Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

What is ‘Net Zero’, anyway? A short history of a monumental concept

News Feed
Wednesday, May 22, 2024

Last month, the leaders of the G7 declared their commitment to achieving net zero emissions by 2050 at the latest. Closer to home, the Albanese government recently introduced legislation to establish a Net Zero Economy Authority, promising it will catalyse investment in clean energy technologies in the push to reach net zero. Pledges to achieve net zero emissions over the coming decades have proliferated since the United Nation’s 2021 Glasgow climate summit, as governments declare their commitments to meeting the Paris Agreement goal of holding global warming under 1.5°C. But what exactly is “net zero”, and where did this concept come from? Stabilising greenhouse gases In the early 1990s, scientists and governments were negotiating the key article of the UN’s 1992 climate change framework: “the stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic [human-caused] interference with the climate system”. How to achieve that stabilisation – let alone define “dangerous” climate change – has occupied climate scientists and negotiators ever since. From the outset, scientists and governments recognised reducing greenhouse gas emissions was only one side of the equation. Finding ways to compensate or offset emissions would also be necessary. The subsequent negotiation of the Kyoto Protocol backed the role of forests in the global carbon cycle as carbon sinks. It also provided the means for well-forested developing countries to participate in the emerging carbon offset market, and to play their part in reaching the carbon accounting goal of “carbon neutrality”. Under those terms, the industrialised countries subject to the Kyoto Protocol could pay developing countries to offset their own emissions as a form of low-cost mitigation. The Kyoto Protocol was unable to curtail soaring global greenhouse gas emissions, and a successor agreement appeared uncertain. As a result, interest turned in the late 2000s to the possibility of using highly controversial geoengineering techniques to remove greenhouse gas emissions. These proposals included sucking carbon dioxide out of the sky so the atmosphere would trap less heat, or reflecting sunlight away from the planet to reduce heat absorption. The focus on carbon sinks, whether through forests or direct air capture, would appear again in the idea of net zero. Temperature targets By this point, policymakers and advocates were shifting away from emissions reductions goals (such as Australia’s unusual first Kyoto target to limit emissions to 108% of 1990 emissions by 2012). Instead, temperature targets became more popular, such as limiting warming to no more than two degrees above pre-industrial levels. The European Union had already adopted the 2°C threshold in 1996 and argued successfully for its relevance as a long-term objective for climate action. What changed was scientists now had better ways of tracking how long carbon dioxide emissions would stay in the atmosphere, allowing better projections of our carbon budget. These findings allowed the IPCC’s 2014 report to clearly state limiting warming to below 2°C would require “near zero emissions of carbon dioxide and other long-lived greenhouse gases by the end of the century”. By this time, London-based environmental lawyer and climate negotiator Farhana Yamin had also set her sights on net zero by 2050. For Yamin, translating the 1.5°C ambition into climate negotiations meant focusing on net zero: “In your lifetime, emissions have to go to zero. That’s a message people understand.” The concept of net zero offered a simple metric to assess mitigation efforts and hold parties legally accountable – an instrument she and colleagues proposed for the negotiation of a new legally binding agreement to succeed the Kyoto Protocol. By late 2014, net zero had gained traction, appearing for the first time at a UN climate conference, the UN’s Emissions Gap Report, and in a speech by World Bank Group President Jim Yong Kim that stressed “we must achieve zero net emissions of greenhouse gases before 2100”. Zero in Paris These efforts culminated in the 2015 Paris Agreement, which in addition to its well-known temperature targets of 1.5°C and 2°C, also added a complementary goal: To undertake rapid [emissions] reductions … so as to achieve a balance between anthropogenic emissions by sources and removal by sinks of greenhouse gases in the second half of this century. This is what “net zero” means – a “balance” between carbon emissions and carbon sinks. It was subsequently enshrined in the IPCC’s Special Report on the importance of keeping warming under 1.5°C, in which 195 member states agreed to get to net zero emissions by 2050. Slogan for greenwashing? So, what’s next for net zero? Countries such as India have questioned what it means for fairness and equity between developing and developed nations, Instead, they favour the well-established approach of “common but differentiated responsibility” to mitigation. This justifies India’s aim to reach net zero emissions by 2070, as developed nations should lead the way and provide developing countries with funds and technologies necessary to support their mitigation ambitions. The UN, by contrast, has warned the flexibility of net zero as a concept could make it a mere slogan for greenwashing by corporations and other non-state entities rather than a concrete objective. As the chair of the UN’s High Level Experts group put it: It’s not just advertising, bogus net-zero claims drive up the cost that ultimately everyone would pay. Including people not in this room, through huge impacts, climate migration and their very lives. Given the chasm between pledges and practice documented in the 2023 UN Emissions Gap Report, there is a very real likelihood we will shoot past the temperature limits of the Paris Agreement. Fossil fuel treaty Net zero isn’t the only approach to tackle climate change. Other concepts are growing in popularity. For instance, optimists say the temperature “overshoot” we’re on track for could be tackled with a “drawdown” of carbon emissions if we use “carbon dioxide removal” or “negative emissions technologies” such as carbon capture and storage, soil carbon sequestration, and mass tree planting and reforestation. But beware: the IPCC’s Special Report cautioned that while some of these options might be technologically possible, they have not been tested on a large scale. Can these untested technologies be relied on to halt and reverse the chaos likely to be unleashed by dangerous levels of global heating? What does overshoot mean for the low-lying island nations who rallied around “1.5°C to stay alive”? Momentum has been building for a Fossil Fuel Non-Proliferation Treaty since 2022, when Vanuatu called on the UN General Assembly to phase out the use of fossil fuels. Such a treaty, Vanuatu President Nikenike Vurobaravu said, would “enable a global just transition for every worker, community and nation with fossil fuel dependence”. At the Dubai climate conference late last year, held in the wake of the International Energy Agency’s revised Net Zero Roadmap, the negotiations culminated in a first for the UNFCCC – an explicit statement endorsing: transitioning away from fossil fuels in energy systems, in a just, orderly and equitable manner, accelerating action in this critical decade, so as to achieve net zero by 2050 in keeping with the science. Will net zero become more than hot air? That remains to be seen. While the science behind the concept is broadly sound, the politics of achieving net zero are a work in progress. Reducing greenhouse gas emissions to the point where they are zeroed out by carbon sinks by 2050 requires just and credible planning. We must prioritise the phase-out of fossil fuels sooner rather than later. Ruth Morgan receives funding from the Australian Research Council. She was a Lead Author (Working Group 2) of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.

The phrase ‘net zero’ has a long history.

Last month, the leaders of the G7 declared their commitment to achieving net zero emissions by 2050 at the latest. Closer to home, the Albanese government recently introduced legislation to establish a Net Zero Economy Authority, promising it will catalyse investment in clean energy technologies in the push to reach net zero.

Pledges to achieve net zero emissions over the coming decades have proliferated since the United Nation’s 2021 Glasgow climate summit, as governments declare their commitments to meeting the Paris Agreement goal of holding global warming under 1.5°C. But what exactly is “net zero”, and where did this concept come from?

Stabilising greenhouse gases

In the early 1990s, scientists and governments were negotiating the key article of the UN’s 1992 climate change framework: “the stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic [human-caused] interference with the climate system”. How to achieve that stabilisation – let alone define “dangerous” climate change – has occupied climate scientists and negotiators ever since.

From the outset, scientists and governments recognised reducing greenhouse gas emissions was only one side of the equation. Finding ways to compensate or offset emissions would also be necessary.

The subsequent negotiation of the Kyoto Protocol backed the role of forests in the global carbon cycle as carbon sinks.

It also provided the means for well-forested developing countries to participate in the emerging carbon offset market, and to play their part in reaching the carbon accounting goal of “carbon neutrality”. Under those terms, the industrialised countries subject to the Kyoto Protocol could pay developing countries to offset their own emissions as a form of low-cost mitigation.

The Kyoto Protocol was unable to curtail soaring global greenhouse gas emissions, and a successor agreement appeared uncertain. As a result, interest turned in the late 2000s to the possibility of using highly controversial geoengineering techniques to remove greenhouse gas emissions. These proposals included sucking carbon dioxide out of the sky so the atmosphere would trap less heat, or reflecting sunlight away from the planet to reduce heat absorption. The focus on carbon sinks, whether through forests or direct air capture, would appear again in the idea of net zero.

Temperature targets

By this point, policymakers and advocates were shifting away from emissions reductions goals (such as Australia’s unusual first Kyoto target to limit emissions to 108% of 1990 emissions by 2012).

