Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

Plastic Pollution Is Drowning Earth. A Global Treaty Could Help

News Feed
Wednesday, April 3, 2024

Our world is increasingly plastic. Back in the 1950s, humanity produced just 5 million metric tons of plastic per year; today it’s 400 million metric tons. Since plastic can take hundreds or thousands of years to biodegrade, pretty much all of it is still around, except for the roughly 20 percent that’s been burned. By some estimates, there are now eight gigatons of accumulated plastic on Earth — twice as much as the weight of all animal life.Much of this plastic is still in use, in products like cars and homes, but a lot is junk; 40 percent of plastic production goes toward packaging that’s typically tossed after being used once. Some of our plastic waste is recycled, responsibly incinerated or properly landfilled, but tens of millions of tons are mismanaged annually — burned in open pits or left to pollute the environment. Plastic pollution has been found at the poles and the bottom of the ocean, in our clouds and soils, in human blood and mothers’ milk. If things keep going as they are, it is predicted that annual rates of plastic flowing into the sea will triple from 2016 to 2040.The impacts are manifold. Debris can choke and tangle wildlife; even zooplankton can fill up on microplastics instead of food, altering how much oxygen is in the ocean. And some of the chemicals used in plastics — including additives that make plastics flexible or fire-resistant — can leach out into water, soil or our bodies. Some of these are carcinogenic or endocrine disruptors, capable of interfering with development or reproduction. The net impacts of our lifelong exposure to this chemical soup are hard to tease out, but one recent study concluded that it cost the United States $249 billion in extra health care in 2018.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.Delegates are working now on the world’s first plastic pollution treaty, which is due to be completed by the end of this year. That treaty might cap plastic production, phase out problem chemicals and regulate how waste is managed — but how ambitious this treaty will be is yet to be seen. (See box.)Imogen Napper, a marine science postdoc at the University of Plymouth in the United Kingdom who specializes in plastic pollution, is one of many scientists whose research is informing the treaty process. Her detective work has documented plastic pollution in surprising places and pointed to solutions that have made their way into government regulations around the world. Knowable Magazine spoke with her about the plastic problem and what we can all do about it. This conversation has been edited for length and clarity.Why did you decide to focus on plastic pollution as a researcher?I was lucky to grow up in a small seaside town in the southwest of the UK. I don’t remember any discussion about plastic pollution or beach cleanups when I was younger. But now, going back home, plastic pollution is one of the most obvious environmental challenges that we have, because it’s so visible.I’m hoping that plastic pollution can be used as a gateway issue to other environmental concerns. Climate change, I’d argue, is a far bigger beast than plastic pollution. But for plastic pollution, we’ve got all the tools that we need — we’ve got potential solutions, and discussion happening now through the plastics treaty. We have that burning fire of desire to make a change. We can fix it.You and many other researchers spend a lot of time documenting where plastic is in the wild, and how it gets there. Why is this so hard?When it comes to microscopic pieces in, say, a soil or water sample, it takes a lot of grunt work. I have spent a lot of time looking under the microscope trying to identify, just from the look of it, whether something is cellulosic — coming from plants, like cotton — or plastic. You get a good eye for it. But it can be really tricky.Nor is it easy to document the accumulation and distribution of bigger, macro-sized chunks of plastic. There are so many sources, leakage points and places where plastic is building up. In one of our studies, led by Emily Duncan at the University of Exeter, we put GPS tags in plastic bottles and tracked them thousands of kilometers down the Ganges River. That sort of work helps to improve scientific models.The commonly used estimate is that about 8 million metric tons of macroplastic enter the ocean each year. We know a lot less about the land. Technology is getting far better, with remote sensing, drones and satellite imagery. That will be very useful in the next few years to help us accurately identify how much plastic is going into the environment.A lot of plastic litter is single-use products that have been tossed aside: In the UK, one survey showed that more than half of plastic litter was beverage-related, including cups, lids and straws. But some sources are more surprising, like tiny pieces of plastic thrown up by tire wear on highways.That was also surprising to me. It’s so obvious — it’s right in front of you — but often we just don’t consider it. Research has only really focused on tire wear in the last few years, but it’s predicted to be one of the biggest single sources of microplastics — it has been estimated to make up