the Australian Research Council

The fossil record suggests Australia may be much wetter, and look far different, in centuries and millenia to come.

Shutterstock

Current concentrations of carbon dioxide (CO₂) in Earth’s atmosphere are unprecedented in human history. But CO₂ levels today, and those that might occur in coming decades, did occur millions of years ago.

Wouldn’t it be useful to go back in time and see what Australia looked like during those periods in the distant past? Well, scientists – including us – have done just that.

These studies, which largely involve examining sediments and fossils, reveal a radically different Australia to the one we inhabit.

The continent was warmer and wetter, and filled with unfamiliar plant and animal species. It suggests Australia may be much wetter, and look very different, in centuries and millennia to come.

ferns imprinted in rock
Studying fossils helps us understand past climates. Shutterstock

Then and now: measuring CO₂

Atmospheric CO₂ is measured in “parts per million” – in other words, how many CO₂ molecules are present in each million molecules of dry air.

The concentration of CO₂ influences Earth’s climate. The more CO₂ present, the warmer it gets.

Right now, atmospheric CO₂ is about 420 parts per million. This concentration last occurred on Earth between 3 million and 5 million years ago – a period known as the Pliocene.

If humanity keeps burning fossil fuels at the current rate, by mid-century CO₂ concentrations will be around 550 parts per million. This level was last approached 14 million to 17 million years ago, in the mid-Miocene period.

In both these periods, Earth was warmer than it is today, and sea levels were far higher.

In the Pliocene, research shows CO₂ was the cause of about half the elevated temperatures. Much of the rest was due to changes in ice sheets and vegetation, for which CO₂ was indirectly responsible.

In the mid-Miocene, the link between CO₂ and warmer temperatures is less certain. But climate modelling does suggest CO₂ was the primary driver of temperature increases in this period.

By examining the plants and animals that lived in Australia during these epochs, we can gain insight into what a warmer Australia might look like.

Obviously, the Pliocene and mid-Miocene far predate humans, and CO₂ concentrations in the atmosphere in those periods increased for natural reasons, such as volcanic eruptions. Today, humans are causing the CO₂ increases, and it’s happening at a much faster rate than in the past.


Read more: Humanity is compressing millions of years of natural change into just a few centuries


steam billows from chimneys
Today, humans are the cause of high CO2 levels in the atmosphere. Shutterstock

Australia in the Pliocene

The fossil and sediment record from the Pliocene period in Australia is limited. But the available data suggest much of the continent – and Earth generally – was more humid and warm than today. This helped determine the species that existed in Australia.

For example, the Nullarbor Plain, which stretches from South Australia to Western Australia, is today extremely dry. But studies of fossilised pollen show during the Pliocene it was home to Gymea lilies, banksias and angophoras – plants found around Sydney today.

Similarly, the western Murray-Darling Basin is today largely saltbush and grassland. But fossil pollen records show in the Pliocene, it was home to araucaria and the southern beech – rainforest trees found in high-rainfall climates.

And preserved remains of marsupials dating back to the Pliocene have been found near Hamilton in western Victoria. They include a dorcopsis wallaby – the nearest living relative of which lives in New Guinea’s ever-wet mountains.

small grey wallaby
The nearest relative of the dorcopsis lives in New Guinea. Shutterstock

Hot and moist in the mid-Miocene

A rich fossil and sediment record exists from the mid-Miocene. Marine sediments off WA suggest the west and southwest part of Australia was arid. In contrast, the continent’s east was very wet.

For example, the Riversleigh World Heritage area in Queensland is today a semi-arid limestone plateau. But research has found in the mid-Miocene, seven species of folivorous ringtail possums lived there at the same time. The only place more than two ringtail possum species coexist today is in rainforests. This suggests the Riversleigh plateau once supported a diverse rainforest ecosystem.

Similarly, McGraths Flat, near Gulgong in New South Wales, is today an open woodland. But mid-Miocene fossils from the site include rainforest trees with pointed leaves that help shed water.

And mid-Miocene fossils from the Yallourn Formation, in Victoria’s Latrobe Valley, also include the remains of rainforest plants. Before colonisation it supported eucalypt forests and grasslands.

