Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

Decoding Our Origins: How Modern Humans Conquered the Cold

News Feed
Tuesday, July 30, 2024

Research on the FTO gene variant rs1421085 T>C suggests it evolved to aid human survival in cold climates by boosting fat thermogenesis, possibly explaining its high prevalence in populations that migrated from Africa to colder regions. This finding links genetic traits associated with modern obesity to historical adaptations, underscoring the complex interplay between genetics and evolution.Recent research supports the “Out-of-Africa” theory, showing how the FTO gene variant rs1421085 T>C has helped humans adapt to colder climates by enhancing thermogenesis in brown adipose tissue (BAT), providing a survival advantage. This variant’s prevalence in colder regions indicates positive selection, although anomalies in the Indian subcontinent suggest historical migrations have also impacted gene frequencies. This study underscores the complex interplay between evolution, history, and genetics, necessitating further exploration into human adaptation.“Who are we, and where do we come from?” This fundamental question has fascinated humanity for millennia. The widely accepted “Out-of-Africa (OOA) theory” posits that modern humans, Homo sapiens, originated in Africa. Evidence suggests that a small group of modern humans migrated out of Africa around 70,000 years ago, and nearly all humans outside of Africa today are believed to be descendants of these early pioneers.Serving as a shelter, Africa protected modern humans from extreme cold conditions during repeated ice ages. Early humans adapted to the heat dissipation requirements of running on the East African grasslands by losing their thick body hair. However, when the ancestors of modern humans left Africa, they encountered the survival challenges as previous pioneers did: how to keep their bodies warm in extremely cold climates. Are there remnants in the human genome that reflect the evolutionary adaptations of our ancestors who endured extreme environments? The Role of Genome-Wide Association StudiesGenome-wide association studies (GWAS) have significantly advanced disease genetics and provided invaluable tools for exploring human evolutionary events. In 2007, a cluster of single nucleotide polymorphisms (SNPs) within intron 1 of the FTO (fat mass and obesity-associated) gene was identified as being most strongly associated with obesity risk. However, it remained unclear whether these SNPs directly contribute to the development of obesity. The turning point came in 2015 when Claussnitzer et al. published a milestone article in the New England Journal of Medicine.The study pinpointed the rs1421085 T>C variant within the FTO SNP cluster for the first time, showing that this variant inhibited the expression of UCP1 (uncoupling protein 1), a core gene of thermogenesis, and reduced thermogenic capacity of differentiated human beige fat cells. While this study appears to elucidate the molecular mechanism of FTO variants in obesity, it is noted that there is a lack of direct in vivo evidence to support these findings.New Findings in Thermogenesis ResearchIn 2023, a research group published a paper in Nature Metabolism that challenged the above conclusions. The findings revealed that mice carrying the homozygous CC-alleles exhibit enhanced brown adipose tissue (BAT) thermogenesis and resistance to high-fat diet-induced obesity. Notably, mice harboring the CC-alleles showed ~6 °C higher than those with TT-alleles when exposed to a cold room (4 °C). These results led us to speculate that the rs1421085 T>C variant might be related to mammals’ adaptation to cold environments.To further investigate whether the rs1421085 T>C variant affects thermogenesis in humans, we recently conducted a study using human fetal BAT obtained from aborted samples due to developmental defects. The results demonstrated that TC-allele carriers owed higher expression of UCP1 in BAT than TT-allele carriers, aligning with the team’s previous observations in mice. This discovery prompted us to reassess the connection among the rs1421085 T>C variant, obesity, and human evolutionary processes. Could the expansion of this variant be attributed to positive selection for human adaptation to cold environments?Over the last 100,000 years, modern humans have migrated from low latitudes to high latitudes, transitioning from tropical and temperate zones to colder regions, and shifting from hunter-gatherer societies to agricultural and pastoral lifestyles. These environmental changes have imposed evolutionary pressures that have played a pivotal role in shaping phenotypic diversity across diverse populations. For instance, the Inuit population residing in the frigid Arctic region heavily relies on marine fish abundant in omega-3 polyunsaturated fatty acids (PUFAs) for their diet. The most prominent signal of positive selection is observed within the fatty acid desaturase (FADS) gene. Notably, these genetic variants were initially associated with height traits in general populations. Could a comparable mechanism of positive selection elucidate the narrative behind the rs1421085 T>C variant?Thus, using a systematic analysis of the rs1421085 C-allele frequency among diverse ancestral groups, we observed a remarked inverse correlation between the C-allele frequency and mean earth skin temperatures in January. This observed pattern indicates that “the colder the location, the higher the frequency of this variant”. In contrast, no correlation was found between the frequency and longitudes or altitudes among populations. Interestingly, the step-by-step shift of the C-allele frequency tracked the “modern human migration route map” documented previously. Building on these human and mouse results, encompassing both in vitro and in vivo experiments, and considering the genetic distribution patterns of Eurasian and African populations, we proposed a hypothesis that the substantial variance in the C-allele frequency across populations from Africa to Eurasia might be driven by positive selection mechanisms linked to varying levels of cold stress.Genetic Correlations and Historical EventsDuring the peer review process, reviewers noted some deviations in the correlation analysis, particularly regarding the high frequency of the C-allele in populations from the Indian subcontinent, which did not correspond with local ambient temperatures. Back to human genetic studies, a range of Eurasian-related ancestry varies from 20% to 80% across diverse Indian ethnic populations. The potential influx of populations or migrations from the north and west, known as the “Aryan invasion theory”, may have contributed to the ancient Indian civilizations’ decline. We speculated that historical invasions or migrations may have altered the original gene frequencies of ancient Indian populations by introducing high-frequency C-alleles from cold high-altitude regions. Therefore, major historical events may underlie these seemingly contradictory genetic findings.Despite the absence of direct evidence from ancient human fossils, the significance of this study lies in pinpointing the functional FTO variant—rs1421085 T>C—as potentially the inaugural locus established to enhance the expression of human thermogenic genes and be positively selected in response to cold temperatures. The team’s speculation suggests that this variant could confer newborn carriers a substantial survival advantage in cold climates, particularly during the short term after birth, by enhancing BAT thermogenesis. This genetic adaptation may represent just one of the numerous variants early humans employed to acclimate to harsh cold environments. We anticipate that further genetic variants relevant to this intricate evolutionary trajectory will be unraveled in the future.The team has devoted extensive effort over more than a decade to delve into obesity genetics, particularly focusing on the FTO SNP through functional studies. Initially, we aimed to decipher the role of this pivotal variant in obesity. As the team’s investigations have progressed, a realization has emerged that “genetic signals affecting the development of obesity in modern humans may have been destined since the moment human pioneers migrated out of Africa”. Delving into genetic studies on modern complex diseases often entails a lengthy and arduous journey to unveil the narrative’s origin, given the myriad of accidental or inevitable, random or intentional factors at play. This process mirrors the tale of “the blind men and the elephant,” marked by debates, contradictions, and crucially, collaborative support. While the question of “where do we come from?” remains enigmatic, this research provides a glimpse of intrepid pioneers navigating within the winds and snows of distant eras and realms.The intricacies of human genetics likely harbor numerous undisclosed secrets regarding cold resistance, alongside countless ancient narratives revolving around survival and demise. Much like the rock paintings adorning the walls of the Blombos Cave, our DNA serves as a faithful recorder of every notable event along the intricate path of human evolution. This enduring repository of our history calls for ceaseless exploration and investigation, offering insights into our complex journey through time and adaptation.Reference: “The FTO variant with enhanced UCP1 expression is linked to human migration out of Africa” by Nan Yin, Dan Zhang and Jiqiu Wang, 22 June 2024, Life Metabolism.DOI: 10.1093/lifemeta/loae027