five to 10 percent of the plastic entering the ocean.In our lab, we have done a lot of research looking at clothing. I’d say about 60 percent of our wardrobe contains plastic, like polyester, acrylic or a natural-synthetic blend. A big part of my PhD research was centered around building a washing machine lab, and I tested for the first time different fabrics to see how many fibers would come off in a typical wash.We found that for acrylic it was the most, at 700,000 fibers per wash. For polyester-cotton blend, it was a lot less, around 130,000 fibers. This started discussions about how we might make clothes differently or change our washing machines. In France, by 2025 all new washing machines will have to come with a filter, which is exciting. It’ll be really interesting to see how that develops. Ideally, the filter should be reusable, so we’re not just making more potential rubbish. There are a lot of different options; independent testing will be important.Where does all this plastic wind up?You could argue that plastic really is everywhere. We did some research that found plastic fibers just below the summit of Mount Everest. In some regions, plastic microfibers can go down the drain into the sewage treatment plants; the collected solids, called sewage sludge, is then treated and then often applied on agricultural land as fertilizer. There’s evidence that the chemicals in those plastics can then be absorbed into plants.There are some surprising ecological effects, too. I have read that some plastic pieces, because of their dark colors, absorb heat, which means they’re contributing to melting snow and ice.Yes. Plastic can also increase sand temperature, and this has been found in turtle nesting sites. And turtle sex is dependent on the temperature of the sand. So we might end up with a lot more female turtles.What’s the best thing to do with plastic at the end of its life?Landfill isn’t great, but it does contain and control waste when done right. Incineration has pros and cons; it gets rid of the plastic and can be used to make energy. A lot of small island developing states may use incineration because they haven’t got the space for landfill, but then it’s often open burning, which is not good for the planet or your health.People often think that recycling is a golden solution. But recycling is not fully circular — the recycled plastic is often made into a polymer of worsening quality. At some point, it will not be recyclable. Recycling can also generate problematic microplastics. And if there isn’t a market for the recycled material, it can end up in landfill.None of this gets rid of the core issue. It’s just delaying it. I’m a big believer of tackling the problem at its source. My supervisor, Richard Thompson, says plastic pollution is like an overfilling bath. We’re very good at mopping up the floor, but the bath keeps overflowing. What we need to do is turn off the tap.Are there good alternatives to conventional plastic, like biodegradable or compostable plastics, or bioplastics that are made from plants rather than from fossil fuels?We did some research on this. We did a study looking at biodegradable carrier bags: We buried them in the soil, we submerged them in the ocean, and we left them hanging outside for three years. The ones outside completely fragmented into tiny bits — the plastic didn’t disappear, it just got smaller. The ones in the soil and in the ocean could still hold a full bag of shopping.Biodegradable plastics that are marketed today need to go into a really specific waste management facility with high moisture, high heat, maybe a certain pH, to disappear.Many bioplastics used today — such as bio-polyethylene — are chemically the same as other plastics, just made from a different source. They’re made from plant carbon instead of from fossil fuel carbon, but they may behave exactly like all other plastic. If they’re still single use, is that any better?There’s a lot of work going into alternative products, but we need to be careful that they’re actually better for our health and the environment.How is the plastics treaty (see box) coming along?It’s going to take a lot of discussion, and I will be delighted if it happens this year, but realistically, I think it is going to take a little bit more time. It is difficult to get nations to agree to firm action, because a lot of it comes down to money — both the money to be made from manufacturing plastic, and the money it costs to deal with waste.This is an amazing opportunity that we have, where globally we can have a unified decision on how to protect our planet. The treaty needs to be ambitious, it needs to be specific, and it needs to be binding.Is it reasonable to think that some plastics might be banned?Legislation has already banned some plastics and additives in some countries or regions. Our lab quantified microbeads in beauty products: We found that 3 million microbeads could be in a bottle of facial scrub. So there can be thousands in a squirt on your hand. We took this research, we published it, and then one day I came in to work and I had so many emails in my inbox from journalists. It was making quite a stir. And there were campaigns like “Beat the microbead,” because consumers didn’t want to wash their faces with plastic.So the consumers started to boycott the products, then