This evidence of rainforest suggests far wetter conditions in the mid-Miocene than exist today.


Read more: If warming exceeds 2°C, Antarctica's melting ice sheets could raise seas 20 metres in coming centuries


leaf in rainforest during downpour
Dry parts of Australia were once rainforest. Shutterstock

An uncertain future

You may be wondering, when climate change projections tell us Australia will be drier in future, why we are suggesting the continent will be wetter. We concede there is a real contradiction here, and it requires further research to unravel.

There’s another important point to note. While conditions in the Pliocene or Miocene can help us understand how Earth’s systems respond to elevated CO₂ levels, we can’t say Australia’s future climate will exactly replicate those conditions. And there are lags in the climate system, so while CO₂ concentrations in the Pliocene are similar to today’s levels, Earth hasn’t yet experienced the same extent of warming and rainfall.

The uncertainty comes down to the complexities of the climate system. Some components, such as air temperature, respond to increased CO₂ levels relatively quickly. But other components will require centuries or millennia to fully respond. For example, ice sheets over Greenland and Antarctica are kilometres thick and as big as continents, which means they take a long time to melt.

So, even if CO₂ levels remain high, we shouldn’t expect a Pliocene-like climate to develop for centuries or millennia yet. However, every day we add CO₂ to Earth’s atmosphere, the climate system moves closer to a Pliocene-like state – and it cannot be easily turned around.

The Conversation

Tim Flannery is affiliated with the Australian Museum Research Institute and Ambassador to Regen Aqua, water treatment company, and Odonata, biodiversity restoration on private lands

Josephine Brown receives funding from the National Environmental Science Program and the Australian Research Council.

Kale Sniderman receives funding from the Australian Research Council

Read the full story here.
Photos courtesy of

Warnings of imports of caged hen eggs as Ukraine and Poland become UK’s biggest suppliers

Shift raises food safety and welfare concerns as imports can bypass standards for domestic producersUkraine and Poland have overtaken other EU countries to become the UK’s biggest egg suppliers, sparking warnings that imports of eggs from caged hens are slipping “through the back door” despite welfare pledges.Freedom of information data from the Animal and Plant Health Agency shows that, while the Netherlands supplied a large proportion of UK eggs in 2022, its share has steadily fallen. By 2025, Ukraine and Poland together accounted for more than 15m kilograms, with Spain, Italy and other southern and eastern European countries also having increased their exports. Continue reading...