Recent research supports the “Out-of-Africa” theory, showing how the FTO gene variant rs1421085 T>C has helped humans adapt to colder climates by enhancing thermogenesis in...

Human DNA Evolution History Concept

Research on the FTO gene variant rs1421085 T>C suggests it evolved to aid human survival in cold climates by boosting fat thermogenesis, possibly explaining its high prevalence in populations that migrated from Africa to colder regions. This finding links genetic traits associated with modern obesity to historical adaptations, underscoring the complex interplay between genetics and evolution.

Recent research supports the “Out-of-Africa” theory, showing how the FTO gene variant rs1421085 T>C has helped humans adapt to colder climates by enhancing thermogenesis in brown adipose tissue (BAT), providing a survival advantage. This variant’s prevalence in colder regions indicates positive selection, although anomalies in the Indian subcontinent suggest historical migrations have also impacted gene frequencies. This study underscores the complex interplay between evolution, history, and genetics, necessitating further exploration into human adaptation.

“Who are we, and where do we come from?” This fundamental question has fascinated humanity for millennia. The widely accepted “Out-of-Africa (OOA) theory” posits that modern humans, Homo sapiens, originated in Africa. Evidence suggests that a small group of modern humans migrated out of Africa around 70,000 years ago, and nearly all humans outside of Africa today are believed to be descendants of these early pioneers.