industry voluntarily removed microbeads and showcased that information in their own marketing. And then governments around the world started to ban microbeads in facial scrubs.Research is all about providing information. And then, with that information, people can take it forward and make a change. I feel very privileged to be in a position that I can be part of that.If you were in charge, would you ban specific plastics or chemicals?I’d flip the question on its head and ask: What would I keep? We don’t need all the plastic we make. And instead of using a big chemical cocktail of additives that we don’t know anything about, let’s just have a list of the chemicals that we can use.When I started my PhD, I wrongly thought that plastic was evil. Plastics are incredibly useful and can solve other environmental and health problems. Plastic can keep our food fresh, and food waste is a huge problem. During the pandemic, it helped to keep people safe. It is lightweight, so products need less energy for transport.But let’s think, right from when we’re designing it, how can we make sure it’s sustainable? Often, we’re not thinking about that right at the beginning, we’re thinking about it far down at the end of its life.Treaty timelineIn 2022, 175 nations at the United Nations Environment Assembly agreed to draft a legally binding treaty against plastic pollution by 2024. That work is now underway, but progress has been slow, leaving observers wondering if it will be completed as planned at the meeting in Busan, South Korea, this December — and, if so, how ambitious it will be.In 2023, delegates released an updated, 70-page pre-draft outlining issues to be tackled, along with a handful of options for how to address them. The issues span the full lifecycle of plastics — from their creation, including the greenhouse gases emitted during their production, through to the uses of plastics (including as single-use products and microbeads), to recycling and waste management. Topics such as tax schemes and pots of money for capacity-building in poorer nations get their share of coverage too.The options for each issue range from hard to soft: Even the options for the stated objective of the treaty, for example, span from “to end plastic pollution” to the much gentler “to protect human health and the environment from plastic pollution.”Many observers at the treaty’s third meeting, in Nairobi in November 2023, said that agreement on firm solutions seemed far away, with delegates from some fossil fuel-rich nations, including Saudi Arabia, pushing against hard production caps. Analysts have noted that as the planet cracks down on burning fossil fuels for energy, the oil industry has increasingly focused on plastic production as a profitable market.On the other hand, a group of nations led by Norway and Rwanda — called the “high ambition coalition” — is pressing for strong action. “It’s a bit of a roller coaster,” says marine biologist Richard Thompson, Imogen Napper’s PhD supervisor at the University of Plymouth; he attended the treaty meeting as one of the coordinators of the independent Scientists’ Coalition for an Effective Plastics Treaty. “There’s great support and traction in one direction — and half an hour later, things seem to turn.”One scientific model shows that it will take an extremely ambitious bundle of policies to drive mismanaged waste down. By this model, for example, cutting mismanaged plastic waste by 85 percent by 2050 would require implementing a 90 percent reduction in single-use packaging, a cap on primary plastic production at 2025 levels, and a mandate that at least 40 percent of plastics be recycled and that more than 40 percent of new products be made from recycled content — along with heavy taxes and more than $200 billion of investments in global waste infrastructure.Scientists are also thinking hard about the treaty’s proposed list of polymers and chemicals of concern, which could be used to guide bans by specific dates, or just to encourage regulation. Such a list could include, for example, polyvinyl chloride (PVC) and polystyrene — often called “the toxic two” by environmental groups — alongside additives including phthalates (which are often used to make PVC more flexible and some of which are endocrine disrupters).Many analysts and concerned observers would like to see the plastic treaty modeled after the Montreal Protocol on Substances That Deplete the Ozone Layer, which in 1986 famously phased out specific chemicals like chlorofluorocarbons with hard, time-targeted commitments. But it might, alternatively, be modeled more like the Paris Agreement on Climate Change, which allows nations to determine their own targets for action. That might be easier to agree upon, but less ambitious.“It’s difficult to get all these nations to agree on all the nuts and bolts,” says Thompson. It remains to be seen how things will pan out at the next meeting, scheduled for Ottawa, Canada, this April.Thompson remains hopeful for a big change in how society uses plastic. “It’s so cheap we can use it for a few seconds before throwing it away. That’s the problem,” he says. But, he adds, “a problem we can solve.”— Nicola JonesThis article originally appeared in Knowable Magazine, an independent journalistic endeavor from Annual Reviews. Sign up for the newsletter.