Ukraine and Poland have overtaken other EU countries to become the UK’s biggest egg suppliers, sparking warnings that imports of eggs from caged hens are slipping “through the back door” despite welfare pledges.Freedom of information data from the Animal and Plant Health Agency shows that, while the Netherlands supplied a large proportion of UK eggs in 2022, its share has steadily fallen. By 2025, Ukraine and Poland together accounted for more than 15m kilograms, with Spain, Italy and other southern and eastern European countries also having increased their exports.Ukraine has provided the most eggs so far this year by weight at 8m kilograms, followed by almost 7m kilograms from Poland and 5m from Spain, according to data provided up to July this year.Imports of eggs for consumption rose sharply from about 3,500 consignments in 2023 to more than 10,000 in 2024. Although overall tonnage declined, fewer big shipments have been replaced by many small ones from regions where caged-hen systems remain widespread.Mark Williams, the chair of the British Egg Industry Council, said UK farmers were being placed at an unfair disadvantage. “Our farmers are asked to invest in ever-higher standards of hen welfare while the government leaves the back door open to eggs produced in a system that is banned in the UK. This is morally wrong and unfair, and the government should not be doing this,” he said.Williams said battery cages outlawed in the UK since 2012 were still commonplace in Ukraine, and that eggs linked to food safety issues in mainland Europe continued to be traded.After Russia invaded Ukraine in 2022, the country’s farms, factories and trade routes were badly hit. To help Ukraine’s economy survive, the UK and EU suspended tariffs on its goods, meaning products such as eggs could be exported without extra costs. Ministers argue this tariff suspension is a deliberate step to support Ukraine during wartime.Williams acknowledged the humanitarian case, but added: “Aid should not come at the expense of UK egg farmers – particularly when British retailers have already pledged to go cage-free by 2025. That promise is undermined if imports from countries with weaker welfare standards are allowed to fill the gap into the price-sensitive food service and processing sectors.”The UK currently produces about 88% of its own eggs, and imports the remaining 12%. Leading supermarkets only sell British Lion eggs in retail, following 2017 Food Standards Agency advice confirming they are safe to eat runny or raw. Imported eggs are more likely to be found in restaurants and food processing.“I am not worried about Ukrainian eggs entering retail,” Williams said. “But retail is only 65% of the market. The other two segments – food service (18%) and processing (17%) – are very price-competitive, which makes it attractive for Ukraine to sell eggs or egg products here.”skip past newsletter promotionThe planet's most important stories. Get all the week's environment news - the good, the bad and the essentialPrivacy Notice: Newsletters may contain information about charities, online ads, and content funded by outside parties. If you do not have an account, we will create a guest account for you on theguardian.com to send you this newsletter. You can complete full registration at any time. For more information about how we use your data see our Privacy Policy. We use Google reCaptcha to protect our website and the Google Privacy Policy and Terms of Service apply.after newsletter promotionHe added that UK regulations on food safety, animal welfare and environmental protection accounted for about 14% of the cost of producing a dozen eggs. “Ukraine doesn’t face those costs, giving them a huge commercial advantage. That’s why it’s so attractive right now to send eggs and egg products to the UK.”Ukraine has asked Britain to keep tariff suspensions in place until 2029. While the UK has agreed to extend tariff-free trade on most goods to that date, eggs and poultry are classed as “sensitive products” and have only been granted a shorter, two-year extension.A government spokesperson said: “We are backing our farmers with the largest nature-friendly budget in history to get more British food on our plates and we will always protect our farmers in trade deals.“We are making the supply chain fairer and are engaging with the egg industry to draft new regulations to ensure a level playing field for producers.”

Renowned Primatologist Jane Goodall Dead At 91

The Jane Goodall Institute said Goodall passed away "due to natural causes."