Serving as a shelter, Africa protected modern humans from extreme cold conditions during repeated ice ages. Early humans adapted to the heat dissipation requirements of running on the East African grasslands by losing their thick body hair. However, when the ancestors of modern humans left Africa, they encountered the survival challenges as previous pioneers did: how to keep their bodies warm in extremely cold climates. Are there remnants in the human genome that reflect the evolutionary adaptations of our ancestors who endured extreme environments?

The Role of Genome-Wide Association Studies

Genome-wide association studies (GWAS) have significantly advanced disease genetics and provided invaluable tools for exploring human evolutionary events. In 2007, a cluster of single nucleotide polymorphisms (SNPs) within intron 1 of the FTO (fat mass and obesity-associated) gene was identified as being most strongly associated with obesity risk. However, it remained unclear whether these SNPs directly contribute to the development of obesity. The turning point came in 2015 when Claussnitzer et al. published a milestone article in the New England Journal of Medicine.

The study pinpointed the rs1421085 T>C variant within the FTO SNP cluster for the first time, showing that this variant inhibited the expression of UCP1 (uncoupling protein 1), a core gene of thermogenesis, and reduced thermogenic capacity of differentiated human beige fat cells. While this study appears to elucidate the molecular mechanism of FTO variants in obesity, it is noted that there is a lack of direct in vivo evidence to support these findings.

New Findings in Thermogenesis Research

In 2023, a research group published a paper in Nature Metabolism that challenged the above conclusions. The findings revealed that mice carrying the homozygous CC-alleles exhibit enhanced brown adipose tissue (BAT) thermogenesis and resistance to high-fat diet-induced obesity. Notably, mice harboring the CC-alleles showed ~6 °C higher than those with TT-alleles when exposed to a cold room (4 °C). These results led us to speculate that the rs1421085 T>C variant might be related to mammals’ adaptation to cold environments.

To further investigate whether the rs1421085 T>C variant affects thermogenesis in humans, we recently conducted a study using human fetal BAT obtained from aborted samples due to developmental defects. The results demonstrated that TC-allele carriers owed higher expression of UCP1 in BAT than TT-allele carriers, aligning with the team’s previous observations in mice. This discovery prompted us to reassess the connection among the rs1421085 T>C variant, obesity, and human evolutionary processes. Could the expansion of this variant be attributed to positive selection for human adaptation to cold environments?

Over the last 100,000 years, modern humans have migrated from low latitudes to high latitudes, transitioning from tropical and temperate zones to colder regions, and shifting from hunter-gatherer societies to agricultural and pastoral lifestyles. These environmental changes have imposed evolutionary pressures that have played a pivotal role in shaping phenotypic diversity across diverse populations. For instance, the Inuit population residing in the frigid Arctic region heavily relies on marine fish abundant in omega-3 polyunsaturated fatty acids (PUFAs) for their diet. The most prominent signal of positive selection is observed within the fatty acid desaturase (FADS) gene. Notably, these genetic variants were initially associated with height traits in general populations. Could a comparable mechanism of positive selection elucidate the narrative behind the rs1421085 T>C variant?

Thus, using a systematic analysis of the rs1421085 C-allele frequency among diverse ancestral groups, we observed a remarked inverse correlation between the C-allele frequency and mean earth skin temperatures in January. This observed pattern indicates that “the colder the location, the higher the frequency of this variant”. In contrast, no correlation was found between the frequency and longitudes or altitudes among populations. Interestingly, the step-by-step shift of the C-allele frequency tracked the “modern human migration route map” documented previously. Building on these human and mouse results, encompassing both in vitro and in vivo experiments, and considering the genetic distribution patterns of Eurasian and African populations, we proposed a hypothesis that the substantial variance in the C-allele frequency across populations from Africa to Eurasia might be driven by positive selection mechanisms linked to varying levels of cold stress.

Genetic Correlations and Historical Events

During the peer review process, reviewers noted some deviations in the correlation analysis, particularly regarding the high frequency of the C-allele in populations from the Indian subcontinent, which did not correspond with local ambient temperatures. Back to human genetic studies, a range of Eurasian-related ancestry varies from 20% to 80% across diverse Indian ethnic populations. The potential influx of populations or migrations from the north and west, known as the “Aryan invasion theory”, may have contributed to the ancient Indian civilizations’ decline. We speculated that historical invasions or migrations may have altered the original gene frequencies of ancient Indian populations by introducing high-frequency C-alleles from cold high-altitude regions. Therefore, major historical events may underlie these seemingly contradictory genetic findings.