A marine scientist discusses the problem of plastic pollution and her hopes for an international treaty to tackle it

Our world is increasingly plastic. Back in the 1950s, humanity produced just 5 million metric tons of plastic per year; today it’s 400 million metric tons. Since plastic can take hundreds or thousands of years to biodegrade, pretty much all of it is still around, except for the roughly 20 percent that’s been burned. By some estimates, there are now eight gigatons of accumulated plastic on Earth — twice as much as the weight of all animal life.

Much of this plastic is still in use, in products like cars and homes, but a lot is junk; 40 percent of plastic production goes toward packaging that’s typically tossed after being used once. Some of our plastic waste is recycled, responsibly incinerated or properly landfilled, but tens of millions of tons are mismanaged annually — burned in open pits or left to pollute the environment. Plastic pollution has been found at the poles and the bottom of the ocean, in our clouds and soils, in human blood and mothers’ milk. If things keep going as they are, it is predicted that annual rates of plastic flowing into the sea will triple from 2016 to 2040.

The impacts are manifold. Debris can choke and tangle wildlife; even zooplankton can fill up on microplastics instead of food, altering how much oxygen is in the ocean. And some of the chemicals used in plastics — including additives that make plastics flexible or fire-resistant — can leach out into water, soil or our bodies. Some of these are carcinogenic or endocrine disruptors, capable of interfering with development or reproduction. The net impacts of our lifelong exposure to this chemical soup are hard to tease out, but one recent study concluded that it cost the United States $249 billion in extra health care in 2018.


On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.


Delegates are working now on the world’s first plastic pollution treaty, which is due to be completed by the end of this year. That treaty might cap plastic production, phase out problem chemicals and regulate how waste is managed — but how ambitious this treaty will be is yet to be seen. (See box.)

Imogen Napper, a marine science postdoc at the University of Plymouth in the United Kingdom who specializes in plastic pollution, is one of many scientists whose research is informing the treaty process. Her detective work has documented plastic pollution in surprising places and pointed to solutions that have made their way into government regulations around the world. Knowable Magazine spoke with her about the plastic problem and what we can all do about it. This conversation has been edited for length and clarity.

Why did you decide to focus on plastic pollution as a researcher?

I was lucky to grow up in a small seaside town in the southwest of the UK. I don’t remember any discussion about plastic pollution or beach cleanups when I was younger. But now, going back home, plastic pollution is one of the most obvious environmental challenges that we have, because it’s so visible.

I’m hoping that plastic pollution can be used as a gateway issue to other environmental concerns. Climate change, I’d argue, is a far bigger beast than plastic pollution. But for plastic pollution, we’ve got all the tools that we need — we’ve got potential solutions, and discussion happening now through the plastics treaty. We have that burning fire of desire to make a change. We can fix it.

You and many other researchers spend a lot of time documenting where plastic is in the wild, and how it gets there. Why is this so hard?

When it comes to microscopic pieces in, say, a soil or water sample, it takes a lot of grunt work. I have spent a lot of time looking under the microscope trying to identify, just from the look of it, whether something is cellulosic — coming from plants, like cotton — or plastic. You get a good eye for it. But it can be really tricky.

Nor is it easy to document the accumulation and distribution of bigger, macro-sized chunks of plastic. There are so many sources, leakage points and places where plastic is building up. In one of our studies, led by Emily Duncan at the University of Exeter, we put GPS tags in plastic bottles and tracked them thousands of kilometers down the Ganges River. That sort of work helps to improve scientific models.

The commonly used estimate is that about 8 million metric tons of macroplastic enter the ocean each year. We know a lot less about the land. Technology is getting far better, with remote sensing, drones and satellite imagery. That will be very useful in the next few years to help us accurately identify how much plastic is going into the environment.