Instead, temperature targets became more popular, such as limiting warming to no more than two degrees above pre-industrial levels. The European Union had already adopted the 2°C threshold in 1996 and argued successfully for its relevance as a long-term objective for climate action.

What changed was scientists now had better ways of tracking how long carbon dioxide emissions would stay in the atmosphere, allowing better projections of our carbon budget.

These findings allowed the IPCC’s 2014 report to clearly state limiting warming to below 2°C would require “near zero emissions of carbon dioxide and other long-lived greenhouse gases by the end of the century”.

By this time, London-based environmental lawyer and climate negotiator Farhana Yamin had also set her sights on net zero by 2050. For Yamin, translating the 1.5°C ambition into climate negotiations meant focusing on net zero: “In your lifetime, emissions have to go to zero. That’s a message people understand.”

The concept of net zero offered a simple metric to assess mitigation efforts and hold parties legally accountable – an instrument she and colleagues proposed for the negotiation of a new legally binding agreement to succeed the Kyoto Protocol.

By late 2014, net zero had gained traction, appearing for the first time at a UN climate conference, the UN’s Emissions Gap Report, and in a speech by World Bank Group President Jim Yong Kim that stressed “we must achieve zero net emissions of greenhouse gases before 2100”.

Zero in Paris

These efforts culminated in the 2015 Paris Agreement, which in addition to its well-known temperature targets of 1.5°C and 2°C, also added a complementary goal:

To undertake rapid [emissions] reductions … so as to achieve a balance between anthropogenic emissions by sources and removal by sinks of greenhouse gases in the second half of this century.

This is what “net zero” means – a “balance” between carbon emissions and carbon sinks. It was subsequently enshrined in the IPCC’s Special Report on the importance of keeping warming under 1.5°C, in which 195 member states agreed to get to net zero emissions by 2050.

Slogan for greenwashing?

So, what’s next for net zero? Countries such as India have questioned what it means for fairness and equity between developing and developed nations, Instead, they favour the well-established approach of “common but differentiated responsibility” to mitigation. This justifies India’s aim to reach net zero emissions by 2070, as developed nations should lead the way and provide developing countries with funds and technologies necessary to support their mitigation ambitions.

The UN, by contrast, has warned the flexibility of net zero as a concept could make it a mere slogan for greenwashing by corporations and other non-state entities rather than a concrete objective.

As the chair of the UN’s High Level Experts group put it:

It’s not just advertising, bogus net-zero claims drive up the cost that ultimately everyone would pay. Including people not in this room, through huge impacts, climate migration and their very lives.

Given the chasm between pledges and practice documented in the 2023 UN Emissions Gap Report, there is a very real likelihood we will shoot past the temperature limits of the Paris Agreement.

Fossil fuel treaty

Net zero isn’t the only approach to tackle climate change. Other concepts are growing in popularity.

For instance, optimists say the temperature “overshoot” we’re on track for could be tackled with a “drawdown” of carbon emissions if we use “carbon dioxide removal” or “negative emissions technologies” such as carbon capture and storage, soil carbon sequestration, and mass tree planting and reforestation.

But beware: the IPCC’s Special Report cautioned that while some of these options might be technologically possible, they have not been tested on a large scale.

Can these untested technologies be relied on to halt and reverse the chaos likely to be unleashed by dangerous levels of global heating?

What does overshoot mean for the low-lying island nations who rallied around “1.5°C to stay alive”?

Momentum has been building for a Fossil Fuel Non-Proliferation Treaty since 2022, when Vanuatu called on the UN General Assembly to phase out the use of fossil fuels.

Such a treaty, Vanuatu President Nikenike Vurobaravu said, would “enable a global just transition for every worker, community and nation with fossil fuel dependence”.

At the Dubai climate conference late last year, held in the wake of the International Energy Agency’s revised Net Zero Roadmap, the negotiations culminated in a first for the UNFCCC – an explicit statement endorsing:

transitioning away from fossil fuels in energy systems, in a just, orderly and equitable manner, accelerating action in this critical decade, so as to achieve net zero by 2050 in keeping with the science.

Will net zero become more than hot air? That remains to be seen. While the science behind the concept is broadly sound, the politics of achieving net zero are a work in progress.

Reducing greenhouse gas emissions to the point where they are zeroed out by carbon sinks by 2050 requires just and credible planning. We must prioritise the phase-out of fossil fuels sooner rather than later.

The Conversation

Ruth Morgan receives funding from the Australian Research Council. She was a Lead Author (Working Group 2) of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.

Read the full story here.
Photos courtesy of

The Weather Gods Who Want Us to Believe They Can Make Rain on Demand

This story was originally published by Wired and is reproduced here as part of the Climate Desk collaboration. In the skies over Al Ain, in the United Arab Emirates, pilot Mark Newman waits for the signal. When it comes, he flicks a few silver switches on a panel by his leg, twists two black dials, then punches a red button labeled […]

