Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

What Is Pollution Doing to Our Brains? 'Exposomics' Reveals Links to Many Diseases

News Feed
Friday, April 12, 2024

B1992, burgeoning population, choking traffic, and explosive industrial growth in Mexico City had caused the United Nations to label it the most polluted urban area in the world. The problem was intensified because the high-altitude metropolis sat in a valley trapping that atmospheric filth in a perpetual toxic haze. Over the next few years, the impact could be seen not just in the blanket of smog overhead but in the city’s dogs, who had become so disoriented that some of them could no longer recognize their human families. In a series of elegant studies, the neuropathologist Lilian Calderón-Garcidueñas compared the brains of canines and children from “Makesicko City,” as the capital had been dubbed, to those from less polluted areas. What she found was terrifying: Exposure to air pollution in childhood decreases brain volume and heightens risk of several dreaded brain diseases, including Parkinson’s and Alzheimer’s, as an adult.Calderón-Garcidueñas, today head of the Environmental Neuroprevention Laboratory at the University of Montana, points out that the damaged brains she documented through neuroimaging in young dogs and humans aren’t just significant in later years; they play out in impaired memory and lower intelligence scores throughout life. Other studies have found that air pollution exposure later in childhood alters neural circuitry throughout the brain, potentially affecting executive function, including abilities like decision-making and focus, and raising the risk of psychiatric disorders.The stakes for all of us are enormous. In places like China, India, and the rest of the global south, air pollution, both indoor and outdoor, has steadily soared over the course of decades. According to the United Nations Foundation, “nearly half of the world’s population breathes toxic air each day, including more than 90 percent of children.” Some 2.3 billion people worldwide rely on solid fuels and open fires for cooking, the Foundation adds, making the problem far worse. The World Health Organization calculates about 3 million premature deaths, mostly in women and children, result from air pollution created by such cooking each year.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.In the United States, meanwhile, average air pollution levels have decreased significantly since the passage of the Clean Air Act in 1970. But the key word is average. Millions of Americans are still breathing outdoor air loaded with inflammation-triggering ozone and fine particulate matter. These particles, known as PM2.5 (particles less than 2.5 micrometers in diameter), can affect the lungs and heart and are strongly associated with brain damage. Wildfires—like the ones that raged across Canada this past summer—are a major contributor of PM2.5. A recent study showed that pesticides, paints, cleaners, and other personal care products are another major—and under-recognized—source of PM2.5 and can raise the risk for numerous health problems, including brain-damaging strokes.Untangling the relationship between air pollution and the brain is complex. In the modern industrial world, we are all exposed to literally thousands of contaminants. And not every person exposed to a given pollutant will develop the same set of symptoms, impairments, or diseases—in part because of their genes, and in part because each exposure may occur at a different point in development or impact a different area of the body or brain. What’s more, social disparities are at play: Poorer populations almost always live closer to factories, toxins, and pollutants.The effort to figure it out and intervene has sparked a new field of study: exposomics, the science of environmental exposures and their effects on health, disease, and development. Exposomics draws on enormous datasets about the distribution of environmental toxins, genetic and cellular responses, and human behavioral patterns. There is a huge amount of information to parse, so researchers in the field are turning to another emerging science, artificial intelligence, to make sense of it all.“Anything from our external environment—the air we breathe, food we eat, the water we drink, the emotional stress that we face every day—all of that gets translated into our biology,” says Rosalind Wright, professor of pediatrics and co-director of the Institute for Exposomic Research at the Icahn School of Medicine at Mount Sinai in New York. “All these things plus genes themselves explain the patterns of risk we see.” When an exposure is constant and cumulative, or when it overwhelms our ability to adapt, or “when you’re a fetus in utero, when you’re an infant or in early childhood or in a critical period of growth,” it can have a particularly powerful effect on lifelong cognitive clarity and brain health.Neuroscientist Megan Herting at the University of Southern California (USC) has been studying the impact of air pollution on the developing brain. “Over the past few years, we have found that higher levels of PM2.5 exposure are linked to a number of differences in the shape, neural architecture, and functional organization of the developing brain, including altered patterns of cortical thickness and differences in the microstructure of gray and white matter,” she says. On the basis of neuroimaging of exposed youngsters, Herting and fellow researchers suspect the widespread differences in brain structure and function linked with air pollution may be early biomarkers for cognitive and emotional problems emerging later in life.That suspicion gains support from an international meta-analysis (a study of other studies) published in 2023 that correlated exposure to air pollution during critical periods of brain development in childhood and adolescence to risk of depression and suicidal behavior. The imaging parts of the studies showed changes in brain structure, including neurocircuitry potentially involved in movement disorders like Parkinson’s, and white matter of the prefrontal lobes, responsible for executive decision-making, attention, and self-control.In a 2023 study, Herting and colleagues tracked children transitioning into adolescence, when brains are in a sensitive period of development and thus especially vulnerable to long-term damage from toxins. Among brain regions developing during this period is the prefrontal cortex, which helps with cognitive control, self-regulation, decision-making, attention, and problem-solving, Herting says. “Your emotional reward systems are also still being refined,” she adds.Looking at scan data from more than 9,000 youngsters exposed to air pollution between ages 9 and 10 and following them over the next couple of years, the researchers found changes in connectivity between brain regions, with some regions having fewer connections and others having more connections than normal. Herting explains that these structural and functional connections allow us to function in our daily lives, but how or even whether the changes in circuitry have an impact, researchers do not yet know.The specific pollutants involved in the atypical brain circuits appear to be nitrogen dioxide, ozone, and PM2.5—the small particles that worry many researchers the most. Herting explains: Limits set on fine particulate matter are stricter in the United States than in most other countries but still inadequate. The U.S. Environmental Protection Agency currently limits annual average levels of the pollutant to 12 micrograms per cubic meter and permits daily spikes of up to 35 micrograms per cubic meter. Health organizations, on the other hand, have called for the agency to lower levels to 8 micrograms and 25 micrograms per cubic meter, respectively. Thus, even though it may be “safe” by EPA standards, “air quality across America is contributing to changes in brain networks during critical periods of childhood,” Herting says. And that may augur “increased risk for cognitive and emotional problems later in life.” She plans to follow her group of young people into adulthood, when advances in science and the passage of time should reveal more about the effect of air pollution exposure during adolescence.Other research shows that air pollution increases risk of psychiatric disorder as years go by. In work based on large datasets in the United States and Denmark, University of Chicago computational biologist Andrey Rzhetsky and colleagues found that bad air quality was associated with increased rates of bipolar disorder and depression in both countries, especially when exposure occurs early in life. Rzhetsky and his team used two major sources: in Denmark, the National Health Registry, which contains health data on every citizen from cradle to grave; and in the United States, insurance claims with medical history plus details such as county of residence, age, sex, and importantly, linkages to family—specifics that helped reveal genetic predisposition to develop a psychiatric condition during the first 10 years of life.“It's possible that the same environment will cause disease in one person but not in another because of predisposing genetic variants that are different in different people,” Rzhetsky says. “The different genetic predisposition, that’s one part of the puzzle. Another part is varying environment.”Indeed, these complex diseases are spreading much faster than genetics alone seems to explain. “We definitely don’t know for sure which pollutant is causal. We can’t really pinpoint a smoking gun,” Rzhetsky says. But one pesky culprit continues to prove statistically significant: “It looks like PM2.5 is one of those strong signals.” To figure it out specifically, we’ll need much more data, and exposomics will play a vital role."This is a wake-up call,” Frances Jensen told her fellow physicians at the American Neurological Society’s symposium on Neurologic Dark Matter in October 2022. The meeting was an exploration of the exposome –the sum of external factors that a person is exposed to during a lifetime— driving neurodegenerative disease. It was focused in no small part on air pollution. Jensen, a University of Pennsylvania neurologist and president of the American Neurological Association, argued that researchers need to pay more attention to contaminants because the sharp rise in the number of Parkinson’s diagnoses cannot be explained by the aging population alone. “Environmental exposures are lurking in the background, and they’re rising,” she said.Parkinson’s disease is already the second-most common neurodegenerative disease after Alzheimer’s. Symptoms, which can include uncontrolled movements, difficulty with balance, and memory problems, generally develop in people age 60 and older, but they can occur, though rarely, in people as young as 20. Could something in the air explain the increasing worldwide prevalence of Parkinson’s? Researchers have not identified one specific cause, but they know Parkinson’s symptoms result from degeneration of nerve cells in the substantia nigra, the part of the brain that produces dopamine and other signal-transmitting chemicals