A lot of plastic litter is single-use products that have been tossed aside: In the UK, one survey showed that more than half of plastic litter was beverage-related, including cups, lids and straws. But some sources are more surprising, like tiny pieces of plastic thrown up by tire wear on highways.

That was also surprising to me. It’s so obvious — it’s right in front of you — but often we just don’t consider it. Research has only really focused on tire wear in the last few years, but it’s predicted to be one of the biggest single sources of microplastics — it has been estimated to make up five to 10 percent of the plastic entering the ocean.

In our lab, we have done a lot of research looking at clothing. I’d say about 60 percent of our wardrobe contains plastic, like polyester, acrylic or a natural-synthetic blend. A big part of my PhD research was centered around building a washing machine lab, and I tested for the first time different fabrics to see how many fibers would come off in a typical wash.

We found that for acrylic it was the most, at 700,000 fibers per wash. For polyester-cotton blend, it was a lot less, around 130,000 fibers. This started discussions about how we might make clothes differently or change our washing machines. In France, by 2025 all new washing machines will have to come with a filter, which is exciting. It’ll be really interesting to see how that develops. Ideally, the filter should be reusable, so we’re not just making more potential rubbish. There are a lot of different options; independent testing will be important.

Where does all this plastic wind up?

You could argue that plastic really is everywhere. We did some research that found plastic fibers just below the summit of Mount Everest. In some regions, plastic microfibers can go down the drain into the sewage treatment plants; the collected solids, called sewage sludge, is then treated and then often applied on agricultural land as fertilizer. There’s evidence that the chemicals in those plastics can then be absorbed into plants.

There are some surprising ecological effects, too. I have read that some plastic pieces, because of their dark colors, absorb heat, which means they’re contributing to melting snow and ice.

Yes. Plastic can also increase sand temperature, and this has been found in turtle nesting sites. And turtle sex is dependent on the temperature of the sand. So we might end up with a lot more female turtles.

What’s the best thing to do with plastic at the end of its life?

Landfill isn’t great, but it does contain and control waste when done right. Incineration has pros and cons; it gets rid of the plastic and can be used to make energy. A lot of small island developing states may use incineration because they haven’t got the space for landfill, but then it’s often open burning, which is not good for the planet or your health.

People often think that recycling is a golden solution. But recycling is not fully circular — the recycled plastic is often made into a polymer of worsening quality. At some point, it will not be recyclable. Recycling can also generate problematic microplastics. And if there isn’t a market for the recycled material, it can end up in landfill.

None of this gets rid of the core issue. It’s just delaying it. I’m a big believer of tackling the problem at its source. My supervisor, Richard Thompson, says plastic pollution is like an overfilling bath. We’re very good at mopping up the floor, but the bath keeps overflowing. What we need to do is turn off the tap.

Are there good alternatives to conventional plastic, like biodegradable or compostable plastics, or bioplastics that are made from plants rather than from fossil fuels?

We did some research on this. We did a study looking at biodegradable carrier bags: We buried them in the soil, we submerged them in the ocean, and we left them hanging outside for three years. The ones outside completely fragmented into tiny bits — the plastic didn’t disappear, it just got smaller. The ones in the soil and in the ocean could still hold a full bag of shopping.

Biodegradable plastics that are marketed today need to go into a really specific waste management facility with high moisture, high heat, maybe a certain pH, to disappear.

Many bioplastics used today — such as bio-polyethylene — are chemically the same as other plastics, just made from a different source. They’re made from plant carbon instead of from fossil fuel carbon, but they may behave exactly like all other plastic. If they’re still single use, is that any better?

There’s a lot of work going into alternative products, but we need to be careful that they’re actually better for our health and the environment.

How is the plastics treaty (see box) coming along?

It’s going to take a lot of discussion, and I will be delighted if it happens this year, but realistically, I think it is going to take a little bit more time. It is difficult to get nations to agree to firm action, because a lot of it comes down to money — both the money to be made from manufacturing plastic, and the money it costs to deal with waste.

This is an amazing opportunity that we have, where globally we can have a unified decision on how to protect our planet. The treaty needs to be ambitious, it needs to be specific, and it needs to be binding.

Is it reasonable to think that some plastics might be banned?