English primatologist and anthropologist Jane Goodall speaks in the panel "Earth's Wisdom Keepers" on the last day of the forum's Annual Meeting in Davos, Switzerland, in 2024.AP Photo/Markus SchreiberJane Goodall, the world’s most famous primatologist, died Wednesday at the age of 91, the Jane Goodall Institute announced on social media.According to the Institute, Goodall passed away “due to natural causes” while in California as part of a speaking tour of the United States.“Dr. Goodall’s discoveries as an ethologist revolutionized science, and she was a tireless advocate for the protection and restoration of our natural world,” the Institute said in a statement.Goodall, the world's foremost authority on chimpanzees, communicates with chimpanzee Nana in June 2004 at the zoo of Magdeburg in eastern Germany. The British primatologist has died.JENS SCHLUETER/DDP/AFP via Getty ImagesIn the spring of 1957, Goodall, then a 22-year-old secretary with only a high school education, boarded a ship from her native England to Kenya. Her work at a local natural history museum soon took her to the rainforest reserve at Gombe National Park (in present-day Tanzania), home to one of the largest chimpanzee populations in Africa.She felt an immediate connection to the chimpanzees. Over the decades that followed, she spent almost all her time in the reserve ― conducting research that reshaped our understanding of chimpanzees and even what it means to be human. Goodall was born on April 3, 1934, in London, to businessman Mortimer Herbert Morris-Goodall and novelist Margaret Myfanwe Joseph. She grew up in the middle-class resort town of Bournemouth, on the southern coast of England. In grade school, she started reading Edgar Rice Burroughs’ Tarzan novels and Hugh Lofting’s “The Story of Doctor Dolittle” and became obsessed with the idea of traveling to Africa.Goodall’s parents couldn’t afford to send her to college, so after she graduated from high school, she worked as a secretary for two years to save money for the three-week passage to Africa. Two months after arriving, she met renowned paleontologist Louis Leakey, whose work had shown that hominids originated in Africa, rather than Asia. Leakey recognized Goodall’s intelligence and hired her at the natural history museum in Nairobi, where he worked, intending to send her to the rainforest to study chimpanzees. Goodall appears in Gombe National Park in the television special "Miss Goodall and the World of Chimpanzees," originally broadcast on CBS in December 1965.CBS Photo Archive via Getty ImagesFor the first few months of her stay in Gombe, the chimpanzees were cautious, refusing to come within several hundred feet of the young woman. But Goodall persisted, using bananas as a lure for the chimpanzees, and they eventually became comfortable enough to allow her to observe them at close range. Goodall began giving them individual names — highly unorthodox in a field where the standard practice was to assign animals identifying numbers. And as she got closer to the chimpanzees, she discovered that they behaved in a manner that resembled the rich, complicated social structure of humans far more than anyone had suspected. She came to the belief that they could be caring and violent, resourceful and playful — much like human beings.Goodall feeds rescued chimpanzees on July 14, 2016, at the Sweetwaters sanctuary, Kenya's only great-ape sanctuary.TONY KARUMBA/AFP/Getty ImagesGoodall made what is still regarded as her most significant discovery about chimpanzee behavior in October 1960. Looking through her binoculars, she saw a male chimpanzee she’d named David Greybeard sticking a twig into a termite colony and using it to retrieve termites that he then ate. Before this moment, scientists had always believed that humans were the only creatures on earth capable of making and using tools.It hadn’t, in fact, been known that chimpanzees ate meat. Goodall later observed chimpanzees hunting and eating mammals, including other monkeys and even, on rare occasions, other chimpanzees.In 1962, Goodall enrolled in a Ph.D. program at Cambridge University, becoming one of just a handful of people ever to do so without an undergraduate degree. While there, she published her breakthrough finding on the tool-using chimpanzee in the prestigious scientific journal Nature.After getting her degree in 1965, Goodall returned to Gombe to continue her work with chimpanzees. She published her first book, “My Friends the Wild Chimpanzees,” in 1967. She has since published more than a dozen other books for adults and several for children. One of these books, 2013’s “Seeds of Hope,” was criticized for including passages lifted from several other sources without attribution, a misstep Goodall attributed to sloppy note-taking. She later published a revised edition.Goodall poses for a photo at Taronga Zoo on Oct. 11, 2008, in Sydney. Robert Gray via Getty ImagesIn 1977, Goodall established the Jane Goodall Institute to promote conservation and development programs in Africa. It now has projects across the world, including youth-focused programs in nearly 100 countries. As Goodall’s fame grew, she became an outspoken advocate for animal rights and conservation. She has been involved in numerous organizations working on behalf of better treatment of animals.“You cannot share your life with a dog, as I had done in Bournemouth, or a cat, and not know perfectly well that animals have personalities and minds and feelings,” she told The Guardian in 2010. “You know it and I think every single one of those scientists knew it too, but because they couldn’t prove it, they wouldn’t talk about it.”In a 2021 interview with HuffPost, she reflected on humanity’s stewardship of the world and expressed hope we might lean more on our intellect to work toward the mutually beneficial goal of environmental preservation.That intellect is ultimately what distinguishes us from chimpanzees, she said, and allows us to collaboratively plan for the future:20 Years OfFreeJournalismYour SupportFuelsOur MissionYour SupportFuelsOur MissionFor two decades, HuffPost has been fearless, unflinching, and relentless in pursuit of the truth. Support our mission to keep us around for the next 20 — we can't do this without you.We remain committed to providing you with the unflinching, fact-based journalism everyone deserves.Thank you again for your support along the way. We’re truly grateful for readers like you! Your initial support helped get us here and bolstered our newsroom, which kept us strong during uncertain times. Now as we continue, we need your help more than ever. We hope you will join us once again.We remain committed to providing you with the unflinching, fact-based journalism everyone deserves.Thank you again for your support along the way. We’re truly grateful for readers like you! Your initial support helped get us here and bolstered our newsroom, which kept us strong during uncertain times. Now as we continue, we need your help more than ever. We hope you will join us once again.Support HuffPostAlready contributed? Log in to hide these messages.Chimpanzees have a very brutal, dark, war-like side. They also have a loving and altruistic side. Just like us. But the big difference is the explosive development of our intellect, which I personally think was at least partly triggered by the fact we developed this way of talking with words. So we can tell people about things that aren’t present. We can make plans for the distant future. We can bring people from different disciplines together to discuss a problem. That’s because of words. We now have developed a moral code with our words. And we know perfectly well what we should and shouldn’t do. But there is this kind of innate territorialism, which leads to nationalism. That’s in our genes. But we should be able to get out of it because of this intellect. We have the tools. We have the language. We have the scientific technology. We understand that if we make the right decisions every day and billions of us do it, we can move in the right direction. But will we do it in time? I don’t know.Goodall married Dutch nature photographer Baron Hugo van Lawick in 1964. The two had a son, Hugo, in 1967, and divorced in 1974. She married Derek Bryceson, head of Tanzania’s national parks, in 1975. He died of cancer in 1980. Sara Bondioli contributed reporting.