necessary for movement and coordination.A host of air pollution suspects are now thought to play a role in the loss of dopamine-producing cells, according to Emory University environmental health scientist W. Michael Caudle, who uses mass spectrometry to identify chemicals in our bodies. One suspect he’s looking at are lipopolysaccharides, compounds often found in air pollution and bacterial toxins. Although lipopolysaccharides cannot directly enter the brain, they inflame the liver. The liver then releases inflammatory molecules into the bloodstream, which interact with blood vessels in the blood-barrier. “Then the inflammatory response in the brain leads to loss of dopamine neurons, like that seen in Parkinson’s disease,” Caudle says.More evidence comes from neuroepidemiologist Brittany Krzyzanowski, based at the Barrow Neurological Institute in Phoenix. Krzyzanowski had an “aha!” moment when she saw a map highlighting the high risk of Parkinson’s disease in the Mississippi–Ohio River Valley, including areas of Tennessee and Kentucky. At first she wondered whether the Parkinson’s hotspot was due to pesticide use in the region. But then it hit her: The area also had a network of high-density roads, suggesting that air pollution could be involved. “The pollution in these areas may contain more combustion particles from traffic and heavy metals from manufacturing, which have been linked to cell death in the part of the brain involved in Parkinson’s disease,” she said.In a study published in Neurology in October 2023, Krzyzanowski and colleagues, using sophisticated geospatial analytic techniques, went on to show that those with median levels of air pollution have a 56 percent greater risk of developing Parkinson’s disease compared to those living in regions with the lowest level of air pollution. Along with the Mississippi-Ohio River Valley, other hotspots included central North Dakota, parts of Texas, Kansas, eastern Michigan, and the tip of Florida. People living in the western half of the U.S. are at a reduced risk of developing Parkinson’s disease compared with the rest of the nation.As to the hotspot in the Mississippi-Ohio River Valley, Parkinson’s there is 25% higher than in areas with the lowest air particulate matter. Aside from that, Krzyzanowski and her research team noted something especially odd: Frequency of the disease rose with the level of pollution, but then it plateaued even as air pollution continued to soar. One reason could be that other air pollution-linked diseases, including Alzheimer’s, are masking the emergence of Parkinson’s; another reason could be an unusual form of PM2.5. “Regional differences in Parkinson’s disease might reflect regional differences in the composition of the particulate matter, and some areas may have particulate matter containing more toxic components compared to other areas,” Krzyzanowsk says. Tapping the tenets of exposomics, she expects to explore these issues in the months and years ahead.The hunt is on for the connections between environmental factors and Alzheimer’s as well. USC neurogerontologist Caleb Finch has spent years studying dementia, especially Alzheimer’s disease, which affects more than six million Americans. As with Parkinson’s, Alzheimer’s numbers are rising in the United State and much of the world. Degenerative changes in neurons become increasingly frequent after the age of 60, yet half of the people who make it to 100 will not get dementia. Many factors could explain those discrepancies. Air pollution may be an important one, Finch says.Researchers like Finch and his USC colleague Jiu-Chiuan Chen are joining forces to explore the connections between environmental neurotoxins and decline in brain health. It’s a challenging project, since air pollution levels and specific pollutants vary on fine scales and can change from hour to hour in many areas of the globe. On the basis of brain scans of hundreds of people over a range of geographic areas, this much we know: “People living in areas of high levels of air pollution and who have been studied on three continents showed accelerated arterial disease, heart attacks, and strokes, and faster cognitive decline,” Finch says.Not everyone reacts the same way when exposed to pollutants, of course. Greatest risk for Alzheimer’s seems to hit people who have a genetic variant known as apolipoprotein E (APOE4), which is involved in making proteins that help carry cholesterol and other types of fat in the bloodstream. About 25 percent of people have one copy of that gene, and 2 to 3 percent carry two copies. But inheriting the gene alone doesn’t determine a person’s Alzheimer’s risk. Environmental exposures count too.A recent study by Chen, Finch, and colleagues published in the Journal of Alzheimer’s Disease looked at associations between air pollution exposure and early signs of Alzheimer’s in 1,100 men, all around age 56 when the study began. By age 68, test subjects with high PM2.5 exposures had the worst scores in verbal fluency. People exposed to high levels of nitrogen dioxide (NO2) air pollution were also linked to worsened episodic memory. The men who had APOE4 genes had the worst scores in executive function. The evidence indicates that the process by which air pollution interacts with genetic risk to cause Alzheimer’s in later life may begin in the middle years, at least for men.A separate USC study of more than 2,000 women found that when air quality improved, cognitive decline in older women slowed. When exposure to pollutants like PM2.5 and NO2 dropped by a few micrograms per cubic foot a year over the course of six years, the women in the study tested as being a year or so younger than their real age. This suggests that when exposure air pollution is lowered, dementia risk can go down.In parallel, an international study by the Lancet Commission concluded that the risk of dementia, including Alzheimer’s, can be lowered by modifying or avoiding 12 risk factors: hypertension, hearing impairment, smoking, obesity, depression, low social contact, low level of education, physical inactivity, diabetes, excessive alcohol consumption, traumatic brain injury—and air pollution. Together, the 12 modifiable risk factors account for around 40 percent of worldwide dementias, which theoretically could be prevented or delayed.In light of all this, Finch and Duke University social scientist Alexander Kulminski have proposed the “Alzheimer’s disease exposome” to assess environmental factors that interact with genes to cause dementia. Where medicines have failed, exposomics just might help. Studies of Swedish twins show that half of individual differences in Alzheimer’s risk may be environmental, and thus modifiable; and while vast sums of research funding have been poured into the genetic roots of the disease, it could be that altering the exposome would provide a better preventive than all the ongoing drug trials to date. Environmental toxins broadly disrupt cell repair and protective mechanisms in the brain, the researchers point out. And factors like obesity and stress contribute to chronic inflammation, which likely damages neurons’ ability to function and communicate. The research framework of the Alzheimer's disease exposome offers a comprehensive, systematic approach to the environmental underpinnings of Alzheimer's risk over individuals’ lifespans—from the time they are pre-fertilized gametes to life as a fetus in the womb to childhood and beyond.For three decades, Rosalind Wright at Mount Sinai has wanted to trace critical problems in neurodevelopment and neurodegeneration to pollutants—from highway emissions to heavy metals to specific household chemicals and a host of other factors—but the mass of data has been overwhelming. With the advent of artificial intelligence (AI) and sophisticated neuroimaging technology, high-precision research using vast genomic databanks is finally possible. “I knew we needed to ask these kinds of questions, but I didn't have the tools to do it. Now we do and it’s very exciting,” Wright says.Using machine learning—an AI approach to data analysis—Wright looks at giant datasets that include the precise location of an individual’s residence as well as the myriad of pollutants he or she encounters. “It's no different fundamentally from other statistical models we use,” she says. “It’s just that this one has been developed to be able to take in bigger and bigger data, more and more types of exposures.” The resulting data breakdown should tell us which factors drive which types of risk for which people. That information will help people know where they should target their efforts to reduce exposures to risky pollutants, and ultimately how to lower risk of impairment and disease, brain or otherwise.The tools used by Wright and her colleagues are being trained on diseases like Alzheimer’s. If you put genes and the environment together, “you start to see who might be at higher risk and also what underlying mechanisms might be driving it in different ways in different populations,” Wright says. The exposome could also explains more subtle cognitive effects of pollution that may emerge over long periods, such as harms to attention, intelligence, and performance.To address environmental brain risks, it’s important to know which pollutants are present—another target of exposomic research. In the United States, the EPA has placed stationary environmental monitors all over our major cities, conducting daily measurements of small particulates from traffic and industry, along with secondary chemicals that emerge as a result. There are also thousands of satellites all over the globe calibrating heat waves that can alter how the pollutants react with each other.Pioneers like Wright are just starting to chart the terrain of environmental exposures that affect the brain. “As we measure more and more of the exposome, we may be able to tailor prevention and intervention strategies. New weapons include a silicone bracelet that we have in the laboratory. You wear it and it will tell us what pollutants you are exposed to,” Wright says. She also is exploring more ways to collect data on the toxins people have already encountered: “With a single strand of hair, we can tell you what you’ve been exposed to. Hair grows about a centimeter a month, so if we get a hair from a pregnant woman and she has nine centimeters of hair, we can go back a full nine months, over the entire life of the fetus. Or we can create a life-long exposome history when a child loses a tooth at age six.”“We're designed to be pretty resilient,” Wright adds. The problem comes when the exposures are chronic and accumulative and overwhelm our ability to adapt. We’re not going to fix everything, “but if I know more about myself than before, that empowers me to think, ‘I’m optimizing the balance, and I’m intervening as best I can.’ ”Additional reporting and editing was done by Margaret Hetherman.This story is part of a series of OpenMind essays, podcasts, and videos supported by a generous grant from the Pulitzer Center's Truth Decay initiative.This story originally appeared on OpenMind, a digital magazine tackling science controversies and deceptions.