Legislation has already banned some plastics and additives in some countries or regions. Our lab quantified microbeads in beauty products: We found that 3 million microbeads could be in a bottle of facial scrub. So there can be thousands in a squirt on your hand. We took this research, we published it, and then one day I came in to work and I had so many emails in my inbox from journalists. It was making quite a stir. And there were campaigns like “Beat the microbead,” because consumers didn’t want to wash their faces with plastic.

So the consumers started to boycott the products, then industry voluntarily removed microbeads and showcased that information in their own marketing. And then governments around the world started to ban microbeads in facial scrubs.

Research is all about providing information. And then, with that information, people can take it forward and make a change. I feel very privileged to be in a position that I can be part of that.

If you were in charge, would you ban specific plastics or chemicals?

I’d flip the question on its head and ask: What would I keep? We don’t need all the plastic we make. And instead of using a big chemical cocktail of additives that we don’t know anything about, let’s just have a list of the chemicals that we can use.

When I started my PhD, I wrongly thought that plastic was evil. Plastics are incredibly useful and can solve other environmental and health problems. Plastic can keep our food fresh, and food waste is a huge problem. During the pandemic, it helped to keep people safe. It is lightweight, so products need less energy for transport.

But let’s think, right from when we’re designing it, how can we make sure it’s sustainable? Often, we’re not thinking about that right at the beginning, we’re thinking about it far down at the end of its life.


Treaty timeline

In 2022, 175 nations at the United Nations Environment Assembly agreed to draft a legally binding treaty against plastic pollution by 2024. That work is now underway, but progress has been slow, leaving observers wondering if it will be completed as planned at the meeting in Busan, South Korea, this December — and, if so, how ambitious it will be.

In 2023, delegates released an updated, 70-page pre-draft outlining issues to be tackled, along with a handful of options for how to address them. The issues span the full lifecycle of plastics — from their creation, including the greenhouse gases emitted during their production, through to the uses of plastics (including as single-use products and microbeads), to recycling and waste management. Topics such as tax schemes and pots of money for capacity-building in poorer nations get their share of coverage too.

The options for each issue range from hard to soft: Even the options for the stated objective of the treaty, for example, span from “to end plastic pollution” to the much gentler “to protect human health and the environment from plastic pollution.”

Many observers at the treaty’s third meeting, in Nairobi in November 2023, said that agreement on firm solutions seemed far away, with delegates from some fossil fuel-rich nations, including Saudi Arabia, pushing against hard production caps. Analysts have noted that as the planet cracks down on burning fossil fuels for energy, the oil industry has increasingly focused on plastic production as a profitable market.

On the other hand, a group of nations led by Norway and Rwanda — called the “high ambition coalition” — is pressing for strong action. “It’s a bit of a roller coaster,” says marine biologist Richard Thompson, Imogen Napper’s PhD supervisor at the University of Plymouth; he attended the treaty meeting as one of the coordinators of the independent Scientists’ Coalition for an Effective Plastics Treaty. “There’s great support and traction in one direction — and half an hour later, things seem to turn.”

One scientific model shows that it will take an extremely ambitious bundle of policies to drive mismanaged waste down. By this model, for example, cutting mismanaged plastic waste by 85 percent by 2050 would require implementing a 90 percent reduction in single-use packaging, a cap on primary plastic production at 2025 levels, and a mandate that at least 40 percent of plastics be recycled and that more than 40 percent of new products be made from recycled content — along with heavy taxes and more than $200 billion of investments in global waste infrastructure.

Scientists are also thinking hard about the treaty’s proposed list of polymers and chemicals of concern, which could be used to guide bans by specific dates, or just to encourage regulation. Such a list could include, for example, polyvinyl chloride (PVC) and polystyrene — often called “the toxic two” by environmental groups — alongside additives including phthalates (which are often used to make PVC more flexible and some of which are endocrine disrupters).

Many analysts and concerned observers would like to see the plastic treaty modeled after the Montreal Protocol on Substances That Deplete the Ozone Layer, which in 1986 famously phased out specific chemicals like chlorofluorocarbons with hard, time-targeted commitments. But it might, alternatively, be modeled more like the Paris Agreement on Climate Change, which allows nations to determine their own targets for action. That might be easier to agree upon, but less ambitious.