Environmentalists, Politicians, Celebrities Recall Life and Influence of Primatologist Jane Goodall

Tributes poured in from around the world honoring the life and influence of Jane Goodall, the famed primatologist whose death at the age of 91 was announced on Wednesday

Jane Goodall was a pioneer, a tireless advocate and a deeply compassionate conservationist who inspired others to care about primates — and all animals — during a long life well lived, according to tributes from around the world.U.S. Sen Cory Booker of New Jersey posted a video of Goodall to social media, and thanked her for her “lasting legacy of conservation.” Journalist Maria Shriver said Goodall was a “legendary figure and a friend” who “changed the world and the lives of everyone she impacted."Here’s a roundup of some notable reaction to Goodall's death and legacy: U.N. Secretary-General António Guterres “I’m deeply saddened to learn about the passing of Jane Goodall, our dear Messenger of Peace. She is leaving an extraordinary legacy for humanity & our planet.” — on X. UNESCO Director-General Audrey Azoulay “Dr. Jane Goodall was able to convey the lessons of her research to everyone, especially young people. She changed the way we see Great Apes. Her chimpanzee greetings at UNESCO last year — she who so strongly supported our work for the biosphere — will echo for years to come.” — written statement.“Jane Goodall’s brilliant mind, compassionate heart, and pioneering spirit helped us better understand our connection to nature and our responsibility to defend it — and she inspired generations to do their part. It was an honor to have her alongside us just last week to share with leaders a message that is more urgent than ever.” — on X.“Thank you Jane Goodall for a lasting legacy of conservation, service to all of us, and for always being brave.” — on X. Former Canadian Prime Minister Justin Trudeau “Heartbroken to hear of Dr. Jane Goodall’s passing. She was a pioneer whose research and advocacy reshaped our understanding of the natural world. Her wisdom and compassion will live on in every act of conservation. All of us who were so greatly inspired by her will miss her deeply.” — on X.“Jane Goodall was a legendary figure and a friend. I admired her, learned from her, and was so honored to get to spend time with her over the years. She stayed at her mission and on her mission. She changed the world and the lives of everyone she impacted. The world lost one of its best today, and I lost someone I adored.” — on X. PETA Founder Ingrid Newkirk “Jane Goodall was a gifted scientist and trailblazer who forever changed the way we view our fellow animals. Caring about all animals, she went vegan after reading Animal Liberation, and helped PETA with many campaigns, calling her 1986 visit to a Maryland laboratory full of chimpanzees in barren isolation chambers ‘the worst experience of my life.’ We could always count on her to be on the animals’ side, whether she was urging UPS to stop shipping hunting trophies, calling for SeaWorld’s closure, or a shutdown of the Oregon National Primate Research Center.” — in written statement. Kitty Block, president and CEO of Humane World for Animals “Goodall’s influence on the animal protection community is immeasurable, and her work on behalf of primates and all animals will never be forgotten.” — in written statement.“My friend Jane Goodall was the wisest and most compassionate person I’ve ever met. She could make anybody feel hopeful about the future … no matter the hardships of the present. Just this weekend, she wrote to let me know she was thinking about what she could do to alleviate all of the suffering in Gaza, in Ukraine, in Sudan, and beyond. She was my hero, my inspiration. I will miss her every single day.” — on X.“Jane Goodall was a groundbreaking scientist and leader who taught us all so much about the beauty and wonder of our world. She never stopped advocating for nature, people, and the planet we share. May she rest in peace.” — on X.The Associated Press’ climate and environmental coverage receives financial support from multiple private foundations. AP is solely responsible for all content. Find AP’s standards for working with philanthropies, a list of supporters and funded coverage areas at AP.org.Copyright 2025 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.Photos You Should See – Sept. 2025