The new science of "exposomics" shows how air pollution contributes to Alzheimer’s, Parkinson’s, bipolar disorder and other brain diseases

B1992, burgeoning population, choking traffic, and explosive industrial growth in Mexico City had caused the United Nations to label it the most polluted urban area in the world. The problem was intensified because the high-altitude metropolis sat in a valley trapping that atmospheric filth in a perpetual toxic haze. Over the next few years, the impact could be seen not just in the blanket of smog overhead but in the city’s dogs, who had become so disoriented that some of them could no longer recognize their human families. In a series of elegant studies, the neuropathologist Lilian Calderón-Garcidueñas compared the brains of canines and children from “Makesicko City,” as the capital had been dubbed, to those from less polluted areas. What she found was terrifying: Exposure to air pollution in childhood decreases brain volume and heightens risk of several dreaded brain diseases, including Parkinson’s and Alzheimer’s, as an adult.

Calderón-Garcidueñas, today head of the Environmental Neuroprevention Laboratory at the University of Montana, points out that the damaged brains she documented through neuroimaging in young dogs and humans aren’t just significant in later years; they play out in impaired memory and lower intelligence scores throughout life. Other studies have found that air pollution exposure later in childhood alters neural circuitry throughout the brain, potentially affecting executive function, including abilities like decision-making and focus, and raising the risk of psychiatric disorders.

The stakes for all of us are enormous. In places like China, India, and the rest of the global south, air pollution, both indoor and outdoor, has steadily soared over the course of decades. According to the United Nations Foundation, “nearly half of the world’s population breathes toxic air each day, including more than 90 percent of children.” Some 2.3 billion people worldwide rely on solid fuels and open fires for cooking, the Foundation adds, making the problem far worse. The World Health Organization calculates about 3 million premature deaths, mostly in women and children, result from air pollution created by such cooking each year.


On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.


In the United States, meanwhile, average air pollution levels have decreased significantly since the passage of the Clean Air Act in 1970. But the key word is average. Millions of Americans are still breathing outdoor air loaded with inflammation-triggering ozone and fine particulate matter. These particles, known as PM2.5 (particles less than 2.5 micrometers in diameter), can affect the lungs and heart and are strongly associated with brain damage. Wildfires—like the ones that raged across Canada this past summer—are a major contributor of PM2.5. A recent study showed that pesticides, paints, cleaners, and other personal care products are another major—and under-recognized—source of PM2.5 and can raise the risk for numerous health problems, including brain-damaging strokes.

Untangling the relationship between air pollution and the brain is complex. In the modern industrial world, we are all exposed to literally thousands of contaminants. And not every person exposed to a given pollutant will develop the same set of symptoms, impairments, or diseases—in part because of their genes, and in part because each exposure may occur at a different point in development or impact a different area of the body or brain. What’s more, social disparities are at play: Poorer populations almost always live closer to factories, toxins, and pollutants.

