Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

Egypt’s Famed Pyramids Overlooked a Long-Lost Branch of the Nile

News Feed
Thursday, May 16, 2024

Lost Branch of the Nile May Solve Long-Standing Mystery of Egypt’s Famed PyramidsA former stretch of the Nile River, now buried beneath the Sahara Desert, may help scientists understand how Egyptians built the pyramids and adapted to a drying landscapeBy Riis WilliamsThe Step Pyramid of Djoser, constructed during the third dynasty of Egypt. Atop a rocky, arid plateau in the Sahara’s Western Desert in Egypt stands the last of the Seven Wonders of the Ancient World: the Great Pyramid of Giza. The 455-foot-tall stone structure and several smaller pyramids in the area have long provided research material for scientists working to decipher ancient Egyptians’ inscriptions to figure out how they constructed such massive monuments—and to understand why they built them so far from the Nile River, the lifeblood of their great civilization.Geomorphologist Eman Ghoneim says she has pondered that last mystery for years. “I was born and lived most of my life in Egypt,” she says, “and one question that I remember asking myself since I was very young is: ‘Why did our ancestors build pyramids in this specific, odd place—and why so far from the water?’ I had this feeling like there was something more there.”The Bent Pyramid at the necropolis of Dahshur. The pyramid was constructed during Egypt’s fourth dynasty.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.Ghoneim, a professor at the University of North Carolina Wilmington, recently showed that at the time they were built, the pyramids were in fact much closer to water. (They stand more than five miles from the Nile’s closest bank today.) By analyzing batches of satellite images and sediment samples collected from deep beneath the desert’s surface, she and her research team located a long-lost ancient branch of the Nile that once ran through the foothills just beside the Giza pyramid field. It’s likely that this channel, which the study team named the Ahramat (“pyramid” in Arabic), is how builders transported materials to the pyramid construction grounds, Ghoneim says. Knowing its course can help archeologists search for potential sites of ancient human settlements that may be buried beneath vast, dusty plain. The researchers detailed their discovery in a study published on Thursday in Communications Earth & Environment. Scientists have long suspected that the Nile—which runs northward for roughly 4,100 miles from Lake Victoria in Tanzania, Kenya and Uganda to the Mediterranean Sea—once had several offshoots. Past research indicates that during the middle of the Holocene epoch, about 10,000 to 6,000 years ago, the Nile floodplain was a lush, marshy habitat that narrowed and became largely barren after a long period of scant rainfall and increased aridity in the Late Holocene.Eman Ghoneim’s research team organizes collected soil samples.Today’s scorched, unforgiving Sahara is a tricky place to conduct the kind of fieldwork involved in searching for former river channels. Before braving the environment for a dig, the research team used radar satellites to peer beneath the top layer of earth and produce images of the subsurface. These revealed subtle patterns and textures in the ground’s layers near the pyramids—features that differed from other areas of the desert and hinted at the long-ago presence of running water. “We were looking at these meandering natural features closer to the [pyramid] field, like long depressions and troughs, now covered up entirely by farmlands and sand,” Ghoneim says. “It can be very hard to see if you don’t know what to look for.”Ghoneim and her colleagues then traveled to Egypt, where they used large drills to excavate two “cores,” or cylinders of earth, extending dozens of miles below the surface. When the drill pulled up sand from deep below, Ghoneim knew the team had found remnants of a lost river. “There is, of course, sand on the surface,” she says. “But the presence of sand and other coarse sediments underneath the surface—instead of clay or silt—indicates that there was once running water in the area.”The water course of the ancient Ahramat Branch borders a large number of pyramids dating from Egypt’s Old Kingdom to its Second Intermediate Period and spanning between its third and 13th dynasties.The researchers tracked the Ahramat’s former course for nearly 40 miles. Ghoneim says it may have run even longer, and more research could determine the channel’s general depth and width. It’s unclear why the waterway ran dry, but the team speculates that a combination of tectonic plate movements, windblown sand and the severe drought in the Late Holocene spelled its demise.Dev Niyogi, a geology professor at the University of Texas at Austin, who was not involved in the new study, says understanding how ancient societies were shaped by their ever changing landscapes and waterways can help guide modern efforts to develop infrastructure wisely in an era of climate change. The ancient Nile branch also serves as a reminder that “resilient human societies are never rigid,” says Adam Rabinowitz, an archeologist and classics professor also at U.T. Austin, who is currently working on a project designed to ready Texans for dramatic, climate-driven changes to the state’s water availability over the next 25 years. “We have to explore how past societies responded to similar climate-related challenges ... so that we can better understand the human experience of living through and adapting to a major environmental change.”Ghoneim says she hopes to continue piecing together a map of the Nile’s former life by further studying the Ahramat and other river channels that may be lost beneath the desert. “For most cities, we’re not talking about how water helped the building of pyramids but rather how human civilizations otherwise depended on it and adapted to its changes,” she says. “And when we learn from the past, we can prepare for the future.”