“It’s difficult to get all these nations to agree on all the nuts and bolts,” says Thompson. It remains to be seen how things will pan out at the next meeting, scheduled for Ottawa, Canada, this April.

Thompson remains hopeful for a big change in how society uses plastic. “It’s so cheap we can use it for a few seconds before throwing it away. That’s the problem,” he says. But, he adds, “a problem we can solve.”

— Nicola Jones


This article originally appeared in Knowable Magazine, an independent journalistic endeavor from Annual Reviews. Sign up for the newsletter.

Read the full story here.
Photos courtesy of

EPA urged to classify abortion drugs as pollutants

It follows 40 other anti-abortion groups and lawmakers previously calling for the EPA to assess the water pollution levels of the drug.

(NewsNation) — Anti-abortion group Students for Life of America is urging the Environmental Protection Agency to add abortion drug mifepristone to its list of water contaminants. It follows 40 other anti-abortion groups and lawmakers previously calling for the EPA to assess the water pollution levels of the abortion drug. “The EPA has the regulatory authority and humane responsibility to determine the extent of abortion water pollution, caused by the reckless and negligent policies pushed by past administrations through the [Food and Drug Administration],” Kristan Hawkins, president of SFLA, said in a release. “Take the word ‘abortion’ out of it and ask, should chemically tainted blood and placenta tissue, along with human remains, be flushed by the tons into America’s waterways? And since the federal government set that up, shouldn’t we know what’s in our water?” she added. In 2025, lawmakers from seven states introduced bills, none of which passed, to either order environmental studies on the effects of mifepristone in water or to enact environmental regulations for the drug. EPA’s Office of Water leaders met with Politico in November, with its press secretary Brigit Hirsch telling the outlet it “takes the issue of pharmaceuticals in our water systems seriously and employs a rigorous, science-based approach to protect human health and the environment.” “As always, EPA encourages all stakeholders invested in clean and safe drinking water to review the proposals and submit comments,” Hirsch added. Copyright 2026 Nexstar Media Inc. All rights reserved. This material may not be published, broadcast, rewritten, or redistributed.

Trump’s EPA' in 2025: A Fossil Fuel-Friendly Approach to Deregulation

The Trump administration has reshaped the Environmental Protection Agency, reversing pollution limits and promoting fossil fuels