The effort to figure it out and intervene has sparked a new field of study: exposomics, the science of environmental exposures and their effects on health, disease, and development. Exposomics draws on enormous datasets about the distribution of environmental toxins, genetic and cellular responses, and human behavioral patterns. There is a huge amount of information to parse, so researchers in the field are turning to another emerging science, artificial intelligence, to make sense of it all.

“Anything from our external environment—the air we breathe, food we eat, the water we drink, the emotional stress that we face every day—all of that gets translated into our biology,” says Rosalind Wright, professor of pediatrics and co-director of the Institute for Exposomic Research at the Icahn School of Medicine at Mount Sinai in New York. “All these things plus genes themselves explain the patterns of risk we see.” When an exposure is constant and cumulative, or when it overwhelms our ability to adapt, or “when you’re a fetus in utero, when you’re an infant or in early childhood or in a critical period of growth,” it can have a particularly powerful effect on lifelong cognitive clarity and brain health.

Neuroscientist Megan Herting at the University of Southern California (USC) has been studying the impact of air pollution on the developing brain. “Over the past few years, we have found that higher levels of PM2.5 exposure are linked to a number of differences in the shape, neural architecture, and functional organization of the developing brain, including altered patterns of cortical thickness and differences in the microstructure of gray and white matter,” she says. On the basis of neuroimaging of exposed youngsters, Herting and fellow researchers suspect the widespread differences in brain structure and function linked with air pollution may be early biomarkers for cognitive and emotional problems emerging later in life.

That suspicion gains support from an international meta-analysis (a study of other studies) published in 2023 that correlated exposure to air pollution during critical periods of brain development in childhood and adolescence to risk of depression and suicidal behavior. The imaging parts of the studies showed changes in brain structure, including neurocircuitry potentially involved in movement disorders like Parkinson’s, and white matter of the prefrontal lobes, responsible for executive decision-making, attention, and self-control.

In a 2023 study, Herting and colleagues tracked children transitioning into adolescence, when brains are in a sensitive period of development and thus especially vulnerable to long-term damage from toxins. Among brain regions developing during this period is the prefrontal cortex, which helps with cognitive control, self-regulation, decision-making, attention, and problem-solving, Herting says. “Your emotional reward systems are also still being refined,” she adds.

Looking at scan data from more than 9,000 youngsters exposed to air pollution between ages 9 and 10 and following them over the next couple of years, the researchers found changes in connectivity between brain regions, with some regions having fewer connections and others having more connections than normal. Herting explains that these structural and functional connections allow us to function in our daily lives, but how or even whether the changes in circuitry have an impact, researchers do not yet know.

The specific pollutants involved in the atypical brain circuits appear to be nitrogen dioxide, ozone, and PM2.5—the small particles that worry many researchers the most. Herting explains: Limits set on fine particulate matter are stricter in the United States than in most other countries but still inadequate. The U.S. Environmental Protection Agency currently limits annual average levels of the pollutant to 12 micrograms per cubic meter and permits daily spikes of up to 35 micrograms per cubic meter. Health organizations, on the other hand, have called for the agency to lower levels to 8 micrograms and 25 micrograms per cubic meter, respectively. Thus, even though it may be “safe” by EPA standards, “air quality across America is contributing to changes in brain networks during critical periods of childhood,” Herting says. And that may augur “increased risk for cognitive and emotional problems later in life.” She plans to follow her group of young people into adulthood, when advances in science and the passage of time should reveal more about the effect of air pollution exposure during adolescence.

Other research shows that air pollution increases risk of psychiatric disorder as years go by. In work based on large datasets in the United States and Denmark, University of Chicago computational biologist Andrey Rzhetsky and colleagues found that bad air quality was associated with increased rates of bipolar disorder and depression in both countries, especially when exposure occurs early in life. Rzhetsky and his team used two major sources: in Denmark, the National Health Registry, which contains health data on every citizen from cradle to grave; and in the United States, insurance claims with medical history plus details such as county of residence, age, sex, and importantly, linkages to family—specifics that helped reveal genetic predisposition to develop a psychiatric condition during the first 10 years of life.

“It's possible that the same environment will cause disease in one person but not in another because of predisposing genetic variants that are different in different people,” Rzhetsky says. “The different genetic predisposition, that’s one part of the puzzle. Another part is varying environment.”

Indeed, these complex diseases are spreading much faster than genetics alone seems to explain. “We definitely don’t know for sure which pollutant is causal. We can’t really pinpoint a smoking gun,” Rzhetsky says. But one pesky culprit continues to prove statistically significant: “It looks like PM2.5 is one of those strong signals.” To figure it out specifically, we’ll need much more data, and exposomics will play a vital role.

"This is a wake-up call,” Frances Jensen told her fellow physicians at the American Neurological Society’s symposium on Neurologic Dark Matter in October 2022. The meeting was an exploration of the exposome –the sum of external factors that a person is exposed to during a lifetime— driving neurodegenerative disease. It was focused in no small part on air pollution. Jensen, a University of Pennsylvania neurologist and president of the American Neurological Association, argued that researchers need to pay more attention to contaminants because the sharp rise in the number of Parkinson’s diagnoses cannot be explained by the aging population alone. “Environmental exposures are lurking in the background, and they’re rising,” she said.

Parkinson’s disease is already the second-most common neurodegenerative disease after Alzheimer’s. Symptoms, which can include uncontrolled movements, difficulty with balance, and memory problems, generally develop in people age 60 and older, but they can occur, though rarely, in people as young as 20. Could something in the air explain the increasing worldwide prevalence of Parkinson’s? Researchers have not identified one specific cause, but they know Parkinson’s symptoms result from degeneration of nerve cells in the substantia nigra, the part of the brain that produces dopamine and other signal-transmitting chemicals necessary for movement and coordination.

A host of air pollution suspects are now thought to play a role in the loss of dopamine-producing cells, according to Emory University environmental health scientist W. Michael Caudle, who uses mass spectrometry to identify chemicals in our bodies. One suspect he’s looking at are lipopolysaccharides, compounds often found in air pollution and bacterial toxins. Although lipopolysaccharides cannot directly enter the brain, they inflame the liver. The liver then releases inflammatory molecules into the bloodstream, which interact with blood vessels in the blood-barrier. “Then the inflammatory response in the brain leads to loss of dopamine neurons, like that seen in Parkinson’s disease,” Caudle says.

More evidence comes from neuroepidemiologist Brittany Krzyzanowski, based at the Barrow Neurological Institute in Phoenix. Krzyzanowski had an “aha!” moment when she saw a map highlighting the high risk of Parkinson’s disease in the Mississippi–Ohio River Valley, including areas of Tennessee and Kentucky. At first she wondered whether the Parkinson’s hotspot was due to pesticide use in the region. But then it hit her: The area also had a network of high-density roads, suggesting that air pollution could be involved. “The pollution in these areas may contain more combustion particles from traffic and heavy metals from manufacturing, which have been linked to cell death in the part of the brain involved in Parkinson’s disease,” she said.