A former stretch of the Nile River, now buried beneath the Sahara Desert, may help scientists understand how Egyptians built the pyramids and adapted to a drying landscape

Lost Branch of the Nile May Solve Long-Standing Mystery of Egypt’s Famed Pyramids

A former stretch of the Nile River, now buried beneath the Sahara Desert, may help scientists understand how Egyptians built the pyramids and adapted to a drying landscape

By Riis Williams

A tiered pyramid

The Step Pyramid of Djoser, constructed during the third dynasty of Egypt.

Atop a rocky, arid plateau in the Sahara’s Western Desert in Egypt stands the last of the Seven Wonders of the Ancient World: the Great Pyramid of Giza. The 455-foot-tall stone structure and several smaller pyramids in the area have long provided research material for scientists working to decipher ancient Egyptians’ inscriptions to figure out how they constructed such massive monuments—and to understand why they built them so far from the Nile River, the lifeblood of their great civilization.

Geomorphologist Eman Ghoneim says she has pondered that last mystery for years. “I was born and lived most of my life in Egypt,” she says, “and one question that I remember asking myself since I was very young is: ‘Why did our ancestors build pyramids in this specific, odd place—and why so far from the water?’ I had this feeling like there was something more there.”

A slightly curved pyramid

The Bent Pyramid at the necropolis of Dahshur. The pyramid was constructed during Egypt’s fourth dynasty.


On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.


Ghoneim, a professor at the University of North Carolina Wilmington, recently showed that at the time they were built, the pyramids were in fact much closer to water. (They stand more than five miles from the Nile’s closest bank today.) By analyzing batches of satellite images and sediment samples collected from deep beneath the desert’s surface, she and her research team located a long-lost ancient branch of the Nile that once ran through the foothills just beside the Giza pyramid field. It’s likely that this channel, which the study team named the Ahramat (“pyramid” in Arabic), is how builders transported materials to the pyramid construction grounds, Ghoneim says. Knowing its course can help archeologists search for potential sites of ancient human settlements that may be buried beneath vast, dusty plain. The researchers detailed their discovery in a study published on Thursday in Communications Earth & Environment.

Scientists have long suspected that the Nile—which runs northward for roughly 4,100 miles from Lake Victoria in Tanzania, Kenya and Uganda to the Mediterranean Sea—once had several offshoots. Past research indicates that during the middle of the Holocene epoch, about 10,000 to 6,000 years ago, the Nile floodplain was a lush, marshy habitat that narrowed and became largely barren after a long period of scant rainfall and increased aridity in the Late Holocene.

Researchers stand over a table of soil samples wrapped in plastic

Eman Ghoneim’s research team organizes collected soil samples.

Today’s scorched, unforgiving Sahara is a tricky place to conduct the kind of fieldwork involved in searching for former river channels. Before braving the environment for a dig, the research team used radar satellites to peer beneath the top layer of earth and produce images of the subsurface. These revealed subtle patterns and textures in the ground’s layers near the pyramids—features that differed from other areas of the desert and hinted at the long-ago presence of running water. “We were looking at these meandering natural features closer to the [pyramid] field, like long depressions and troughs, now covered up entirely by farmlands and sand,” Ghoneim says. “It can be very hard to see if you don’t know what to look for.”

Ghoneim and her colleagues then traveled to Egypt, where they used large drills to excavate two “cores,” or cylinders of earth, extending dozens of miles below the surface. When the drill pulled up sand from deep below, Ghoneim knew the team had found remnants of a lost river. “There is, of course, sand on the surface,” she says. “But the presence of sand and other coarse sediments underneath the surface—instead of clay or silt—indicates that there was once running water in the area.”