WASHINGTON (AP) — The Trump administration has transformed the Environmental Protection Agency in its first year, cutting federal limits on air and water pollution and promoting fossil fuels, a metamorphosis that clashes with the agency’s historic mission to protect human health and the environment.The administration says its actions will “unleash” the American economy, but environmentalists say the agency’s abrupt change in focus threatens to unravel years of progress on climate-friendly initiatives that could be hard or impossible to reverse.“It just constantly wants to pat the fossil fuel business on the back and turn back the clock to a pre-Richard Nixon era” when the agency didn’t exist, said historian Douglas Brinkley.Zeldin has argued the EPA can protect the environment and grow the economy at the same time. He announced “five pillars” to guide EPA’s work; four were economic goals, including energy dominance — Trump’s shorthand for more fossil fuels — and boosting the auto industry.Zeldin, a former New York congressman who had a record as a moderate Republican on some environmental issues, said his views on climate change have evolved. Many federal and state climate goals are unattainable in the near future — and come at huge cost, he said.“We should not be causing … extreme economic pain for an individual or a family” because of policies aimed at “saving the planet,” he told reporters at EPA headquarters in early December.But scientists and experts say the EPA's new direction comes at a cost to public health, and would lead to far more pollutants in the environment, including mercury, lead and especially tiny airborne particles that can lodge in lungs. They also note higher emissions of greenhouse gases will worsen atmospheric warming that is driving more frequent, costly and deadly extreme weather.Christine Todd Whitman, a Republican who led the EPA for several years under President George W. Bush, said watching Zeldin attack laws protecting air and water has been “just depressing.” “It’s tragic for our country. I worry about my grandchildren, of which I have seven. I worry about what their future is going to be if they don’t have clean air, if they don’t have clean water to drink,” she said.The EPA was launched under Nixon in 1970 with pollution disrupting American life, some cities suffocating in smog and some rivers turned into wastelands by industrial chemicals. Congress passed laws then that remain foundational for protecting water, air and endangered species.The agency's aggressiveness has always seesawed depending on who occupies the White House. Former President Joe Biden's administration boosted renewable energy and electric vehicles, tightened motor-vehicle emissions and proposed greenhouse gas limits on coal-fired power plants and oil and gas wells. Industry groups called rules overly burdensome and said the power plant rule would force many aging plants to shut down. In response, many businesses shifted resources to meet the more stringent rules that are now being undone.“While the Biden EPA repeatedly attempted to usurp the U.S. Constitution and the rule of law to impose its ‘Green New Scam,’ the Trump EPA is laser-focused on achieving results for the American people while operating within the limits of the laws passed by Congress,” EPA spokeswoman Brigit Hirsch said. Zeldin's list of targets is long Much of EPA’s new direction aligns with Project 2025, the conservative Heritage Foundation road map that argued the agency should gut staffing, cut regulations and end what it called a war on coal on other fossil fuels.“A lot of the regulations that were put on during the Biden administration were more harmful and restrictive than in any other period. So that’s why deregulating them looks like EPA is making major changes,” said Diana Furchtgott-Roth, director of Heritage's Center for Energy, Climate, and Environment.But Chris Frey, an EPA official under Biden, said the regulations Zeldin has targeted “offered benefits of avoided premature deaths, of avoided chronic illness … bad things that would not happen because of these rules.”Matthew Tejada, a former EPA official under both Trump and Biden who now works at the Natural Resources Defense Council, said of the revamped EPA: “I think it would be hard for them to make it any clearer to polluters in this country that they can go on about their business and not worry about EPA getting in their way.”Zeldin also has shrunk EPA staffing by about 20% to levels last seen in the mid-1980s. Justin Chen, president of the EPA’s largest union, called staff cuts “devastating.” He cited the dismantling of research and development offices at labs across the country and the firing of employees who signed a letter of dissent opposing EPA cuts. Relaxed enforcement and cutting staff Many of Zeldin's changes aren't in effect yet. It takes time to propose new rules, get public input and finalize rollbacks. It's much faster to cut grants and ease up on enforcement, and Trump's EPA is doing both. The number of new civil environmental actions is roughly one-fifth what it was in the first eight months of the Biden administration, according to the nonprofit Environmental Integrity Project. “You can effectively do a lot of deregulation if you just don’t do enforcement,” said Leif Fredrickson, visiting assistant professor of history at the University of Montana.Hirsch said the number of legal filings isn't the best way to judge enforcement because they require work outside of the EPA and can bog staff down with burdensome legal agreements. She said the EPA is “focused on efficiently resolving violations and achieving compliance as quickly as possible” and not making demands beyond what the law requires.EPA's cuts have been especially hard on climate change programs and environmental justice, the effort to address chronic pollution that typically is worse in minority and poor communities. Both were Biden priorities. Zeldin dismissed staff and canceled billions in grants for projects that fell under the “diversity, equity and inclusion” umbrella, a Trump administration target.He also spiked a $20 billion “green bank” set up under Biden’s landmark climate law to fund qualifying clean energy projects. Zeldin argued the fund was a scheme to funnel money to Democrat-aligned organizations with little oversight — allegations a federal judge rejected. Pat Parenteau, an environmental law expert and former director of the Environmental Law School at Vermont Law & Graduate School, said the EPA's shift under Trump left him with little optimism for what he called “the two most awful crises in the 21st century” — biodiversity loss and climate disruption.“I don’t see any hope for either one,” he said. “I really don’t. And I’ll be long gone, but I think the world is in just for absolute catastrophe.”The Associated Press receives support from the Walton Family Foundation for coverage of water and environmental policy. The AP is solely responsible for all content. For all of AP’s environmental coverage, visit https://apnews.com/hub/climate-and-environmentCopyright 2025 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.Photos You Should See – December 2025

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.