Evolution may explain why women live longer than men

In most mammals, females live longer than males, but in birds the trend goes the other way – a study of over 1000 species points to possible reasons for these differences

Women live longer than men on average in every countryPeter Cavanagh/Alamy We now have a better idea of why women live longer than men, on average, thanks to the most comprehensive analysis yet of the differences in lifespan between male and female mammals and birds. The average global life expectancy is about 74 years for women and 68 years for men. There are various ideas to explain why women tend to live longer than men, including the suggestion that young men are more likely to die in accidents or conflicts, and that women are better protected against potentially harmful mutations in the sex-determining chromosomes than men, but the picture is far from complete. To search for clues from other animals, Johanna Stärk at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, and her colleagues analysed data on life expectancy in 1176 species – 528 mammals and 648 birds – in zoos as well as in wild populations. They found that in 72 per cent of the mammal species, females live longer than males, by 12 or 13 per cent on average. But in birds, males tend to outlive females in 68 per cent of the species, surviving about 5 per cent longer on average. The researchers say this trend backs up the idea that sex chromosomes account for some of the differences in lifespan. In mammals, having two copies of the X chromosome makes an individual genetically female, while males have two different sex chromosomes, an X and a Y. In theory, females are better protected against harmful mutations in the sex chromosomes, because the second copy of the X chromosome acts as a backup. In birds, the sex determination system is the other way around: females have two different sex chromosomes, called Z and W, while males have two Z chromosomes. So the different life expectancy trends in mammals and birds back up the idea that the sex with different chromosomes – the heterogametic sex – incurs a longevity cost. “But what was very interesting is that we found exceptions,” says team member Fernando Colchero, also at the Max Planck Institute for Evolutionary Anthropology. “And with those exceptions, our idea was to test other evolutionary hypotheses for why these sex differences occur.” Digging deeper into the data, the team found that mating systems seem to play a role. In polygamous mammals where there is strong competition for mates – such as baboons, gorillas and chimpanzees – males generally die earlier than females. “Due to competition for mating opportunities, individuals – typically the males – will invest into traits favoured by sexual selection, such as large body size, ornamental feathers or antlers,” says Nicole Riddle at the University of Alabama at Birmingham. “These traits are costly to produce, and there are typically other costs associated with the competition for mating opportunities, for example through fights with other males.” These factors will mean that the individual has less resources available to invest in its own long-term survival, she says. Males that invest in costly traits to win mates may have shorter lifespans as a resultRebius/Shutterstock This is also true of birds with polygamous mating systems. “Overall, this may also explain why the male advantage in birds is considerably lower than the female advantage in mammals,” says Pau Carazo at the University of Valencia in Spain. He says that in mammals, both the genetic factor and sexual selection traits work in the same direction in shortening male lifespan, whereas in birds the pressures may balance each other out, because males are often involved in strong sexual selection, but females bear the costs of heterogamy. Stärk and her colleagues also found that the sex that invests more in raising offspring tends to live longer. In mammals, this is often the females. In long-lived species like humans or other primates, this is probably evolutionarily advantageous, because it helps females survive until their offspring are sexually mature themselves. However, there were exceptions. “Birds of prey are the opposite of everything that we’re finding in the other species,” says Stärk. “The females are larger, and it’s often the females that engage much more in protection of the territory, but still females live longer.” Why is a mystery, she says. The lifespan differences between sexes are smaller in zoo populations than in wild populations, says Carazo, probably because life in captivity minimises environmental pressures like fights, predation and disease. This control over the environment might also be why lifespan differences between the sexes in humans have been shrinking, he says, although they might never go away entirely. “There are still some very strongly coded differences – physiological differences and genetic differences – between men and women,” says Colchero. “Who knows where medical sciences are going to take us, but in general, we don’t expect that those differences are completely going to disappear.”