The water course of the ancient Ahramat Branch

The water course of the ancient Ahramat Branch borders a large number of pyramids dating from Egypt’s Old Kingdom to its Second Intermediate Period and spanning between its third and 13th dynasties.

The researchers tracked the Ahramat’s former course for nearly 40 miles. Ghoneim says it may have run even longer, and more research could determine the channel’s general depth and width. It’s unclear why the waterway ran dry, but the team speculates that a combination of tectonic plate movements, windblown sand and the severe drought in the Late Holocene spelled its demise.

Dev Niyogi, a geology professor at the University of Texas at Austin, who was not involved in the new study, says understanding how ancient societies were shaped by their ever changing landscapes and waterways can help guide modern efforts to develop infrastructure wisely in an era of climate change. The ancient Nile branch also serves as a reminder that “resilient human societies are never rigid,” says Adam Rabinowitz, an archeologist and classics professor also at U.T. Austin, who is currently working on a project designed to ready Texans for dramatic, climate-driven changes to the state’s water availability over the next 25 years. “We have to explore how past societies responded to similar climate-related challenges ... so that we can better understand the human experience of living through and adapting to a major environmental change.”

Ghoneim says she hopes to continue piecing together a map of the Nile’s former life by further studying the Ahramat and other river channels that may be lost beneath the desert. “For most cities, we’re not talking about how water helped the building of pyramids but rather how human civilizations otherwise depended on it and adapted to its changes,” she says. “And when we learn from the past, we can prepare for the future.”

Read the full story here.
Photos courtesy of

Fire Disrupts UN Climate Talks Just as Negotiators Reach Critical Final Days

Fire has disrupted United Nations climate talks, forcing evacuations of several buildings with just two scheduled days left and negotiators yet to announce any major agreements

BELEM, Brazil (AP) — Fire disrupted United Nations climate talks in Brazil on Thursday, forcing evacuations of several buildings with just two scheduled days left and negotiators yet to announce any major agreements. Officials said no one was hurt.The fire was reported in an area of pavilions where sideline events are held during the annual talks, known this year as COP30. Organizers soon announced that the fire was under control, but fire officials ordered the entire site evacuated for safety checks and it wasn't clear when conference business would resume.Viliami Vainga Tone, with the Tonga delegation, had just come out of a high-level ministerial meeting when dozens of people came thundering past him shouting about the fire. He was among people pushed out of the venue by Brazilian and United Nations security forces.Tone called time the most precious resource at COP and said he was disappointed it's even shorter due to the fire.“We have to keep up our optimism. There is always tomorrow, if not the remainder of today. But at least we have a full day tomorrow,” Tone told The Associated Press.A few hours before the fire, U.N. Secretary-General António Guterres urged countries to compromise and “show willingness and flexibility to deliver results,” even if they fall short of the strongest measures some nations want.“We are down to the wire and the world is watching Belem,” Guterres said, asking negotiators to engage in good faith in the last two scheduled days of talks, which already missed a self-imposed deadline Wednesday for progress on a few key issues. The conference, with this year's edition known as COP30, frequently runs longer than its scheduled two weeks.“Communities on the front lines are watching, too — counting flooded homes, failed harvests, lost livelihoods — and asking, ‘how much more must we suffer?’” Guterres said. "They’ve heard enough excuses and demand results.” On contentious issues involving more detailed plans to phase out fossil fuels and financial aid to poorer countries, Guterres said he was “perfectly convinced” that compromise was possible and dismissed the idea that not adopting the strongest measures would be a failure.Guterres was more forceful in what he wanted rich countries to do for poor countries, especially those in need of tens of billions of dollars to adapt to the floods, droughts, storms and heat waves triggered by worsening climate change. He continued calls to triple adaptation finance from $40 billion a year to $120 billion a year.“No delegation will leave Belem with everything it wants, but every delegation has a duty to reach a balanced deal,” Guterres said.“Every country, especially the big emitters, must do more,” Guterres said.Delivering overall financial aid — with an agreed goal of $300 billion a year — is one of four interconnected issues that were initially excluded from the official agenda. The other three are: whether countries should be told to toughen their new climate plans; dealing with trade barriers over climate and improving reporting on transparency and climate progress.More than 80 countries have pushed for a detailed “road map” on how to transition away from fossil fuels, like coal, oil and natural gas, which are the chief cause of warming. That was a general but vague agreement two years ago at the COP in Dubai. Guterres kept referring to it as already being agreed to in Dubai, but did not commit to a detailed plan, which Brazilian President Luiz Inácio Lula da Silva pushed for earlier in a speech.The Associated Press’ climate and environmental coverage receives financial support from multiple private foundations. AP is solely responsible for all content. Find AP’s standards for working with philanthropies, a list of supporters and funded coverage areas at AP.org.This story was produced as part of the 2025 Climate Change Media Partnership, a journalism fellowship organized by Internews’ Earth Journalism Network and the Stanley Center for Peace and Security.Copyright 2025 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.Photos You Should See – Nov. 2025