In a study published in Neurology in October 2023, Krzyzanowski and colleagues, using sophisticated geospatial analytic techniques, went on to show that those with median levels of air pollution have a 56 percent greater risk of developing Parkinson’s disease compared to those living in regions with the lowest level of air pollution. Along with the Mississippi-Ohio River Valley, other hotspots included central North Dakota, parts of Texas, Kansas, eastern Michigan, and the tip of Florida. People living in the western half of the U.S. are at a reduced risk of developing Parkinson’s disease compared with the rest of the nation.

As to the hotspot in the Mississippi-Ohio River Valley, Parkinson’s there is 25% higher than in areas with the lowest air particulate matter. Aside from that, Krzyzanowski and her research team noted something especially odd: Frequency of the disease rose with the level of pollution, but then it plateaued even as air pollution continued to soar. One reason could be that other air pollution-linked diseases, including Alzheimer’s, are masking the emergence of Parkinson’s; another reason could be an unusual form of PM2.5. “Regional differences in Parkinson’s disease might reflect regional differences in the composition of the particulate matter, and some areas may have particulate matter containing more toxic components compared to other areas,” Krzyzanowsk says. Tapping the tenets of exposomics, she expects to explore these issues in the months and years ahead.

The hunt is on for the connections between environmental factors and Alzheimer’s as well. USC neurogerontologist Caleb Finch has spent years studying dementia, especially Alzheimer’s disease, which affects more than six million Americans. As with Parkinson’s, Alzheimer’s numbers are rising in the United State and much of the world. Degenerative changes in neurons become increasingly frequent after the age of 60, yet half of the people who make it to 100 will not get dementia. Many factors could explain those discrepancies. Air pollution may be an important one, Finch says.

Researchers like Finch and his USC colleague Jiu-Chiuan Chen are joining forces to explore the connections between environmental neurotoxins and decline in brain health. It’s a challenging project, since air pollution levels and specific pollutants vary on fine scales and can change from hour to hour in many areas of the globe. On the basis of brain scans of hundreds of people over a range of geographic areas, this much we know: “People living in areas of high levels of air pollution and who have been studied on three continents showed accelerated arterial disease, heart attacks, and strokes, and faster cognitive decline,” Finch says.

Not everyone reacts the same way when exposed to pollutants, of course. Greatest risk for Alzheimer’s seems to hit people who have a genetic variant known as apolipoprotein E (APOE4), which is involved in making proteins that help carry cholesterol and other types of fat in the bloodstream. About 25 percent of people have one copy of that gene, and 2 to 3 percent carry two copies. But inheriting the gene alone doesn’t determine a person’s Alzheimer’s risk. Environmental exposures count too.

A recent study by Chen, Finch, and colleagues published in the Journal of Alzheimer’s Disease looked at associations between air pollution exposure and early signs of Alzheimer’s in 1,100 men, all around age 56 when the study began. By age 68, test subjects with high PM2.5 exposures had the worst scores in verbal fluency. People exposed to high levels of nitrogen dioxide (NO2) air pollution were also linked to worsened episodic memory. The men who had APOE4 genes had the worst scores in executive function. The evidence indicates that the process by which air pollution interacts with genetic risk to cause Alzheimer’s in later life may begin in the middle years, at least for men.

A separate USC study of more than 2,000 women found that when air quality improved, cognitive decline in older women slowed. When exposure to pollutants like PM2.5 and NO2 dropped by a few micrograms per cubic foot a year over the course of six years, the women in the study tested as being a year or so younger than their real age. This suggests that when exposure air pollution is lowered, dementia risk can go down.

In parallel, an international study by the Lancet Commission concluded that the risk of dementia, including Alzheimer’s, can be lowered by modifying or avoiding 12 risk factors: hypertension, hearing impairment, smoking, obesity, depression, low social contact, low level of education, physical inactivity, diabetes, excessive alcohol consumption, traumatic brain injury—and air pollution. Together, the 12 modifiable risk factors account for around 40 percent of worldwide dementias, which theoretically could be prevented or delayed.

In light of all this, Finch and Duke University social scientist Alexander Kulminski have proposed the “Alzheimer’s disease exposome” to assess environmental factors that interact with genes to cause dementia. Where medicines have failed, exposomics just might help. Studies of Swedish twins show that half of individual differences in Alzheimer’s risk may be environmental, and thus modifiable; and while vast sums of research funding have been poured into the genetic roots of the disease, it could be that altering the exposome would provide a better preventive than all the ongoing drug trials to date. Environmental toxins broadly disrupt cell repair and protective mechanisms in the brain, the researchers point out. And factors like obesity and stress contribute to chronic inflammation, which likely damages neurons’ ability to function and communicate. The research framework of the Alzheimer's disease exposome offers a comprehensive, systematic approach to the environmental underpinnings of Alzheimer's risk over individuals’ lifespans—from the time they are pre-fertilized gametes to life as a fetus in the womb to childhood and beyond.

For three decades, Rosalind Wright at Mount Sinai has wanted to trace critical problems in neurodevelopment and neurodegeneration to pollutants—from highway emissions to heavy metals to specific household chemicals and a host of other factors—but the mass of data has been overwhelming. With the advent of artificial intelligence (AI) and sophisticated neuroimaging technology, high-precision research using vast genomic databanks is finally possible. “I knew we needed to ask these kinds of questions, but I didn't have the tools to do it. Now we do and it’s very exciting,” Wright says.

Using machine learning—an AI approach to data analysis—Wright looks at giant datasets that include the precise location of an individual’s residence as well as the myriad of pollutants he or she encounters. “It's no different fundamentally from other statistical models we use,” she says. “It’s just that this one has been developed to be able to take in bigger and bigger data, more and more types of exposures.” The resulting data breakdown should tell us which factors drive which types of risk for which people. That information will help people know where they should target their efforts to reduce exposures to risky pollutants, and ultimately how to lower risk of impairment and disease, brain or otherwise.

The tools used by Wright and her colleagues are being trained on diseases like Alzheimer’s. If you put genes and the environment together, “you start to see who might be at higher risk and also what underlying mechanisms might be driving it in different ways in different populations,” Wright says. The exposome could also explains more subtle cognitive effects of pollution that may emerge over long periods, such as harms to attention, intelligence, and performance.

To address environmental brain risks, it’s important to know which pollutants are present—another target of exposomic research. In the United States, the EPA has placed stationary environmental monitors all over our major cities, conducting daily measurements of small particulates from traffic and industry, along with secondary chemicals that emerge as a result. There are also thousands of satellites all over the globe calibrating heat waves that can alter how the pollutants react with each other.