This story was originally published by Wired and is reproduced here as part of the Climate Desk collaboration. In the skies over Al Ain, in the United Arab Emirates, pilot Mark Newman waits for the signal. When it comes, he flicks a few silver switches on a panel by his leg, twists two black dials, then punches a red button labeled FIRE. A slender canister mounted on the wing of his small propeller plane pops open, releasing a plume of fine white dust. That dust—actually ordinary table salt coated in a nanoscale layer of titanium oxide—will be carried aloft on updrafts of warm air, bearing it into the heart of the fluffy convective clouds that form in this part of the UAE, where the many-shaded sands of Abu Dhabi meet the mountains on the border with Oman. It will, in theory at least, attract water molecules, forming small droplets that will collide and coalesce with other droplets until they grow big enough for gravity to pull them out of the sky as rain. This is cloud seeding. It’s one of hundreds of missions that Newman and his fellow pilots will fly this year as part of the UAE’s ambitious, decade-long attempt to increase rainfall in its desert lands. Sitting next to him in the copilot’s seat, I can see red earth stretching to the horizon. The only water in sight is the swimming pool of a luxury hotel, perched on the side of a mountain below a sheikh’s palace, shimmering like a jewel. There’s a long history of people—tribal chiefs, traveling con artists, military scientists, and most recently VC-backed techies—claiming to be able to make it rain on demand. More than 50 countries have dabbled in cloud seeding since the 1940s—to slake droughts, refill hydroelectric reservoirs, keep ski slopes snowy, or even use as a weapon of war. In recent years there’s been a new surge of interest, partly due to scientific breakthroughs, but also because arid countries are facing down the early impacts of climate change. Like other technologies designed to treat the symptoms of a warming planet (say, pumping sulfur dioxide into the atmosphere to reflect sunlight into space), seeding was once controversial but now looks attractive, perhaps even imperative. Dry spells are getting longer and more severe: In Spain and southern Africa, crops are withering in the fields, and cities from Bogotá to Cape Town have been forced to ration water. In the past nine months alone, seeding has been touted as a solution to air pollution in Pakistan, as a way to prevent forest fires in Indonesia, and as part of an effort to refill the Panama Canal, which is drying up. Apart from China, which keeps its extensive seeding operations a closely guarded secret, the UAE has been more ambitious than any other country about advancing the science of making rain. The nation gets around 5 to 7 inches of rain a year—roughly half the amount that falls on Nevada, America’s driest state. The UAE started its cloud-seeding program in the early 2000s, and since 2015 it has invested millions of dollars in the Rain Enhancement Program, which is funding global research into new technologies. This past April, when a storm dumped a year’s worth of rain on the UAE in 24 hours, the widespread flooding in Dubai was quickly blamed on cloud seeding. But the truth is more nebulous. There’s a long history of people—tribal chiefs, traveling con artists, military scientists, and most recently VC-backed techies—claiming to be able to make it rain on demand. But cloud seeding can’t make clouds appear out of thin air; it can only squeeze more rain out of what’s already in the sky. Scientists still aren’t sure they can make it work reliably on a mass scale. The Dubai flood was more likely the result of a region-wide storm system, exacerbated by climate change and the lack of suitable drainage systems in the city. The Rain Enhancement Program’s stated goal is to ensure that future generations, not only in the UAE but in arid regions around the globe, have the water they need to survive. The architects of the program argue that “water security is an essential element of national security” and that their country is “leading the way” in “new technologies” and “resource conservation.” But the UAE—synonymous with luxury living and conspicuous consumption—has one of the highest per capita rates of water use on earth. So is it really on a mission to make the hotter, drier future that’s coming more livable for everyone? Or is this tiny petro-state, whose outsize wealth and political power came from helping to feed the industrialized world’s fossil-fuel addiction, looking to accrue yet more wealth and power by selling the dream of a cure? I’ve come here on a mission of my own: to find out whether this new wave of cloud seeding is the first step toward a world where we really can control the weather, or another round of literal vaporware. The first systematic attempts at rainmaking date back to August 5, 1891, when a train pulled into Midland, Texas, carrying 8 tons of sulfuric acid, 7 tons of cast iron, half a ton of manganese oxide, half a dozen scientists, and several veterans of the US Civil War, including General Edward Powers, a civil engineer from Chicago, and Major Robert George Dyrenforth, a former patent lawyer. Powers had noticed that it seemed to rain more in the days after battles, and had come to believe that the “concussions” of artillery fire during combat caused air currents in the upper atmosphere to mix together and release moisture. He figured he could make his own rain on demand with loud noises, either by arranging hundreds of cannons in a circle and pointing them at the sky or by sending up balloons loaded with explosives. His ideas, which he laid out in a book called War and the Weather and lobbied for for years, eventually prompted the US federal government to bankroll the experiment in Midland. Powers and Dyrenforth’s team assembled at a local cattle ranch and prepared for an all-out assault on the sky. They made mortars from lengths of pipe, stuffed dynamite into prairie dog holes, and draped bushes in rackarock, an explosive used in the coal-mining industry. They built kites charged with electricity and filled balloons with a combination of hydrogen and oxygen, which Dyrenforth thought would fuse into water when it exploded. (Skeptics pointed out that it would have been easier and cheaper to just tie a jug of water to the balloon.) The atmosphere is full of pockets of supercooled liquid water that’s below freezing but hasn’t actually turned into ice. The group was beset by technical difficulties; at one point, a furnace caught fire and had to be lassoed by a cowboy and dragged to a water tank to be extinguished. By the time they finished setting up their experiment, it had already started raining naturally. Still, they pressed on, unleashing a barrage of explosions on the night of August 17 and claiming victory when rain again fell 12 hours later. It was questionable how much credit they could take. They had arrived in Texas right at the start of the rainy season, and the precipitation that fell before the experiment had been forecast by the US Weather Bureau. As for Powers’ notion that rain came after battles—well, battles tended to start in dry weather, so it was only the natural cycle of things that wet weather often followed. Despite skepticism from serious scientists and ridicule in parts of the press, the Midland experiments lit the fuse on half a century of rainmaking pseudoscience. The Weather Bureau soon found itself in a running media battle to debunk the efforts of the self-styled rainmakers who started operating across the country. The most famous of these was Charles Hatfield, nicknamed either the Moisture Accelerator or the Ponzi of the Skies, depending on whom you asked. Originally a sewing machine salesman from California, he reinvented himself as a weather guru and struck dozens of deals with desperate towns. When he arrived in a new place, he’d build a series of wooden towers, mix up a secret blend of 23 cask-aged chemicals, and pour it into vats on top of the towers to evaporate into the sky. Hatfield’s methods had the air of witchcraft, but he had a knack for playing the odds. In Los Angeles, he promised 18 inches of rain between mid-December and late April, when historical rainfall records suggested a 50 percent chance of that happening anyway. While these showmen and charlatans were filling their pocketbooks, scientists were slowly figuring out what actually made it rain—something called cloud condensation nuclei. Even on a clear day, the skies are packed with particles, some no bigger than a grain of pollen or a viral strand. “Every cloud droplet in Earth’s atmosphere formed on a preexisting aerosol particle,” one cloud physicist told me. The types of particles vary by place. In the UAE, they include a complex mix of sulfate-rich sands from the desert of the Empty Quarter, salt spray from the Persian Gulf, chemicals from the oil refineries that dot the region, and organic materials from as far afield as India. Without them there would be no clouds at all—no rain, no snow, no hail. A lot of raindrops start as airborne ice crystals, which melt as they fall to earth. But without cloud condensation nuclei, even ice crystals won’t form until the temperature dips below -40 degrees Fahrenheit. As a result, the atmosphere is full of pockets of supercooled liquid water that’s below freezing but hasn’t actually turned into ice. In 1938, a meteorologist in Germany suggested that seeding these areas of frigid water with artificial cloud condensation nuclei might encourage the formation of ice crystals, which would quickly grow large enough to fall, first as snowflakes, then as rain. After the Second World War, American scientists at General Electric seized on the idea. One group, led by chemists Vincent Schaefer and Irving Langmuir, found that solid carbon dioxide, also known as dry ice, would do the trick. When Schaefer dropped grains of dry ice into the home freezer he’d been using as a makeshift cloud chamber, he discovered that water readily freezes around the particles’ crystalline structure. When he witnessed the effect a week later, Langmuir jotted down three words in his notebook: “Control of Weather.” Within a few months, they were dropping dry-ice pellets from planes over Mount Greylock in Western Massachusetts, creating a 3-mile-long streak of ice and snow. Another GE scientist, Bernard Vonnegut, had settled on a different seeding material: silver iodide. It has a structure remarkably similar to an ice crystal and can be used for seeding at a wider range of temperatures. (Vonnegut’s brother, Kurt, who was working as a publicist at GE at the time, would go on to write Cat’s Cradle, a book about a seeding material called ice-nine that causes all the water on earth to freeze at once.) How could you tell whether a cloud dropped snow because of seeding, or if it would have snowed anyway? In the wake of these successes, GE was bombarded with requests: Winter carnivals and movie studios wanted artificial snow; others wanted clear skies for search and rescue. Then, in February 1947, everything went quiet. The company’s scientists were ordered to stop talking about cloud seeding publicly and direct their efforts toward a classified US military program called Project Cirrus. Over the next five years, Project Cirrus conducted more than 250 cloud-seeding experiments as the United States and other countries explored ways to weaponize the weather. Schaefer was part of a team that dropped 80 pounds of dry ice into the heart of Hurricane King, which had torn through Miami in the fall of 1947 and was heading out to sea. Following the operation, the storm made a sharp turn back toward land and smashed into the coast of Georgia, where it caused one death and millions of dollars in damages. In 1963, Fidel Castro reportedly accused the Americans of seeding Hurricane Flora, which hung over Cuba for four days, resulting in thousands of deaths. During the Vietnam War, the US Army used cloud seeding to try to soften the ground and make it impassable for enemy soldiers. A couple of years after that war ended, more than 30 countries, including the US and the USSR, signed the Convention on the Prohibition of Military or Any Other Hostile Use of Environmental Modification Techniques. By then, interest in cloud seeding had started to melt away anyway, first among militaries, then in the civilian sector. “We didn’t really have the tools—the numerical models and also the observations—to really prove it,” says Katja Friedrich, who researches cloud physics at the University of Colorado. (This didn’t stop the USSR from seeding clouds near the site of the nuclear meltdown at Chernobyl in hopes that they would dump their radioactive contents over Belarus rather than Moscow.) To really put seeding on a sound scientific footing, they needed to get a better understanding of rain at all scales, from the microphysical science of nucleation right up to the global movement of air currents. At the time, scientists couldn’t do the three things that were required to make the technology viable: identify target areas of supercooled liquid in clouds, deliver the seeding material into those clouds, and verify that it was actually doing what they thought. How could you tell whether a cloud dropped snow because of seeding, or if it would have snowed anyway? By 2017, armed with new, more powerful computers running the latest generation of simulation software, researchers in the US were finally ready to answer that question, via the Snowie project. Like the GE chemists years earlier, these experimenters dropped silver iodide from planes. The experiments took place in the Rocky Mountains, where prevailing winter winds blow moisture up the slopes, leading to clouds reliably forming at the same time each day. The results were impressive: The researchers could draw an extra 100 to 300 acre-feet of snow from each storm they seeded. But the most compelling evidence was anecdotal. As the plane flew back and forth at an angle to the prevailing wind, it sprayed a zigzag pattern of seeding material across the sky. That was echoed by a zigzag pattern of snow on the weather radar. “Mother Nature does not produce zigzag patterns,” says one scientist who worked on Snowie. In almost a century of cloud seeding, it was the first time anyone had actually shown the full chain of events from seeding through to precipitation reaching the ground. The UAE’s national Center of Meteorology is a glass cube rising out of featureless scrubland, ringed by a tangle of dusty highways on the edge of Abu Dhabi. Inside, I meet Ahmad Al Kamali, the facility’s rain operations executor—a trim young man with a neat beard and dark-framed glasses. He studied at the University of Reading in the UK and worked as a forecaster before specializing in cloud-seeding operations. Like all the Emirati men I meet on this trip, he’s wearing a kandura—a loose white robe with a headpiece secured by a loop of thick black cord. We take the elevator to the third floor, where I find cloud-seeding mission control. With gold detailing and a marble floor, it feels like a luxury hotel lobby, except for the giant radar map of the Gulf that fills one wall. Forecasters—men in white, women in black—sit at banks of desks and scour satellite images and radar data looking for clouds to seed. Near the entrance there’s a small glass pyramid on a pedestal, about a foot wide at its base. It’s a holographic projector. When Al Kamali switches it on, a tiny animated cloud appears inside. A plane circles it, and rain begins to fall. I start to wonder: How much of this is theater? The impetus for cloud seeding in the UAE came in the early 2000s, when the country was in the middle of a construction boom. Dubai and Abu Dhabi were a sea of cranes; the population had more than doubled in the previous decade as expats flocked there to take advantage of the good weather and low income taxes. Sheikh Mansour bin Zayed Al Nahyan, a member of Abu Dhabi’s royal family—currently both vice president and deputy prime minister of the UAE—thought cloud seeding, along with desalination of seawater, could help replenish the country’s groundwater and refill its