Engineered microbes could tackle climate change – if we ensure it’s done safely

Engineering microbes to soak up more carbon, boost crop yields and restore former farmland is appealing. But synthetic biology fixes must be done thoughtfully

Yuji Sakai/GettyAs the climate crisis accelerates, there’s a desperate need to rapidly reduce carbon dioxide levels in the atmosphere, both by slashing emissions and by pulling carbon out of the air. Synthetic biology has emerged as a particularly promising approach. Despite the name, synthetic biology isn’t about creating new life from scratch. Rather, it uses engineering principles to build new biological components for existing microorganisms such as bacteria, microbes and fungi to make them better at specific tasks. By one recent estimate, synthetic biology could cut more carbon than emitted by all passenger cars ever made – up to 30 billion tonnes – through methods such as boosting crop yields, restoring agricultural land, cutting livestock methane emissions, reducing the need for fertiliser, producing biofuels and engineering microbes to store more carbon. According to some synthetic biologists, this could be a game-changer. But will it prove to be? Technological efforts to “solve” the climate problem often verge on the improbably utopian. There’s a risk in seeing synthetic biology as a silver bullet for environmental problems. A more realistic approach suggests synthetic biology isn’t a magic fix, but does have real potential worth exploring further. Engineering microorganisms is a controversial practice. To make the most of these technologies, researchers will have to ensure it’s done safely and ethically, as my research points out. What potential does synthetic biology have? Earth’s oceans, forests, soils and other natural processes soak up over half of all carbon emitted by burning fossil fuels. Synthetic biology could make these natural sinks even more effective. Some researchers are exploring ways to modify natural enzymes to rapidly convert carbon dioxide gas into carbon in rocks. Perhaps the best known example is the use of precision fermentation to cut methane emissions from livestock. Because methane is a much more potent greenhouse gas than carbon dioxide, these emissions account for roughly 12% of total warming potential from greenhouse emissions. Bioengineered yeasts could absorb up to 98% of these emissions. After being eaten by cattle or other ruminants these yeasts block production of methane before it can be belched out. Synthetic biology could even drastically reduce how much farmland the world needs by producing food more efficiently. Engineered soil microbes can boost crop yields at least by 10–20%, meaning more food from less land. Precision fermentation can be used to produce clean meat and clean milk with much lower emissions than traditional farming. Engineered microbes have the potential to boost crop yields considerably. Collab Media/Unsplash, CC BY-NC-ND If farms produce more on less land, excess farmland can be returned to nature. Wetlands, forests and native grasslands can store much more carbon than farmland, helping tackle climate change. Synthetic biology can be used to modify microbe and algae species to increase their natural ability to store carbon in wetlands and oceans. This approach is known as natural geoengineering. Engineered crops and soil microbes can also lock away much more carbon in the roots of crops or by increasing soil storage capacity. They can also reduce methane emissions from organic matter and tackle pollutants such as fertiliser runoff and heavy metals. Sounds great – what’s the problem? As researchers have pointed out, using this approach will require a rollout at massive scale. At present, much work has been done at smaller scale. These engineered organisms need to be able to go from Petri dishes to industrial bioreactors and then safely into the environment. To scale, these approaches have to be economically viable, well regulated and socially acceptable. That’s easier said than done. First, engineering organisms comes with the serious risk of unintended consequences. If these customised microbes release their stored carbon all at once during a drought or bushfire, it could worsen climate change. It would be very difficult to control these organisms if a problem emerges after their release, such as if an engineered microbe began outcompeting its rivals or if synthetic genes spread beyond the target species and do unintended damage to other species and ecosystems. It will be essential to tackle these issues head on with robust risk management and forward planning. Second, synthetic biology approaches will likely become products. To make these organisms cheaply and gain market share, biotech companies will have an incentive to focus on immediate profits. This could lead companies to downplay actual risks to protect their profit margins. Regulation will be essential here. Third, some worthwhile approaches may not appeal to companies seeking a return on investment. Instead, governments or public institutions may have to develop them to benefit plants, animals and natural habitats, given human existence rests on healthy ecosystems. Which way forward? These issues shouldn’t stop researchers from testing out these technologies. But these risks must be taken into account, as not all risks are equal. Unchecked climate change would be much worse, as it could lead to societal collapse, large-scale climate migration and mass species extinction. Large scale removal of carbon dioxide from the atmosphere is now essential. In the face of catastrophic risks, it can be ethically justifiable to take the smaller risk of unintended consequences from these organisms. But it’s far less justifiable if these same risks are accepted to secure financial returns for private investors. As time passes and the climate crisis intensifies, these technologies will look more and more appealing. Synthetic biology won’t be the silver bullet many imagine it to be, and it’s unlikely it will be the gold mine many hope for. But the technology has undeniable promise. Used thoughtfully and ethically, it could help us make a healthier planet for all living species. Daniele Fulvi receives funding from the ARC Centre of Excellence in Synthetic Biology, and his current project investigates the ethical dimensions of synthetic biology for climate mitigation. He also received a small grant from the Advanced Engineering Biology Future Science Platform at CSIRO. The views expressed in this article are those of the author and are not necessarily those of the Australian Government or the Australian Research Council.