A Revolution in Tracking Life on Earth

A suite of technologies are helping taxonomists speed up species identification.

Across a Swiss meadow and into its forested edges, the drone dragged a jumbo-size cotton swab from a 13-foot tether. Along its path, the moistened swab collected scraps of life: some combination of sloughed skin and hair; mucus, saliva, and blood splatters; pollen flecks and fungal spores.Later, biologists used a sequencer about the size of a phone to stream the landscape’s DNA into code, revealing dozens upon dozens of species, some endangered, some invasive. The researchers never saw the wasps, stink bugs, or hawk moths whose genetic signatures they collected. But all of those, and many more, were out there.The researchers, from the Swiss Federal Institute for Forest, Snow and Landscape Research, were field-testing a new approach to biodiversity monitoring, in this case to map insect life across different kinds of vegetation. They make up one of many teams now deploying a suite of technologies to track nature at a resolution and pace once unimaginable for taxonomists. “We know a lot more about what’s happening,” Camille Albouy, an environmental scientist at ETH Zurich, and member of the team, told me, “even if a lot still escapes us.”Today, autonomous robots collect DNA while state-of-the-art sequencers process genetic samples quickly and cheaply, and machine-learning algorithms detect life by sound or shape. These technologies are revolutionizing humanity’s ability to catalog Earth’s species, which are estimated to number 8 million—though perhaps far, far more—by illuminating the teeming life that so often eludes human observation. Only about 2.3 million species have been formally described. The rest are nameless and unstudied—part of what biologists call dark taxa.Insects, for example, likely compose more than half of all animal species, yet most (an estimated four out of five) have never been recorded by science. From the tropics to the poles, on land and in water, they pollinate, prey, scavenge, burrow, and parasitize—an unobserved majority of life on Earth. “It is difficult to relate to nonspecialists how vast our ignorance truly is,” an international consortium of insect scientists lamented in 2018. Valerio Caruso, an entomologist at the University of Padua, in Italy, studies scuttle flies, a skittering family containing an estimated 30,000 to 50,000 species. Only about 4,000 have been described, Caruso told me. “One lifetime is not enough to understand them all.”The minute distinctions within even one family of flies matter more than they might seem to: Species that look identical can occupy entirely different ecological niches—evading different predators and hunting different prey, parasitizing different hosts, pollinating different plants, decomposing different materials, or carrying different diseases. Each is a unique evolutionary experiment that might give rise to compounds that unlock new medicines, behaviors that offer agricultural solutions, and other adaptations that could further our understanding of how life persists.Only with today’s machines and technology do scientists stand a chance of keeping up with life’s abundance. For most of history, humans have relied primarily on their eyes to classify the natural world: Observations of shape, size, and color helped Carl Linnaeus catalog about 12,000 species in the 18th century—a monumental undertaking, but a laughable fraction of reality. Accounting for each creature demanded the meticulous labor of dehydrating, dissecting, mounting, pinning, labeling—essentially the main techniques available until the turn of the 21st century, when genetic sequencing allowed taxonomists to zoom in on DNA bar codes. Even then, those might not have identified specimens beyond genus or family.Now technologies such as eDNA, high-throughput sequencing, autonomous robotics, and AI have broadened our vision of the natural world. They decode the genomes of fungi, bacteria, and yeasts that are difficult or impossible to culture in a lab. Specialized AI isolates species’ calls from noisy recordings, translating air vibrations into an acoustic field guide. Others parse photo pixels to tease out variations in wing veins or bristles as fine as a dust mote to identify and classify closely related species. High-resolution 3-D scans allow researchers to visualize minuscule anatomies without lifting a scalpel. Other tools can map dynamic ecosystems as they transform in real time, tracking how wetlands contract and expand season by season or harnessing hundreds of millions of observations from citizen-science databases to identify species and map their shifting ranges.One unassuming setup in a lush Panamanian rainforest involved a UV light luring moths to a white panel and a solar-powered camera that snapped a photo every 10 seconds, from dusk to dawn. In a single week, AI processed many thousands of images each night, in which experts detected 2,000 moth