reservoirs. (Globally, Mansour is perhaps best known as the owner of the soccer club Manchester City.) As the Emiratis were setting up their program, they called in some experts from another arid country for help. Back in 1989, a team of researchers in South Africa were studying how to enhance the formation of raindrops. They were taking cloud measurements in the east of the country when they spotted a cumulus cloud that was raining when all the other clouds in the area were dry. When they sent a plane into the cloud to get samples, they found a much wider range of droplet sizes than in the other clouds—some as big as half a centimeter in diameter. The finding underscored that it’s not only the number of droplets in a cloud that matters but also the size. A cloud of droplets that are all the same size won’t mix together because they’re all falling at the same speed. But if you can introduce larger drops, they’ll plummet to earth faster, colliding and coalescing with other droplets, forming even bigger drops that have enough mass to leave the cloud and become rain. The South African researchers discovered that although clouds in semiarid areas of the country contain hundreds of water droplets in every cubic centimeter of air, they’re less efficient at creating rain than maritime clouds, which have about a sixth as many droplets but more variation in droplet size. So why did this one cloud have bigger droplets? It turned out that the chimney of a nearby paper mill was pumping out particles of debris that attracted water. Over the next few years, the South African researchers ran long-term studies looking for the best way to re-create the effect of the paper mill on demand. They settled on ordinary salt—the most hygroscopic substance they could find. Then they developed flares that would release a steady stream of salt crystals when ignited. Those flares were the progenitors of what the Emiratis use today, made locally at the Weather Modification Technology Factory. Al Kamali shows me a couple: They’re foot-long tubes a couple of inches in diameter, each holding a kilogram of seeding material. One type of flare holds a mixture of salts. The other type holds salts coated in a nano layer of titanium dioxide, which attracts more water in drier climates. The Emiratis call them Ghaith 1 and Ghaith 2, ghaith being one of the Arabic words for “rain.” Although the language has another near synonym, matar, it has negative connotations—rain as punishment, torment, the rain that breaks the banks and floods the fields. Ghaith, on the other hand, is rain as mercy and prosperity, the deluge that ends the drought. The morning after my visit to the National Center of Meteorology, I take a taxi to Al Ain to go on that cloud-seeding flight. But there’s a problem. When I leave Abu Dhabi that morning there’s a low fog settled across the country, but by the time I arrive at Al Ain’s small airport—about 100 miles inland from the cities on the coast—it has burned away, leaving clear blue skies. There are no clouds to seed. Once I’ve cleared the tight security cordon and reached the gold-painted hangar (the airport is also used for military training flights), I meet Newman, who agrees to take me up anyway so he can demonstrate what would happen on a real mission. He’s wearing a blue cap with the UAE Rain Enhancement Program logo on it. Before moving to the UAE with his family 11 years ago, Newman worked as a commercial airline pilot on passenger jets and split his time between the UK and his native South Africa. He has exactly the kind of firmly reassuring presence you want from someone you’re about to climb into a small plane with. There’s an evangelical zeal to the way some of the pilots and seeding operators talk about this stuff—the rush of hitting a button on an instrument panel and seeing the clouds burst before their eyes. Like gods. Every cloud-seeding mission starts with a weather forecast. A team of six operators at the meteorology center scour satellite images and data from the UAE’s network of radars and weather stations and identify areas where clouds are likely to form. Often, that’s in the area around Al Ain, where the mountains on the border with Oman act as a natural barrier to moisture coming in from the sea. If it’s looking like rain, the cloud-seeding operators radio the hangar and put some of the nine pilots on standby mode—either at home, on what Newman calls “villa standby,” or at the airport or in a holding pattern in the air. As clouds start to form, they begin to appear on the weather radar, changing color from green through blue to yellow and then red as the droplets get bigger and the reflectivity of the clouds increases. Once a mission is approved, the pilot scribbles out a flight plan while the ground crew preps one of the four modified Beechcraft King Air C90 planes. There are 24 flares attached to each wing—half Ghaith 1, half Ghaith 2—for a total of 48 kilograms of seeding material on each flight. Timing is important, Newman tells me as we taxi toward the runway. The pilots need to reach the cloud at the optimal moment. Once we’re airborne, Newman climbs to 6,000 feet. Then, like a falcon riding the thermals, he goes hunting for updrafts. Cloud seeding is a mentally challenging and sometimes dangerous job, he says through the headset, over the roar of the engines. Real missions last up to three hours and can get pretty bumpy as the plane moves between clouds. Pilots generally try to avoid turbulence. Seeding missions seek it out. When we get to the right altitude, Newman radios the ground for permission to set off the flares. There are no hard rules for how many flares to put into each cloud, one seeding operator told me. It depends on the strength of the updraft reported by the pilots, how things look on the radar. It sounds more like art than science. Newman triggers one of the salt flares, and I twist in my seat to watch: It burns with a white-gray smoke. He lets me set off one of the nano-flares. It’s slightly anticlimactic: The green lid of the tube pops open and the material spills out. I’m reminded of someone sprinkling grated cheese on spaghetti. There’s an evangelical zeal to the way some of the pilots and seeding operators talk about this stuff—the rush of hitting a button on an instrument panel and seeing the clouds burst before their eyes. Like gods. Newman shows me a video on his phone of a cloud that he’d just seeded hurling fat drops of rain onto the plane’s front windows. Operators swear they can see clouds changing on the radar. One researcher cited a tendency for “white lies” to proliferate; officials tell their superiors what they want to hear, despite the lack of evidence. But the jury is out on how effective hygroscopic seeding actually is. The UAE has invested millions in developing new technologies for enhancing rainfall—and surprisingly little in actually verifying the impact of the seeding it’s doing right now. After initial feasibility work in the early 2000s, the next long-term analysis of the program’s effectiveness didn’t come until 2021. It found a 23 percent increase in annual rainfall in seeded areas, as compared with historical averages, but cautioned that “anomalies associated with climate variability” might affect this figure in unforeseen ways. As Friedrich notes, you can’t necessarily assume that rainfall measurements from, say, 1989 are directly comparable with those from 2019, given that climatic conditions can vary widely from year to year or decade to decade. The best evidence for hygroscopic seeding, experts say, comes from India, where for the past 15 years the Indian Institute of Tropical Meteorology has been conducting a slow, patient study. Unlike the UAE, India uses one plane to seed and another to take measurements of the effect that has on the cloud. In hundreds of seeding missions, researchers found an 18 percent uptick in raindrop formation inside the cloud. But the thing is, every time you want to try to make it rain in a new place, you need to prove that it works in that area, in those particular conditions, with whatever unique mix of aerosol particles might be present. What succeeds in, say, the Western Ghats mountain range is not even applicable to other areas of India, the lead researcher tells me, let alone other parts of the world. If the UAE wanted to reliably increase the amount of fresh water in the country, committing to more desalination would be the safer bet. In theory, cloud seeding is cheaper: According to a 2023 paper by researchers at the National Center of Meteorology, the average cost of harvestable rainfall generated by cloud seeding is between 1 and 4 cents per cubic meter, compared with around 31 cents per cubic meter of water from desalination at the Hassyan Seawater Reverse Osmosis plant. But each mission costs as much as $8,000, and there’s no guarantee that the water that falls as rain will actually end up where it’s needed. One researcher I spoke to, who has worked on cloud-seeding research in the UAE and asked to speak on background because they still work in the industry, was critical of the quality of the UAE’s science. There was, they said, a tendency for “white lies” to proliferate; officials tell their superiors what they want to hear despite the lack of evidence. The country’s rulers already think that cloud seeding is working, this person argued, so for an official to admit otherwise now would be problematic. (The National Center of Meteorology did not comment on these claims.) By the time I leave Al Ain, I’m starting to suspect that what goes on there is as much about optics as it is about actually enhancing rainfall. The UAE has a history of making flashy announcements about cutting-edge technology—from flying cars to 3D-printed buildings to robotic police officers—with little end product. Now, as the world transitions away from the fossil fuels that have been the country’s lifeblood for the past 50 years, the UAE is trying to position itself as a leader on climate. Last year it hosted the annual United Nations Climate Change Conference, and the head of its National Center of Meteorology was chosen to lead the World Meteorological Organization, where he’ll help shape the global consensus that forms around cloud seeding and other forms of mass-scale climate modification. (He could not be reached for an interview.) The UAE has even started exporting its cloud-seeding expertise. One of the pilots I spoke to had just returned from a trip to Lahore, where the Pakistani government had asked the UAE’s cloud seeders to bring rain to clear the polluted skies. It rained—but they couldn’t really take credit. “We knew it was going to rain, and we just went and seeded the rain that was going to come anyway,” he said. From the steps of the Emirates Palace Mandarin Oriental in Abu Dhabi, the UAE certainly doesn’t seem like a country that’s running out of water. As I roll up the hotel’s long driveway on my second day in town, I can see water features and lush green grass. The sprinklers are running. I’m here for a ceremony for the fifth round of research grants being awarded by the UAE Research Program for Rain Enhancement Science. Since 2015, the program has awarded $21 million to 14 projects developing and testing ways of enhancing rainfall, and it’s about to announce the next set of recipients. In the ornate ballroom, local officials have loosely segregated themselves by gender. I sip watermelon juice and work the room, speaking to previous award winners. There’s Linda Zou, a Chinese researcher based at Khalifa University in Abu Dhabi who developed the nano-coated seeding particles in the Ghaith 2 flares. There’s Ali Abshaev, who comes from a cloud-seeding dynasty (his father directs Russia’s Hail Suppression Research Center) and who has built a machine to spray hygroscopic material into the sky from the ground. It’s like “an upside-down jet engine,” one researcher explains. Other projects have been looking at “terrain modification”—whether planting trees or building earthen barriers in certain locations could encourage clouds to form. Giles Harrison, from the University of Reading, is exploring whether electrical currents released into clouds can encourage raindrops to stick together. There’s also a lot of work on computer simulation. Youssef Wehbe, a UAE program officer, gives me a cagey interview about the future vision: pairs of drones, powered by artificial intelligence, one taking cloud measurements and the other printing seeding material specifically tailored for that particular cloud—on the fly, as it were. I’m particularly taken by one of this year’s grant winners. Guillaume Matras, who worked at the French defense contractor Thales before moving to the UAE, is hoping to make it rain by shooting a giant laser into the sky. Wehbe describes this approach as “high risk.” I think he means “it may not work,” not “it could set the whole atmosphere on fire.” Either way, I’m sold. So after my cloud-seeding flight, I get a lift to Zayed Military City, an army base between Al Ain and Abu Dhabi, to visit the secretive government-funded research lab where Matras works. They take my passport at the gate to the compound, and before I can go into the lab itself I’m asked to secure my phone in a locker that’s also a Faraday cage—completely sealed to signals going in and out. I’m suddenly very aware that I’m on a military base. Couldn’t this giant movable laser be used as a weapon? After I put on a hairnet, a lab coat, and tinted safety goggles, Matras shows me into a lab, where I watch a remarkable thing. Inside a broad, black box the size of a small television sits an immensely powerful laser. A tech switches it on. Nothing happens. Then Matras leans forward and opens a lens, focusing the laser beam. There’s a high-pitched but very loud buzz, like the whine of an electric motor. It is the sound of the air being ripped apart. A very fine filament, maybe half a centimeter across, appears in midair. It looks like a strand of spider’s silk, but it’s bright blue. It’s plasma—the fourth state of matter. Scale up the size of the laser and the power, and you can actually set a small part of the atmosphere on fire. Man-made lightning. Obviously my first question is to ask what would happen if I put my hand in it. “Your hand would turn into plasma,” another researcher says, entirely deadpan. I put my hand back in my pocket. Matras says these laser beams will be able to enhance rainfall in three ways. First, acoustically—like the concussion theory of old, it’s thought that the sound of atoms in the air being ripped apart might shake adjacent raindrops so that they coalesce, get bigger, and fall to earth. Second: convection—the beam will create heat, generating updrafts that will force droplets to mix. (I’m reminded of a never-realized 1840s plan to create rain by setting fire to large chunks of the Appalachian Mountains.) Finally: ionization. When the beam is switched off, the plasma will reform—the nitrogen, hydrogen, and oxygen molecules inside will clump back together into random configurations, creating new particles for water to settle around. The plan is to scale this technology up to something the size of a shipping container that can be put on the back of a truck and driven to where it’s needed. It seems insane—I’m suddenly very aware that I’m on a military base. Couldn’t this giant movable laser be used as a weapon? “Yes,” Matras says. He picks up a pencil, the nib honed to a sharp point. “But anything could be a weapon.” These words hang over me as I ride back into the city, past lush golf courses and hotel fountains and workmen swigging from plastic bottles. Once again, there’s not a cloud in the sky. But maybe that doesn’t matter. For the UAE, so keen to project its technological prowess around the region and the world, it’s almost irrelevant whether cloud seeding works. There’s soft power in being seen to be able to bend the weather to your will—in 2018, an Iranian general accused the UAE and Israel of stealing his country’s rain. Anything could be a weapon, Matras had said. But there are military weapons, and economic weapons, and cultural and political weapons too. Anything could be a weapon—even the idea of one.