Exclusive-Europe Plans Service to Gauge Climate Change Role in Extreme Weather

By Alison Withers and Kate AbnettCOPENHAGEN (Reuters) -The EU is launching a service to measure the role climate change is playing in extreme...

By Alison Withers and Kate AbnettCOPENHAGEN (Reuters) -The EU is launching a service to measure the role climate change is playing in extreme weather events like heatwaves and extreme rain, and experts say this could help governments set climate policy, improve financial risk assessments and provide evidence for use in lawsuits.Scientists with the EU's Copernicus Climate Change Service told Reuters the service can help governments in weighing the physical risks posed by worsening weather and setting policy in response. "It's the demand of understanding when an extreme event happens, how is this related to climate change?" said the new service's technical lead, Freja Vamborg.The European Commission did not immediately respond to a Reuters request for comment.The service will perform attribution science, which involves running computer simulations of how weather systems might have behaved if people had never started pumping greenhouse gases into the air and then comparing those results with what is happening today.Funded for about 2.5 million euros over three years, Copernicus will publish results by the end of next year and offer two assessments a month - each within a week of an extreme weather event.For the first time, "there will be an attribution office operating constantly," said Carlo Buontempo, director of Copernicus Climate Change Service. "Climate policy is unfortunately again a very polarized topic," said Friederike Otto, a climate scientist at Imperial College London who helped to pioneer the scientific approach but is not involved in the new EU service. She welcomed the service's plans to partner with national weather services of EU members along with the UK Met and the Red Cross Red Crescent Climate Centre."From that point of view, it also helps if the governments do it themselves and just see themselves really the evidence from their own weather services," Otto said. Some independent climate scientists and lawyers cheered the EU move. "We want to have the most information available," said senior attorney Erika Lennon at the non-profit Center for International Environmental Law."The more information we have about attribution science, the easier it will be for the most impacted to be able to successfully bring claims to courts."By calculating probabilities of climate change impacting weather patterns, the approach also helps insurance companies and others in the financial sector.In a way, "they're already using it" with in-house teams calculating probabilities for floods or storms, said environmental scientist Johan Rockstroem with the Potsdam Institute for Climate Impact Research."Financial institutions understand risk and risk has to be quantified, and this is one way of quantifying," Rockstroem said.In litigation, attribution science is also being used already in calculating how much a country's or company's emissions may have contributed to climate-fuelled disasters.The International Court of Justice said in July that attribution science is legally viable for linking emissions with climate extremes - but it has yet to fully be tested in court. A German court in May dismissed a Peruvian farmer's lawsuit against German utility RWE for emissions-driven warming causing Andean glaciers to thaw. The case had used attribution science in calculating the damage claim, but the court said the claim amount was too low to take the case forward.So "the court never got to discussing attribution science in detail and going into whether the climate models are good enough, and all of these complex and thorny questions," said Noah Walker-Crawford, a climate litigation researcher at the London School of Economics. (Reporting by Ali Withers in Copenhagen and Kate Abnett in Belem, Brazil; Writing by Katy Daigle; Editing by David Gregorio)Copyright 2025 Thomson Reuters.