Pioneers like Wright are just starting to chart the terrain of environmental exposures that affect the brain. “As we measure more and more of the exposome, we may be able to tailor prevention and intervention strategies. New weapons include a silicone bracelet that we have in the laboratory. You wear it and it will tell us what pollutants you are exposed to,” Wright says. She also is exploring more ways to collect data on the toxins people have already encountered: “With a single strand of hair, we can tell you what you’ve been exposed to. Hair grows about a centimeter a month, so if we get a hair from a pregnant woman and she has nine centimeters of hair, we can go back a full nine months, over the entire life of the fetus. Or we can create a life-long exposome history when a child loses a tooth at age six.”

“We're designed to be pretty resilient,” Wright adds. The problem comes when the exposures are chronic and accumulative and overwhelm our ability to adapt. We’re not going to fix everything, “but if I know more about myself than before, that empowers me to think, ‘I’m optimizing the balance, and I’m intervening as best I can.’ ”

Additional reporting and editing was done by Margaret Hetherman.

This story is part of a series of OpenMind essays, podcasts, and videos supported by a generous grant from the Pulitzer Center's Truth Decay initiative.

This story originally appeared on OpenMind, a digital magazine tackling science controversies and deceptions.

Read the full story here.
Photos courtesy of

Data centers are putting new strain on California’s grid. A new report estimates the impacts

A new report estimates that California’s data centers are driving increases in electricity use, water demand and pollution even as lawmakers stall on oversight.

In summary A new report estimates that California’s data centers are driving increases in electricity use, water demand and pollution even as lawmakers stall on oversight. California is a major hub for data centers — the facilities that store and transmit much of the internet. But just how much these power-hungry operations affect the state’s energy use, climate and public health remains an open question for researchers. A new report released this week by the environmental think tank Next 10 and a UC Riverside researcher attempts to quantify that impact — but its authors say the report is only an estimate without harder data from the centers themselves. “We are just making these reports pretty much in the dark — since there’s almost zero information,” said Shaolei Ren, an AI researcher at UC Riverside and co-author of the report. “We have extremely little information about data centers in California.” Ren and his coauthors conclude that between 2019 and 2023, electricity use and carbon emissions by California data centers nearly doubled, while on-site water consumption slightly more than doubled. Much of the increases were attributable to the electricity required to run artificial intelligence computations. But many of the report’s estimates, including its health impacts, are based on limited data — a key issue researchers said they encountered repeatedly when crafting the report. The report underscores a growing tension in the industry: advocates who support clean energy and experts who study energy demand agree the days of steady, flat energy use at data centers are over, but there’s far less consensus on just how sharply electricity demand will climb. “In very simple terms, a lot of the uncertainty comes from: what is our life going to look like with AI in the next five years, 10 years, 20 years — how integrated is it going to become?” said Maia Leroy, a Sacramento-based advocate who focuses on clean energy and the grid.  “Are we reaching a point where the use is going to plateau, or is it going to continue?” Experts say more transparency is essential to better understand what resources data centers demand in California. Liang Min, who manages the Bits and Watts Initiative at Stanford University, says the state should improve its forecasts for energy demand to support clean energy goals. Min, who investigates AI’s growing strain on the electric grid, told CalMatters that demand at power centers rises in rapid, unpredictable phases and can shift quickly with each new generation of hardware. The California Energy Commission, which plans for energy use and the growth in demand, “can play a pivotal role,” in understanding and adapting to the demands of AI. As demand grows, policy responses lag In Sacramento, efforts to add transparency and guardrails around data centers have struggled this year. California lawmakers shelved most consumer and environmental proposals aimed at data centers, even as they approved a plan to regionalize California’s power grid to help meet demand from the sector. They set aside two bills focused on curbing data centers’ energy use — one requiring operators to disclose their electricity use and another that offered clean power incentives. Gov. Gavin Newsom vetoed a separate proposal that would have required data center operators to report their water use, even after the bill was weakened. In the end, Newsom — who has often highlighted California’s dominance in the artificial intelligence sector — signed only one measure, allowing regulators to determine whether data centers are driving up costs. Mark Toney, who leads The Utility Reform Network and supported the transparency measure, has questioned whether data centers justify the costs they’re pushing onto ratepayers. He warned of the centers’ “voracious consumption of energy and water, increased carbon emissions, and jacking up ratepayer bills.” Hard facts about data centers are tough to find in California because most rent out power, cooling and floor space to other companies, said Ren, the UC Riverside researcher. Such colocation facilities don’t run their own servers or technology, so they report less information publicly than data centers built by major tech companies in other states. While estimates vary, California has the third-most data centers in the country, after Texas and Virginia. DataCenterMap, a commercial directory that tracks data centers worldwide, lists 321 sites across the state. More in California are expected in coming years. The centers operate around the clock and often rely on diesel backup generators to maintain service during power failures — a practice that adds both greenhouse gases and local air pollutants. They also consume energy and water depending on their cooling methods. Rising data-center demand, and rising questions F. Noel Perry, the businessman and philanthropist who founded Next 10, said his organization’s report shines light on what is fundamentally a black box. “To solve a problem, we have to understand what the problem is,” he said.  “We’ve seen the proliferation of data centers in California, in the U.S. and across the world — and we also are seeing major implications for the environment,” Perry told CalMatters. “The real issue has to do with transparency — and the ability of elected officials and regulators to create some rules that will govern reductions in emissions, water consumption.” The report estimated that data centers used 10.8 terawatt-hours of electricity in 2023, up from 5.5 terawatt-hours in 2019, accounting for 6% of the nation’s total data center energy use. Unless growth is curbed or better managed, the report’s authors project demand could rise to as high as 25 terawatt-hours by 2028, equal to the power use of roughly 2.4 million U.S. homes. Carbon emissions from the sector nearly doubled during the same period, climbing from 1.2 million to 2.4 million tons, researchers estimated, while on site water use grew from 1,078 acre feet in 2019 to 2,302 acre feet in 2023. That’s enough to meet the annual water needs of almost seven thousand California households. The report’s authors also estimated the public health costs from air pollution associated with data centers have potentially risen, from $45 million in 2019 to more than $155 million in 2023, with the burden expected to reach as high as $266 million by 2028. Most of those costs stem from indirect pollution produced by fossil-fueled power plants that supply the grid. But authors pointed out that regions dense with data centers — particularly Santa Clara County, home to Silicon Valley — could face higher localized risks from diesel backup generators. Dan Diorio, vice president of state policy for the Data Center Coalition, said the report exaggerates the impact of backup diesel generators, which are tightly regulated and rarely used in California, minimizing their contributions to air pollution. Data centers don’t control the water used in electricity generation, said Diorio. Since those water impacts don’t happen on site, it’s not fair to blame that on the centers themselves.  “It paints a skewed picture of this critical 21st-century industry,” Diorio said in a statement. Diorio said the report also overlooks how cooling technology varies by region and has become more efficient in recent years. But the authors say their findings underscore the need for uniform reporting standards for data centers’ energy and water use. The report said California should establish ongoing local monitoring and review of data centers — and make the findings public. Ren, the UC Riverside researcher, said that California’s cleaner grid and stricter pollution rules are helping blunt some environmental impacts of data centers already. “California — versus the national average — is doing a better job due to the cleaner grid,” he said.