Leftwing Green party members form ‘anti-capitalist’ pressure group

Provisionally known as Greens Organise, the collective will fight ‘electoral assimilation’ and push for radical policies Leftwing members of the Green party are calling for a shift towards an “internationalist, anti-capitalist and ecologically transformative agenda” as they launch a new group at their party’s conference this weekend.The new collective aims to combine the party’s traditional environmentalist politics with “new strands of ecological consciousness, from river pollution and right to roam campaigns to an internationalist and decolonial climate justice movement”. Continue reading...

Leftwing members of the Green party are calling for a shift towards an “internationalist, anti-capitalist and ecologically transformative agenda” as they launch a new group at their party’s conference this weekend.The new collective aims to combine the party’s traditional environmentalist politics with “new strands of ecological consciousness, from river pollution and right to roam campaigns to an internationalist and decolonial climate justice movement”.With more than 800 councillors and four elected MPs in parliament, the Green party is enjoying an unprecedented wave of public support, mainly at the expense of Labour, which won a landslide despite receiving the lowest vote share of any victorious party since at least 1922.A source within the new grouping – which is being established under the provisional name Greens Organise – said they believed a leftward turn is essential to achieving the Greens’ environmental policies. But it is also hoped it will attract leftwing voters turned off by Labour’s rightward shift under Keir Starmer.“The Green party can make the positive case for something better,” the source, who asked not to be named, said. “Compromise has gotten us to the edge of climate disaster and a resurgent far-right. The time for a bolder politics is now.“The Green party already has transformative, leftwing policies that would take power back from big business and put it people’s hands. We should be proud of this, and Greens Organise wants to help the party bring this message to the wider left.”At the party’s conference this weekend, discussions have been under way on how its sudden growth can be further built in, with the hope that a strategy that led to a quadrupling of its representation in the Commons can be replicated in dozens more constituencies at the next election.Although senior figures in the party have not officially thrown their weight behind the new group, the Guardian understands they are supportive of its aims and agenda. Alongside their well known environmental focus, at the last election, the Greens campaigned on pledges for a wealth tax, a £15 minimum wage and public ownership of the railways, water and energy companies.A major concern of leftwing members in Greens Organise is to avoid the centrist turn taken by overseas green movements when they have arrived in proximity to power. An open letter signed by party members emphasised the need to reject the path of “electoral assimilation” taken by other Green parties in Europe and urges “strengthened links with the labour, social and environmental movements”.“In the face of so much yearning for more, this [Labour] government promises less,” the letter says. “As it fails to address the underlying decay of the UK’s economy and public sphere, the only answer is a coordinated left movement from the ground up – one that can mobilise millions of frustrated voters who have lost faith in the political system entirely, that can take on the far right – not pander to it.“As Green party members, we see a historic opportunity and responsibility to become the principal electoral voice of that movement.”

The Mosquito-Borne Disease ‘Triple E’ Is Spreading in the US as Temperatures Rise

Eastern equine encephalitis, which has a high mortality rate, is becoming more common in North America as climate changes expands the habitats of insects.