Billionaire hedge fund founder Tom Steyer is running for governor

Billionaire hedge fund founder, climate change warrior and major Democratic donor Tom Steyer is running for governor. Fossil fuel and migrant detention facility investments will likely draw attacks from his fellow Democrats.

Billionaire hedge fund founder Tom Steyer announced Wednesday that he is running for governor of California, arguing that he is not beholden to special interests and can take on corporations that are making life unaffordable in the state.“The richest people in America think that they earned everything themselves. Bulls—, man. That’s so ridiculous,” Steyer said in an online video announcing his campaign. “We have a broken government. It’s been bought by corporations and my question is: Who do you think is going to change that? Sacramento politicians are afraid to change up this system. I’m not. They’re going to hate this. Bring it on.” Protesters hold placards and banners during a rally against Whitehaven Coal in Sydney in 2014. Dozens of protesters and activists gathered downtown to protest against the controversial massive Maules Creek coal mine project in northern New South Wales. (Saeed Khan / AFP/Getty Images) Steyer, 68, founded Farallon Capital Management, one of the nation’s largest hedge funds, and left it in 2012 after 26 years. Since his departure, he has become a global environmental activist and a major donor to Democratic candidates and causes. But the hedge firm’s investments — notably a giant coal mine in Australia that cleared 3,700 acres of koala habitat and a company that runs migrant detention centers on the U.S.-Mexico border for U.S. Immigration and Customs Enforcement — will make him susceptible to political attack by his gubernatorial rivals. Steyer has expressed regret for his involvement in such projects, saying it was why he left Farallon and started focusing his energy on fighting climate change. Democratic presidential candidate Tom Steyer addresses a crowd during a presidential primary election-night party in Columbia, S.C. (Sean Rayford / Getty Images) Steyer previously flirted with running for governor and the U.S. Senate but decided against it, instead opting to run for president in 2020. He dropped out after spending nearly $342 million on his campaign, which gained little traction before he ended his run after the South Carolina primary.Next year’s gubernatorial race is in flux, after former Vice President Kamala Harris and Sen. Alex Padilla decided not to run and Proposition 50, the successful Democratic effort to redraw congressional districts, consumed all of the political oxygen during an off-year election.Most voters are undecided about who they would like to replace Gov. Gavin Newsom, who cannot run for reelection because of term limits, according to a poll released this month by the UC Berkeley Institute of Governmental Studies and co-sponsored by The Times. Steyer had the support of 1% of voters in the survey. In recent years, Steyer has been a longtime benefactor of progressive causes, most recently spending $12 million to support the redistricting ballot measure. But when he was the focus of one of the ads, rumors spiraled that he was considering a run for governor.In prior California ballot initiatives, Steyer successfully supported efforts to close a corporate tax loophole and to raise tobacco taxes, and fought oil-industry-backed efforts to roll back environmental law.His campaign platform is to build 1 million homes in four years, lower energy costs by ending monopolies, make preschool and community college free and ban corporate contributions to political action committees in California elections.Steyer’s brother Jim, the leader of Common Sense Media, and former Biden administration U.S. Surgeon General Vivek Murthy are aiming to put an initiative on next year’s ballot to protect children from social media, specifically the chatbots that have been accused of prompting young people to kill themselves. Newsom recently vetoed a bill aimed at addressing this artificial intelligence issue.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.