Despite the absence of direct evidence from ancient human fossils, the significance of this study lies in pinpointing the functional FTO variant—rs1421085 T>C—as potentially the inaugural locus established to enhance the expression of human thermogenic genes and be positively selected in response to cold temperatures. The team’s speculation suggests that this variant could confer newborn carriers a substantial survival advantage in cold climates, particularly during the short term after birth, by enhancing BAT thermogenesis. This genetic adaptation may represent just one of the numerous variants early humans employed to acclimate to harsh cold environments. We anticipate that further genetic variants relevant to this intricate evolutionary trajectory will be unraveled in the future.

The team has devoted extensive effort over more than a decade to delve into obesity genetics, particularly focusing on the FTO SNP through functional studies. Initially, we aimed to decipher the role of this pivotal variant in obesity. As the team’s investigations have progressed, a realization has emerged that “genetic signals affecting the development of obesity in modern humans may have been destined since the moment human pioneers migrated out of Africa”. Delving into genetic studies on modern complex diseases often entails a lengthy and arduous journey to unveil the narrative’s origin, given the myriad of accidental or inevitable, random or intentional factors at play. This process mirrors the tale of “the blind men and the elephant,” marked by debates, contradictions, and crucially, collaborative support. While the question of “where do we come from?” remains enigmatic, this research provides a glimpse of intrepid pioneers navigating within the winds and snows of distant eras and realms.

The intricacies of human genetics likely harbor numerous undisclosed secrets regarding cold resistance, alongside countless ancient narratives revolving around survival and demise. Much like the rock paintings adorning the walls of the Blombos Cave, our DNA serves as a faithful recorder of every notable event along the intricate path of human evolution. This enduring repository of our history calls for ceaseless exploration and investigation, offering insights into our complex journey through time and adaptation.

Reference: “The FTO variant with enhanced UCP1 expression is linked to human migration out of Africa” by Nan Yin, Dan Zhang and Jiqiu Wang, 22 June 2024, Life Metabolism.
DOI: 10.1093/lifemeta/loae027

Read the full story here.
Photos courtesy of

Fire Disrupts UN Climate Talks Just as Negotiators Reach Critical Final Days

Fire has disrupted United Nations climate talks, forcing evacuations of several buildings with just two scheduled days left and negotiators yet to announce any major agreements

BELEM, Brazil (AP) — Fire disrupted United Nations climate talks in Brazil on Thursday, forcing evacuations of several buildings with just two scheduled days left and negotiators yet to announce any major agreements. Officials said no one was hurt.The fire was reported in an area of pavilions where sideline events are held during the annual talks, known this year as COP30. Organizers soon announced that the fire was under control, but fire officials ordered the entire site evacuated for safety checks and it wasn't clear when conference business would resume.Viliami Vainga Tone, with the Tonga delegation, had just come out of a high-level ministerial meeting when dozens of people came thundering past him shouting about the fire. He was among people pushed out of the venue by Brazilian and United Nations security forces.Tone called time the most precious resource at COP and said he was disappointed it's even shorter due to the fire.“We have to keep up our optimism. There is always tomorrow, if not the remainder of today. But at least we have a full day tomorrow,” Tone told The Associated Press.A few hours before the fire, U.N. Secretary-General António Guterres urged countries to compromise and “show willingness and flexibility to deliver results,” even if they fall short of the strongest measures some nations want.“We are down to the wire and the world is watching Belem,” Guterres said, asking negotiators to engage in good faith in the last two scheduled days of talks, which already missed a self-imposed deadline Wednesday for progress on a few key issues. The conference, with this year's edition known as COP30, frequently runs longer than its scheduled two weeks.“Communities on the front lines are watching, too — counting flooded homes, failed harvests, lost livelihoods — and asking, ‘how much more must we suffer?’” Guterres said. "They’ve heard enough excuses and demand results.” On contentious issues involving more detailed plans to phase out fossil fuels and financial aid to poorer countries, Guterres said he was “perfectly convinced” that compromise was possible and dismissed the idea that not adopting the strongest measures would be a failure.Guterres was more forceful in what he wanted rich countries to do for poor countries, especially those in need of tens of billions of dollars to adapt to the floods, droughts, storms and heat waves triggered by worsening climate change. He continued calls to triple adaptation finance from $40 billion a year to $120 billion a year.“No delegation will leave Belem with everything it wants, but every delegation has a duty to reach a balanced deal,” Guterres said.“Every country, especially the big emitters, must do more,” Guterres said.Delivering overall financial aid — with an agreed goal of $300 billion a year — is one of four interconnected issues that were initially excluded from the official agenda. The other three are: whether countries should be told to toughen their new climate plans; dealing with trade barriers over climate and improving reporting on transparency and climate progress.More than 80 countries have pushed for a detailed “road map” on how to transition away from fossil fuels, like coal, oil and natural gas, which are the chief cause of warming. That was a general but vague agreement two years ago at the COP in Dubai. Guterres kept referring to it as already being agreed to in Dubai, but did not commit to a detailed plan, which Brazilian President Luiz Inácio Lula da Silva pushed for earlier in a speech.The Associated Press’ climate and environmental coverage receives financial support from multiple private foundations. AP is solely responsible for all content. Find AP’s standards for working with philanthropies, a list of supporters and funded coverage areas at AP.org.This story was produced as part of the 2025 Climate Change Media Partnership, a journalism fellowship organized by Internews’ Earth Journalism Network and the Stanley Center for Peace and Security.Copyright 2025 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.Photos You Should See – Nov. 2025