This story originally appeared on Grist and is part of the Climate Desk collaboration.A 41-year-old man in New Hampshire died last week after contracting a rare mosquito-borne illness called eastern equine encephalitis virus, also known as EEE or “triple E.” It was New Hampshire’s first human case of the disease in a decade. Four other human EEE infections have been reported this year, in Wisconsin, New Jersey, Massachusetts, and Vermont.Though this outbreak is small, and triple E does not pose a risk to most people living in the United States, public health officials and researchers are concerned about the threat the deadly virus poses to the public, both this year and in future summers. There is no known cure for the disease, which can cause severe flu-like symptoms and seizures in humans four to 10 days after exposure and kills between 30 and 40 percent of the people it infects. Half of the people who survive a triple E infection are left with permanent neurological damage. Because of EEE’s high mortality rate, state officials have begun spraying insecticide in Massachusetts, where 10 communities have been designated “critical” or “high risk” for triple E. Towns in the state shuttered their parks from dusk to dawn and warned people to stay inside after 6 pm, when mosquitoes are most active.Like West Nile virus, another mosquito-borne illness that poses a risk to people in the US every summer, triple E is constrained by environmental factors that are changing rapidly as the planet warms. That’s because mosquitoes thrive in the hotter, wetter conditions that climate change is producing.“We have seen a resurgence of activity with eastern equine encephalitis virus over the course of the past 10 or so years,” said Theodore G. Andreadis, a researcher who studied mosquito-borne diseases at the Connecticut Agricultural Experiment Station, a state government research and public outreach outfit, for 35 years. “And we’ve seen an advancement into more northern regions where it had previously not been detected.” Researchers don’t know what causes the virus to surge and abate, but Andreadis said it’s clear that climate change is one of the factors spurring its spread, particularly into new regions.The first triple E outbreak on record occurred in Massachusetts in the 1830s in horses—the reason one of the three Es stands for “equine.” It wasn’t until a full century later, in 1934, that mosquitoes were incriminated as potential vectors for the disease. The first recorded human cases of the disease also occurred in Massachusetts four years later, in 1938. There were 38 human cases in the state that year; 25 of them were fatal. Since then, human cases have mostly been registered in Gulf Coast states and, increasingly, the Northeast. From 1964 to 2002, in the Northeast, there was less than one case of the disease per year. From 2003 to 2019, the average in the region increased to between four and five cases per year.

The Secret Affair that Bloomed Gaia Theory

This story was originally published by the Guardian and is reproduced here as part of the Climate Desk collaboration. Love rarely gets the credit it deserves for the advancement of science. Nor, for that matter, does hatred, greed, envy or any other emotion. Instead, this realm of knowledge tends to be idealized as something cold, hard, rational, neutral, and objective, dictated […]