species—half of them unknown to science. “It breaks my heart to see people think science is about wrapping up the last details of understanding, and that all the big discoveries are done,” David Rolnick, a computer scientist at McGill University and Mila - Quebec AI Institute, who was part of the expedition, told me. In Colombia, one of the world’s most biodiverse countries, the combination of drone-collected data and machine learning has helped describe tens of thousands of species, 200 of which are new to science.These tools’ field of view is still finite. AI algorithms see only as far as their training data, and taxonomical data overrepresent the global North and charismatic organisms. In a major open-access biodiversity database, for example, less than 5 percent of the entries in recent years pertained to insects, while more than 80 percent related to birds (which account for less than 1 percent of named species). Because many dark taxa are absent from training data sets, even the most advanced image-recognition models work best as triage—rapidly sorting through familiar taxa and flagging likely new discoveries for human taxonomists to investigate.AI systems “don’t have intuition; they don’t have creativity,” said Rolnick, whose team co-created Antenna, a ready-to-use AI platform for ecologists. Human taxonomists are still better at imagining how a rare feature arose evolutionarily, or exploring the slight differences that can mark an entirely new species. And ultimately, every identification—whether by algorithm or DNA or human expert—still depends on people.That human labor is also a dwindling resource, especially in entomology. “The number of people who are paid to be taxonomists in the world is practically nil,” Rolnick said. And time is against them. The world’s largest natural-history museums hold a wealth of specimens and objects (more than 1 billion, according to one study) yet only a fraction of those have digitally accessible records, and genomic records are accessible for just 0.2 percent of biological specimens. Many historical collections—all those drawers packed with pinned, flattened, and stuffed specimens; all those jars of floating beings—are chronically underfunded, and their contents are vulnerable to the physical consequences of neglect. Preservation fluids evaporate, poor storage conditions invite pests and mold, and DNA degrades until it is unsequenceable.Today’s tools are still far from fully capturing the extent and complexity of Earth’s biodiversity, and much of that could vanish before anyone catalogs it. “We are too few, studying too many things,” Caruso, the Padua entomologist, said. Many liken taxonomy to cataloging an already burning library. As Mehrdad Hajibabaei, chief scientific officer for the Center for Biodiversity Genomics at the University of Guelph, in Canada, told me: “We’re not stamp-collecting here.” Taxonomists are instead working to preserve a planetary memory—an archive of life—and to decode which traits help creatures adapt, migrate, or otherwise survive in a rapidly changing climate.The climate crisis is unraveling the life cycles of wildlife around the world—by one estimate, for about half of all species. Flowers now bloom weeks before pollinators stir; fruit withers before migrating birds can reach it. Butterflies attuned to rainfall falter in drought. Tropical birds and alpine plants climb toward cooler, though finite, mountaintops. Fish slip farther out to sea; disease-carrying mosquitoes ride the heat into new territories. Extreme weather at the poles stresses crucial moss and lichen, and shreds entire habitats in hours. Mass die-offs are now routine.“Once you lose one species, you’ll probably lose more species,” Caruso said. “Over time, everything is going to collapse.” One in eight could vanish by century’s end—many of them dark taxa, lost before we ever meet them. Most countries—and global bodies such as the International Union for Conservation of Nature—cannot assess, and therefore cannot protect, unnamed organisms. As Edward O. Wilson told Time in 1986: “It’s like having astronomy without knowing where the stars are.”Today’s machine-assisted taxonomy faces the same problem Linnaeus did: Nature’s complexity still far outstrips human insight, even with machines’ assistance. “We don’t perceive the world as it is in all its chaotic glory,” the biologist Carol Kaesuk Yoon wrote in her 2010 book, Naming Nature. “We sense a very particular subset of what surrounds us, and we see it in a particularly human way.” On the flip side, every new data point sharpens the predictive models guiding conservation, says Evgeny Zakharov, genomics director for the Center for Biodiversity Genomics. “The more we know about the world, the more power we have to properly manage and protect it,” he told me. With tools, the speed of taxonomists’ work is accelerating, but so is the countdown—they will take all the help they can get.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.