Can Peru Reboot Its Amazon Oil? Pollution Fallout and Local Opposition Loom

By Alexander VillegasSANTA ROSA, Peru (Reuters) -Near a remote bend of the Patoyacu River in Peru's northern Amazon, Wilmer Macusi stood atop a...

SANTA ROSA, Peru (Reuters) -Near a remote bend of the Patoyacu River in Peru's northern Amazon, Wilmer Macusi stood atop a rusty pipeline cutting through the jungle, swirling a branch in the pool of stagnant water surrounding it.“They say this is clean,” said Macusi, a 25-year-old Indigenous Urarina leader, pointing to the spot where an oil spill occurred in early 2023. “But if you move the water, oil still comes out.”Black droplets bubbled to the surface as plastic barriers meant to contain the spill drooped into the water. The pipeline links a nearby oilfield, Block 8, to the larger government-owned North Peruvian Pipeline (ONP). Macusi's community of Santa Rosa lies a short walk away.Peru’s northern Amazon holds hundreds of millions of barrels of crude, according to government data. But Indigenous groups say oil extraction over the past half-century brought pollution, not progress, and are opposed to a fresh wave of development.The region once pumped more than half of Peru's oil, peaking at about 200,000 barrels a day in the 1980s before environmental liabilities and community opposition drove production below 40,000 bpd. Key blocks went dormant in 2020.Now, the region's modest reserves are again central to state oil firm Petroperu's plans. The company has spent $6.5 billion upgrading its Talara refinery into a 95,000-bpd complex aimed at producing high-grade fuels for export. Heavily indebted with a CCC+ junk credit rating from ratings agency Fitch, Petroperu wants to revive Amazon oil output to supply Talara.The state firm estimated last month that proven and probable reserves in the region were worth $20.9 billion, which Petroperu said could deliver $3.1 billion in tax revenues for local governments and communities. While the amount of oil at stake is relatively small, the plans have fueled tensions over past spills, stoking Indigenous opposition at a time Brazil, Ecuador and Guyana are trying to expand their Amazon oil frontiers.Frustration about climate action and forest protection boiled over at the COP30 climate summit this week, when dozens of Indigenous protesters forced their way into the venue and clashed with security guards.Petroperu is also planning to import oil to the refinery by linking the 1,100-km ONP to neighboring Ecuador, which aims to boost production in its own Amazon region as part of a $47 billion oil expansion plan. Hailed as an engineering marvel when it was built in the 1970s, the ONP has since become a lightning rod for leaks, protests and sabotage. Indigenous groups in both countries are resisting the pipeline link-up.The government is weighing options for how best to run the pipeline, including through a joint venture or outsourcing its management.  Petroperu failed to attract an international partner to run its largest oilfield, Block 192, which produced more than 100,000 bpd at its peak but has recently been the focus of Indigenous protests demanding remediation for damage to the forest, soil and waterways.Petroperu's former chairman Alejandro Narvaez, who was fired last month, estimated Block 192 could produce at least 20,000 bpd with investment and overall Amazon production could hit 100,000 bpd.The state oil firm selected domestic firm Upland Oil & Gas to operate the block, but Peru's state oil regulator disqualified Upland last month on the grounds it did not demonstrate financial capacity. Upland disputes the decision and has asked for a review.Petroperu also partnered with Upland to revive production at the smaller Block 8, which produced 5,000 bpd last month.Upland's CEO Jorge Rivera, son of one of Peru's early oil prospectors, told Reuters that Upland has offered Indigenous communities training, jobs and funding."We've dedicated ourselves to understanding the complexities behind operating these fields,” he said.Rivera visited Santa Rosa in March, gifting a Starlink terminal and requesting a report on the community's needs.The community's main demand was the cleanup of the nearby spill, but questions remain over who bears responsibility.Though the operator is responsible for the 108-km stretch of pipeline that runs through Block 8 connecting it to the ONP, Upland's contract exempts it from liability for past pollution.The previous operator, an Argentine subsidiary named Pluspetrol Norte, was fined a record number of times by Peru's environmental regulator OEFA before it filed for liquidation and left the area in late 2020. Eight Indigenous federations and non-governmental organizations filed a complaint to the OECD's Dutch National Contact Point, a mechanism to implement OECD guidelines for businesses, which concluded in September that Pluspetrol had violated Indigenous communities' rights in Peru's Amazon and urged the company to address the environmental damage.In a response to Reuters, Pluspetrol said it already had complied with environmental and human rights regulations and that the NCP statement was "without merit" for not reflecting the "breadth and complexity of the evidence presented and the extent of actions taken by the company."  Decades of scientific research have found high levels of lead, mercury, cadmium and arsenic in wildlife and Indigenous people living near Peru's oilfields. Estimated cleanup costs for Block 192 alone stand at $1.5 billion.OEFA registered over 560 environmental infractions including oil spills and others from the ONP or other oil infrastructure in Blocks 192 and 8 from 2011 through September 2025.Petroperu has said any damage is "temporary and reversible" and blamed unspecified "economic and rural-domestic activities" by local communities as the main driver of water pollution.In late 2023, Peru's prosecutor's office said it had broken up a network of businessmen, local Indigenous leaders and a Petroperu employee that it said was orchestrating oil spills to secure lucrative cleanup contracts.  In an interview with Reuters before his dismissal, Narvaez said Petroperu had prioritized cleaning up spills under the regulator's supervision.The government of Peru's interim President Jose Jeri, who took power last month, replaced Narvaez with Petroperu board vice president Fidel Moreno and said it will soon replace Petroperu's entire board of directors.Moreno did not reply to an interview request.Macusi said communities had yet to access a fund from Upland promising 2.5% of oil sales. Meanwhile, meetings with the oil regulator, Perupetro, to discuss funding for community projects have been delayed.After an oil spill from the Block 8 connector pipeline in 2022, Urarina communities held a strike, taking over oil facilities, fields and blockading a river to demand a better state response. Macusi, who as a teen worked hauling buckets of spilled oil, says communities are ready to take action again."If the promised benefits don't come soon, we'll take measures," he said.(Reporting by Alexander Villegas; Additional reporting by Marco Aquino; Editing by Nia Williams and Katy Daigle)Copyright 2025 Thomson Reuters.

L.A. air officials approve port pollution pact as skeptics warn of 'no clear accountability'

Southern California air officials voted overwhelmingly Friday to give themselves the power to levy fines on the ports of Los Angeles and Long Beach if they don't fulfill their promises to transition to cleaner equipment.