This story was originally published by the Guardian and is reproduced here as part of the Climate Desk collaboration. Love rarely gets the credit it deserves for the advancement of science. Nor, for that matter, does hatred, greed, envy or any other emotion. Instead, this realm of knowledge tends to be idealized as something cold, hard, rational, neutral, and objective, dictated by data rather than feelings. The life and work of James Lovelock is proof that this is neither possible nor desirable. In his work, he helped us understand that humans can never completely divorce ourselves from any living subject because we are interconnected and interdependent, all part of the same Earth system, which he called Gaia. Our planet, he argued, behaves like a giant organism—regulating its temperature, discharging waste and cycling chemicals to maintain a healthy balance. Although highly controversial among scientists in the 1970s and 80s, this holistic view of the world had mass appeal, which stretched from New Age spiritual gurus to that stern advocate of free-market orthodoxy, Margaret Thatcher. Its insights into the link between nature and climate have since inspired many of the world’s most influential climate scientists, philosophers, and environmental campaigners. The French philosopher Bruno Latour said the Gaia theory has reshaped humanity’s understanding of our place in the universe as fundamentally as the ideas of Galileo Galilei. At its simplest, Gaia is about restoring an emotional connection with a living planet. Even in his darkest moments, Lovelock tended not to dwell on the causes of his unhappiness. While the most prominent academics of the modern age made their names by delving ever deeper into narrow specialisms, Lovelock dismissed this as knowing “more and more about less and less” and worked instead on his own all-encompassing, and thus deeply unfashionable, theory of planetary life. I first met Lovelock in the summer of 2020, during a break between pandemic lockdowns, when he was 101 years old. In person, he was utterly engrossing and kind. I had long wanted to interview the thinker who somehow managed to be both the inspiration for the green movement, and one of its fiercest critics. The account that follows, of the origins and development of Gaia theory, will probably surprise many of Lovelock’s followers, as it surprised me. Knowing he did not have long to live, Lovelock told me: “I can tell you things now that I could not say before.” The true nature of the relationships that made the man and the hypothesis were hidden or downplayed for decades. Some were military (he worked for MI5 and MI6 for more than 50 years) or industrial secrets (he warned another employer, Shell, of the climate dangers of fossil fuels as early as 1966). Others were too painful to share with the public, his own family and, sometimes, himself. Even in his darkest moments, Lovelock tended not to dwell on the causes of his unhappiness. He preferred to move on. Everything was a problem to be solved. What I discovered, and what has been lost in the years since Lovelock first formulated Gaia theory in the 1960s, is that the initial work was not his alone. Another thinker, and earlier collaborator, played a far more important conceptual role than has been acknowledged until now. It was a woman, Dian Hitchcock, whose name has largely been overlooked in accounts of the world-famous Gaia theory. Lovelock told me his greatest discovery was the biotic link between the Earth’s life and its atmosphere. He envisaged it as a “cool flame” that has been burning off the planet’s excess heat for billions of years. From this emerged the Gaia theory and an obsession with the atmosphere’s relationship with life on Earth. But he could not have seen it alone. Lovelock was guided by a love affair with Hitchcock, an American philosopher and systems analyst, who he met at NASA’s Jet Propulsion Laboratory (JPL) in California. Like most brilliant women in the male-dominated world of science in the 1960s, Hitchcock struggled to have her ideas heard, let alone acknowledged. But Lovelock listened. And, as he later acknowledged, without Hitchcock, the world’s understanding of itself may well have been very different. Lovelock had arrived at JPL in 1961 at the invitation of Abe Silverstein, the director of Space Flight Programs at NASA, who wanted an expert in chromatography to measure the chemical composition of the soil and air on other planets. For the science-fiction junkie Lovelock, it was “like a letter from a beloved. I was as excited and euphoric as if at the peak of passion.” He had been given a front-row seat to the reinvention of the modern world. California felt like the future. Hollywood was in its pomp, Disneyland had opened six years earlier, Venice Beach was about to become a cradle of youth culture and Bell Labs, Fairchild and Hewlett-Packard were pioneering the computer-chip technology that was to lead to the creation of Silicon Valley. JPL led the fields of space exploration, robotics and rocket technology. In the 1950s, Wernher von Braun, the German scientist who designed the V-2 rockets that devastated London in the second world war, made JPL the base for the US’s first successful satellite programme. It was his technology that the White House was relying on to provide the thrust for missions to the moon, Mars and Venus. By 1961, the San Gabriel hillside headquarters of JPL had become a meeting place for many of the planet’s finest minds, drawing in Nobel winners, such as Joshua Lederberg, and emerging “pop scientists” like Carl Sagan. There was no more thrilling time to be in the space business. Lovelock had a relatively minor role as a technical adviser, but he was, he told me, the first Englishman to join the US space programme: the most high-profile, and most lavishly funded, of cold war fronts. Everyone on Earth had a stake in the US-USSR rivalry, but most people felt distant and powerless. Three years earlier, Lovelock had listened on his homemade shortwave radio in Finchley to the “beep, beep, beep” transmission of the USSR’s Sputnik, the first satellite that humanity had put into orbit. Now he was playing with the super powers. Dian Hitchcock had been hired by NASA to keep tabs on the work being done at JPL to find life on Mars. The two organisations had been at loggerheads since 1958, when JPL had been placed under the jurisdiction of the newly created civilian space agency, Nasa, with day-to-day management carried out by the California Institute of Technology. JPL’s veteran scientists bristled at being told what to do by their counterparts in the younger but more powerful federal organisation. Nasa was determined to regain control. Hitchcock was both their spy and their battering ram. Lovelock became her besotted ally. They had first met in the JPL canteen, where Hitchcock introduced herself to Lovelock with a joke: “Do you realise your surname is a polite version of mine?” The question delighted Lovelock. As they got to know one another, he also came to respect Hitchcock’s toughness in her dealings with her boss, her colleagues and the scientists. He later saw her yell furiously at a colleague in the street. “They were frightened of her. Nasa was very wise to send her down,” he recalled. They found much in common. Both had struggled to find intellectual peers throughout their lives. Pillow talk involved imagining how a Martian scientist might find clues from the Earth’s atmosphere that our planet was full of life. Hitchcock had grown used to being overlooked or ignored. She struggled to find anyone who would take her seriously. That and her inability to find people she could talk to on the same intellectual level left her feeling lonely. Lovelock seemed different. He came across as something of an outsider, and was more attentive than other men. “I was initially invisible. I couldn’t find people who would listen to me. But Jim did want to talk to me and I ate it up,” she said. “When I find someone I can talk to in depth it’s a wonderful experience. It happens rarely.” They became not just collaborators but conspirators. Hitchcock was sceptical about JPL’s approach to finding life on Mars, while Lovelock had complaints about the inadequacy of the equipment. This set them against powerful interests. At JPL, the most optimistic scientists were those with the biggest stake in the research. Vance Oyama, an effusively cheerful biochemist who had joined the JPL programme from the University of Houston the same year as Lovelock, put the prospects of life on Mars at 50 percent. He had a multimillion-dollar reason to be enthusiastic, as he was responsible for designing one of the life-detection experiments on the Mars lander: a small box containing water and a “chicken soup” of nutrients that were to be poured on to Martian soil. Hitchcock suggested her employer, the NASA contractor Hamilton Standard, hire Lovelock as a consultant, which meant she wrote the checks for all his flights, hotel bills and other expenses during trips to JPL. As his former laboratory assistant Peter Simmonds put it, Lovelock was now “among the suits.” On March 31, 1965, Hitchcock submitted a scathing initial report to Hamilton Standard and its client Nasa, describing the plans of JPL’s bioscience division as excessively costly and unlikely to yield useful data. She accused the biologists of “geocentrism” in their assumption that experiments to find life on Earth would be equally applicable to other planets. She felt that information about the presence of life could be found in signs of order—in homeostasis—not in one specific surface location, but at a wider level. As an example of how this might be achieved, she spoke highly of a method of atmospheric gas sampling that she had “initiated” with Lovelock. “I thought it obvious that the best experiment to begin with was composition of the atmosphere,” she recalled. This plan was brilliantly simple and thus a clear threat to the complicated, multimillion-dollar experiments that had been on the table up to that point. At a JPL strategy meeting, Lovelock weighed into the debate with a series of withering comments about using equipment developed in the Mojave Desert to find life on Mars. He instead proposed an analysis of gases to assess whether the planet was in equilibrium (lifelessly flatlining) or disequilibrium (vivaciously erratic) based on the assumption that life discharged waste (excess heat and gases) into space in order to maintain a habitable environment. It would be the basis for his theory of a self-regulating planet, which he would later call Gaia. Lovelock’s first paper on detecting life on Mars was published in Nature in August 1965, under his name only. Hitchcock later complained that she deserved more credit, but she said nothing at the time. The pair were not only working together by this stage, they were also having a love affair. “Our trysts were all in hotels in the US,” Lovelock remembered. “We carried on the affair for six months or more.” Sex and science were interwoven. Pillow talk involved imagining how a Martian scientist might find clues from the Earth’s atmosphere that our planet was full of life. This was essential for the Gaia hypothesis. Hitchcock said she had posed the key question: what made life possible here and, apparently, nowhere else? This set them thinking about the Earth as a self-regulating system in which the atmosphere was a product of life. From this revolutionary perspective, the gases surrounding the Earth suddenly began to take on an air of vitality. They were not just life-enabling, they were suffused with life, like the exhalation of a planetary being—or what they called in their private correspondence, the “great animal.” Far more complex and irregular than the atmosphere of a dead planet like Mars, these gases burned with life. They sounded out others. Sagan, who shared an office with Lovelock, provided a new dimension to their idea by asking how the Earth had remained relatively cool even though the sun had steadily grown hotter over the previous 8 billion years. Lewis Kaplan at JPL and Peter Fellgett at Reading University were important early allies and listeners. (Later, the pioneering US biologist Lynn Margulis would make an essential contribution, providing an explanation of how Lovelock’s theory might work in practice at a microbial level.) The long-dead physicist Erwin Schrödinger also provided an important key, according to Lovelock: “I knew nothing about finding life or what life was. The first thing I read was Schrödinger’s What is Life? He said life chucked out high-entropy systems into the environment. That was the basis of Gaia; I realized planet Earth excretes heat.” In the mid-60s, this was all still too new and unformed to be described as a hypothesis. But it was a whole new way of thinking about life on Earth. They were going further than Charles Darwin in arguing that life does not just adapt to the environment, it also shapes it. This meant evolution was far more of a two-way relationship than mainstream science had previously acknowledged. Life was no longer just a passive object of change; it was an agent. The couple were thrilled. They were pioneers making an intellectual journey nobody had made before. It was to be the high point in their relationship. The following two years were a bumpy return to Earth. Lovelock was uncomfortable with the management duties he had been given at JPL. The budget was an unwelcome responsibility for a man who had struggled with numbers since childhood, and he was worried he lacked the street smarts to sniff out the charlatans who were pitching bogus multimillion-dollar projects. Meanwhile, the biologists Oyama and Lederberg were going above his head and taking every opportunity to put him down. “Oyama would come up and say: ‘What are you doing there? You are wasting your time, Nasa’s time,’” Lovelock recalled. “He was one of the few unbearable persons I have known in my life.” In 1966, they had their way, and Lovelock and Hitchcock’s plans for an alternative Mars life-exploration operation using atmospheric analysis were dropped by the US space agency. “I am sorry to hear that politics has interfered with your chances of a subcontract from Nasa,” Fellgett commiserated. Cracks started to appear in Lovelock’s relationship with Hitchcock. He had tried to keep the affair secret, but lying weighed heavily on him. They could never go to the theater, concerts, or parks in case they were spotted together, but close friends could see what was happening. “They naturally gravitated towards one another. It was obvious,” Simmonds said. When they corresponded, Lovelock insisted Hitchcock never discuss anything but work and science in her letters, which he knew would be opened by his wife, Helen, who also worked as his secretary. But intimacy and passion still came across in discussions of their theories. Their view of the atmosphere “almost as something itself alive” was to become a pillar of Gaia theory. Lovelock’s family noticed a change in his behaviour. The previous year, his mother had suspected he was unhappy in his marriage and struggling with a big decision. Helen openly ridiculed his newly acquired philosophical pretensions and way of talking—both no doubt influenced by Hitchcock. “Who does he think he is? A second Einstein?” she asked scornfully. Helen would refer to Hitchcock as “Madam” or “Fanny by Gaslight,” forbade her husband from introducing Hitchcock to other acquaintances, and insisted he spend less time in the US. But he could not stay away, and Helen could not help but fret: “Why do you keep asking me what I’m worried about? You know I don’t like (you) all those miles away. I’m only human, dear, and nervous. I can only sincerely hope by now you have been to JPL and found that you do not have to stay anything like a month. I had a night of nightmares…The bed is awfully big and cold without you.” So, Lovelock visited JPL less frequently and for shorter periods. Hitchcock filled the physical void by throwing her energy into their shared intellectual work. Taking the lead, she began drafting a summary of their life-detection ideas for an ambitious series of journal papers about exobiology (the study of the possibility of life on other planets) that she hoped would persuade either the US Congress or the British parliament to fund a 100-inch infrared telescope to search planetary atmospheres for evidence of life. But nothing seemed to be going their way. In successive weeks, their jointly authored paper on life detection was rejected by two major journals: the Proceedings of the Royal Society in the UK and then Science in the US. The partners agreed to swallow their pride and submit their work to the little-known journal Icarus. Hitchcock admitted to feeling downhearted in a handwritten note from 11 November 1966: “Enclosed is a copy of our masterpiece, now doubly blessed since it has been rejected by Science. No explanation so I suppose it got turned down by all the reviewers…Feel rather badly about the rejection. Have you ever had trouble like this, publishing anything?…As for going for Icarus, I can’t find anybody who’s even heard of the journal.” Hitchcock refused to give up. In late 1966 and early 1967, she sent a flurry of long, intellectually vivacious letters to Lovelock about the papers they were working on together. Her correspondence during this period was obsessive, hesitant, acerbic, considerate, critical, encouraging and among the most brilliant in the Lovelock archives. These missives can be read as foundation stones for the Gaia hypothesis or as thinly disguised love letters. The connection between life and the atmosphere, which was only intuited here, would be firmly established by climatologists. In one she lamented that they were unable to meet in person to discuss their work, but she enthused about how far their intellectual journey had taken them. “I’m getting rather impressed with us as I read Biology and the Exploration of Mars—with the fantastic importance of the topic. Wow, if this works and we do find life on Mars we will be in the limelight,” she wrote. Further on, she portrayed the two of them as explorers, whose advanced ideas put them up against the world, or at least against the senior members of the JPL biology team. The most impressive of these letters is a screed in which Hitchcock wrote to Lovelock with an eloquent summary of “our reasoning” and how this shared approach went beyond mainstream science. “We want to see whether a biota exists—not whether single animals exist,” she said. “It is also the nature of single species to affect their living and nonliving environments—to leave traces of themselves and their activity everywhere. Therefore we conclude that the biota must leave its characteristic signature on the ‘non-living’ portions of the environment.” Hitchcock then went on to describe how the couple had tried to identify life, in a letter dated December 13, 1966: “We started our search for the unmistakable physical signature of the terrestrial biota, believing that if we found it, it would—like all other effects of biological entities—be recognizable as such by virtue of the fact that it represents ‘information’ in the pure and simple sense of a state of affairs which is enormously improbable on nonbiological grounds…We picked the atmosphere as the most likely residence of the signature, on the grounds that the chemical interactions with atmospheres are probably characteristic of all biotas. We then tried to find something in our atmosphere which would, for example, tell a good Martian chemist that life exists here. We made false starts because we foolishly looked for one giveaway component. There are none. Came the dawn and we saw that the total atmospheric mixture is a peculiar one, which is in fact so information-full that it is improbable. And so forth. And now we tend to view the atmosphere almost as something itself alive, because it is the product of the biota and an essential channel by which elements of the great living animal communicate—it is indeed the milieu internal which is maintained by the biota as a whole for the wellbeing of its components. This is getting too long. Hope it helps. Will write again soon.” With hindsight, these words are astonishingly prescient and poignant. Their view of the atmosphere “almost as something itself alive” was to become a pillar of Gaia theory. The connection between life and the atmosphere, which was only intuited here, would be firmly established by climatologists. It was not just the persuasiveness of the science that resonates in this letter, but the intellectual passion with which ideas are developed and given lyrical expression. The poetic conclusion—“came the dawn”—reads as a hopeful burst of illumination and a sad intimation that their night together may be drawing to a close. Their joint paper, “Life detection by atmospheric analysis,” was submitted to Icarus in December 1966. Lovelock acknowledged it was superior to his earlier piece for Nature: “Anybody who was competent would see the difference, how the ideas had been cleared up and presented in a much more logical way.” He insisted Hitchcock be lead author. Although glad to have him on board because she had never before written a scientific paper and would have struggled to get the piece published if she had put it solely under her name, she told me she had no doubt she deserved most of the credit: “I remember when I wrote that paper, I hardly let him put a word in.” The year 1967 was to prove horrendous for them both, professionally and personally. In fact, it was a dire moment for the entire US space program. In January, three astronauts died in a flash fire during a test on an Apollo 204 spacecraft, prompting soul-searching and internal investigations. US politicians were no longer willing to write blank cheques for a race to Mars. Public priorities were shifting as the Vietnam war and the civil rights movement gained ground, and Congress slashed the Nasa budget. “He just dropped me. I was puzzled and deeply hurt. It had to end, but he could have said something.” The affair between Hitchcock and Lovelock was approaching an ugly end. Domestic pressures were becoming intense. Helen was increasingly prone to illness and resentment. On March 15, 1967, she wrote to Lovelock at JPL to say: “It seems as if you have been gone for ages,” and scornfully asked about Hitchcock: “Has Madam arrived yet?” Around this time, Lovelock’s colleague at JPL, Peter Simmonds, remembered things coming to a head. “He strayed from the fold. Helen told him to ‘get on a plane or you won’t have a marriage’ or some such ultimatum.” Lovelock was forced into an agonising decision about Hitchcock. “We were in love with each other. It was very difficult. I think that was one of the worst times in my life. [Helen’s health] was getting much worse. She needed me. It was clear where duty led me and I had four kids. Had Helen been fit and well, despite the size of the family, it would have been easier to go off.” Instead, he decided to ditch Hitchcock. “I determined to break it off. It made me very miserable…I just couldn’t continue.” The breakup, when it finally came, was brutal. Today, more than 50 years on, Hitchcock is still pained by the way things ended. “I think it was 1967. We were both checking into the Huntington and got rooms that were separated by a conference room. Just after I opened the door, a door on the opposite side was opened by Jim. We looked at each other and I said something like: ‘Look, Jim, this is really handy.’ Whereupon he closed the door and never spoke to me again. I was shattered. Probably ‘heartbroken’ is the appropriate term here. He didn’t give me any explanation. He didn’t say anything about Helen. He just dropped me. I was puzzled and deeply hurt. It had to end, but he could have said something…He could not possibly have been more miserable than I was.” Hitchcock was reluctant to let go. That summer, she sent Lovelock a clipping of her interview with a newspaper in Connecticut, below the headline “A Telescopic Look at Life on Other Planets,” an article outlining the bid she and Lovelock were preparing in order to secure financial support for a telescope. In November, she wrote a memo for her company detailing the importance of her continued collaboration with Lovelock and stressing their work “must be published.” But the flame had been extinguished. The last record of direct correspondence between the couple is an official invoice, dated March 18, 1968, and formally signed “consultant James E Lovelock.” Hitchcock was fired by Hamilton Standard soon after. “They were not pleased that I had anything at all to do with Mars,” she recalled. The same was probably also true for her relationship with Lovelock. The doomed romance could not have been more symbolic. Hitchcock and Lovelock had transformed humanity’s view of its place in the universe. By revealing the interplay between life and the atmosphere, they had shown how fragile are the conditions for existence on this planet, and how unlikely are the prospects for life elsewhere in the solar system. They had brought romantic dreams of endless expansion back down to Earth with a bump. This is an edited excerpt from The Many Lives of James Lovelock: Science, Secrets and Gaia Theory, published by Canongate on September 12 and available at guardianbookshop.com

Tens of Thousands in South Korea Protest Lack of Climate Progress

By Sebin Choi and Daewoung KimSEOUL (Reuters) - More than 30,000 protesters gathered in South Korea's capital in broiling heat on Saturday,...

By Sebin Choi and Daewoung KimSEOUL (Reuters) - More than 30,000 protesters gathered in South Korea's capital in broiling heat on Saturday, demanding more aggressive action by the government to combat global warming.With temperatures exceeding 30 degrees Celsius (86 degrees Fahrenheit), protesters young and old marched in the country's biggest demonstration so far this year, snarling traffic in central Seoul.They waved large banners reading "Climate justice," "Protect our lives!" and "NO to climate villain (President) Yoon Suk Yeol's administration"."Truth is, without the air conditioner this summer was not liveable and people could not live like people," said Yu Si-yun, an environmental activist leading the protest."We are facing a problem not unique to a country or an individual. We need systemic change and we are running out of time to act."Organised by the 907 Climate Justice March Group Committee, the protest followed a ruling last month by South Korea's top court that the nation's climate change law fails to protect basic human rights and lacks targets to shield future generations.The 200 plaintiffs, including young climate activists and even some infants, told the constitutional court that the government was violating citizens' human rights by not doing enough on climate change.South Korea, which aims to be carbon-neutral by 2050, is the biggest coal polluter after Australia among the Group of 20 big economies, with a slow adoption of renewable energy. The government last year lowered its 2030 targets for curbing industrial greenhouse-gas emissions but kept its national goal of cutting emissions by 40% from 2018 levels.Even South Korea's kimchi has fallen victim to climate change. Farmers and manufacturers say the quality and quantity of the napa cabbage used in the ubiquitous pickled dish is suffering due to intensifying heat."Feel how long this summer is," said Kim Ki-chang, a 46-year-old novelist who was participating in the protest for a third straight year."This would be a much bigger threat and survival issue to younger generations than the older ones, so I think the older generation should do something more actively for the next generation."Seoul has had a record 20 consecutive nights defined as "tropical", with low temperatures remaining above 25 C (77 F).Protest organising committee member Kim Eun-jung said the demonstrators chose the popular Gangnam financial and shopping area this year, not the Gwanghwamun area they used last year, to have their voices heard by the many big corporations there that the group blames for carbon emissions.(Writing by Cynthia Kim, Hyun Young Yi; Editing by William Mallard)Copyright 2024 Thomson Reuters.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.