Southern California air officials voted overwhelmingly Friday to give themselves the power to levy fines on the ports of Los Angeles and Long Beach if they don’t fulfill their promises to transition to cleaner equipment. The ports remain the largest source of smog-forming pollution in Southern California — releasing more emissions than the region’s 6 million cars each day. The South Coast Air Quality Management District’s governing board voted 9-1 in favor of an agreement that commits the ports to installing zero-emission equipment, such as electric truck chargers or hydrogen fuel pumps, to curb air pollution from the heaviest polluters. The plans will be submitted in three phases: heavy-duty trucks and most cargo-moving equipment by 2028; smaller locomotives and harbor crafts by 2029; and cargo ships and other large vessels by 2030. If the ports don’t meet their deadlines, they would be fined $50,000 to $200,000, which would go into a clean-air fund to aid communities affected by port pollution. The AQMD, for its part, forgoes imposing new rules on the ports for five years. Many environmental advocates voiced disappointment, saying the agreement doesn’t contain specific pollution reduction requirements. “I urge you not to sign away the opportunity to do more to help address the region’s air pollution crisis in exchange for a pinky promise,” said Kathy Ramirez, one of dozens of speakers at Friday’s board meeting. “This is about our lives. I would encourage you to think about why you joined the AQMD board. If not for clean air, then for what?” Port officials and shipping industry officials lauded the decision as a pragmatic way to transition to a zero-emissions economy.“The give and take of ideas and compromises in this process — it mirrors exactly what a real-world transition to zero emissions looks like,” said William Bartelson, an executive at the Pacific Maritime Assn. “It’s practical, it’s inclusive and it’s grounded in shared goals.”The vote answers a long-standing question over how the AQMD intends to reduce pollution from the sprawling trade complex, a focus of environmental justice efforts for decades. The twin ports of Los Angeles and Long Beach, known as the San Pedro Port Complex, is the largest container port in the Western Hemisphere, handling 40% of all container cargo entering the United States. Despite years of efforts at reducing pollution, the vast majority of heavy machinery, big rigs, trains and ships that serve the region’s bustling goods movement still are powered by diesel engines that emit toxic particles and nitrogen oxides, a precursor to smog. For nearly a decade the AQMD has vacillated between strict regulation and a pact with the ports with more flexibility. Several negotiations over a memorandum of understanding failed between 2017 and 2022. The board was prepared to require the ports to offset smog-forming pollution from trucks, trains and ships through clean air projects, like solar panels or electric vehicle chargers. Instead, the ports presented the AQMD with a proposed cooperative agreement, prompting the agency to pause its rulemaking. The AQMD doubled the penalties in that proposal and agreed not to make new rules for five years, not the 10 the industry wanted. Perhaps the most important details of the agreement — the types of energy or fuel used; the appropriate number of chargers or fueling stations — won’t be published for years. The lack of specifics prompted skepticism from many environmental advocates.“It’s just a stall tactic to make a plan for a plan in the hope that emission reductions will come sometime in the future,” said Fernando Gaytan, a senior attorney with environmental nonprofit Earthjustice.The contract also includes a clause that the AQMD or ports could terminate the agreement “for any reason” with a 45-day written notice. Wayne Nastri, the AQMD’s executive officer, said this gives the agency the option to switch back to requiring zero-emission infrastructure at the ports. “If we report back to you and you’re not seeing the progress being made, you can be confident knowing that you can pivot and release that [rulemaking] package,” Nastri said to the board. At the end of public comment, opponents of the agreement broke into loud chants. The AQMD cleared the gallery as the board discussed the proposal. Board member Veronica Padilla-Campos, the lone “no” vote, said the agreement lacked the necessary emission reductions and offered “no clear accountability” to local communities.Fellow board member Nithya Raman acknowledged many criticisms of the agreement but ultimately voted for it. “I really have come to believe that the choice before us is this cooperative agreement or no action at all on this issue — continuing a decade of inaction,” Raman said. “I will be voting to support it today, because I do think that it is our only pathway to take any steps forward toward cleaner air at the single largest source of air pollution in the region.”The plan still must be approved by commissioners at the Port of Los Angeles and the Port of Long Beach Harbor Commission at meetings this year.

Pollution-plagued port communities near LA and Long Beach say regulator excludes them

Communities near the ports say regulators didn't consider their input when weighing a cooperative agreement about pollution from the ports.

Guest Commentary written by Theral Golden Theral Golden is a Long Beach resident Paola Vargas Paola Vargas is a community organizer at East Yard Communities for Environmental Justice The South Coast Air Quality Management District Board of Governors should vote against the so-called cooperative agreement to curb emissions in the ports of Los Angeles and Long Beach, because impacted community members were not meaningfully included, it weakens the district’s ability to reduce emissions and it creates a dangerous precedent.   The toxic pollution experienced daily by nearby community members isn’t new. The ports of Los Angeles and Long Beach are the busiest in the country. We have known for decades that port emissions shorten life expectancy and quality of life in the South Coast Air Basin, which encompasses parts of Los Angeles, Riverside and San Bernardino counties and all of Orange County. These pollution-burdened areas are called “diesel death zones” due to the adverse health impacts. In places like West Long Beach, life expectancy is up to eight years shorter than the county average. Throughout the basin, there are an estimated 2,400 pollution related deaths a year. Both ports have made air quality improvements, but the complex is still the single largest fixed source of emissions in southern California.  And the toxins are only going to increase. Cargo activity at the ports is expected to rise 57% from 2021 to 2032. We can expect the human death toll to rise alongside it. There is a process underway with the South Coast Air Quality Management District — the governing body charged with regulating port pollution — that has the potential to address these grave health outcomes. Communities harmed by the pollution have consistently asked the district to incorporate their feedback when identifying solutions, but the district has not meaningfully engaged them. Instead, it has sided with industry time and again, allowing it to dictate the flow and outcomes of the process.  Gov. Gavin Newsom recently declined to sign Senate Bill 34, citing concerns that it would limit the South Coast Air Quality Management District’s authority to regulate port emissions and would interfere with cooperative actions taking place with the ports. We agree with Newsom’s assessment that regulatory authority and cooperation can avoid the worst health impacts — except the cooperation he refers to as “locally driven and collaborative” has been anything but.   The cooperative agreement includes a five-year ban on rulemaking. That handcuffs South Coast Air Quality Management District, effectively blocking the agency’s authority to address port pollution when the South Coast Air Basin can least afford a delay.  Youths play baseball at Bloch Field near the Port of Los Angeles in San Pedro on April 8, 2025. Photo by Joel Angel Juarez for CalMatters This ban on rulemaking not only impacts the ports of LA and Long Beach but every port in the district. It also sets a dangerous precedent that could spur other air districts to eliminate public participation in rulemaking processes and prioritize industry priorities over public health.  Instead of advancing the cooperative agreement, the South Coast Air Quality Management District’s board should provide more time to meaningfully and collaboratively engage local communities and consider public health implications.   This doesn’t have to be a zero-sum game. We can chart a path that addresses port pollution, improves quality of life and recognizes the role ports play in our global supply chains.  But that won’t happen without communities taking a meaningful place at the table. 

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.