Engineered microbes could tackle climate change – if we ensure it’s done safely

Engineering microbes to soak up more carbon, boost crop yields and restore former farmland is appealing. But synthetic biology fixes must be done thoughtfully

Yuji Sakai/GettyAs the climate crisis accelerates, there’s a desperate need to rapidly reduce carbon dioxide levels in the atmosphere, both by slashing emissions and by pulling carbon out of the air. Synthetic biology has emerged as a particularly promising approach. Despite the name, synthetic biology isn’t about creating new life from scratch. Rather, it uses engineering principles to build new biological components for existing microorganisms such as bacteria, microbes and fungi to make them better at specific tasks. By one recent estimate, synthetic biology could cut more carbon than emitted by all passenger cars ever made – up to 30 billion tonnes – through methods such as boosting crop yields, restoring agricultural land, cutting livestock methane emissions, reducing the need for fertiliser, producing biofuels and engineering microbes to store more carbon. According to some synthetic biologists, this could be a game-changer. But will it prove to be? Technological efforts to “solve” the climate problem often verge on the improbably utopian. There’s a risk in seeing synthetic biology as a silver bullet for environmental problems. A more realistic approach suggests synthetic biology isn’t a magic fix, but does have real potential worth exploring further. Engineering microorganisms is a controversial practice. To make the most of these technologies, researchers will have to ensure it’s done safely and ethically, as my research points out. What potential does synthetic biology have? Earth’s oceans, forests, soils and other natural processes soak up over half of all carbon emitted by burning fossil fuels. Synthetic biology could make these natural sinks even more effective. Some researchers are exploring ways to modify natural enzymes to rapidly convert carbon dioxide gas into carbon in rocks. Perhaps the best known example is the use of precision fermentation to cut methane emissions from livestock. Because methane is a much more potent greenhouse gas than carbon dioxide, these emissions account for roughly 12% of total warming potential from greenhouse emissions. Bioengineered yeasts could absorb up to 98% of these emissions. After being eaten by cattle or other ruminants these yeasts block production of methane before it can be belched out. Synthetic biology could even drastically reduce how much farmland the world needs by producing food more efficiently. Engineered soil microbes can boost crop yields at least by 10–20%, meaning more food from less land. Precision fermentation can be used to produce clean meat and clean milk with much lower emissions than traditional farming. Engineered microbes have the potential to boost crop yields considerably. Collab Media/Unsplash, CC BY-NC-ND If farms produce more on less land, excess farmland can be returned to nature. Wetlands, forests and native grasslands can store much more carbon than farmland, helping tackle climate change. Synthetic biology can be used to modify microbe and algae species to increase their natural ability to store carbon in wetlands and oceans. This approach is known as natural geoengineering. Engineered crops and soil microbes can also lock away much more carbon in the roots of crops or by increasing soil storage capacity. They can also reduce methane emissions from organic matter and tackle pollutants such as fertiliser runoff and heavy metals. Sounds great – what’s the problem? As researchers have pointed out, using this approach will require a rollout at massive scale. At present, much work has been done at smaller scale. These engineered organisms need to be able to go from Petri dishes to industrial bioreactors and then safely into the environment. To scale, these approaches have to be economically viable, well regulated and socially acceptable. That’s easier said than done. First, engineering organisms comes with the serious risk of unintended consequences. If these customised microbes release their stored carbon all at once during a drought or bushfire, it could worsen climate change. It would be very difficult to control these organisms if a problem emerges after their release, such as if an engineered microbe began outcompeting its rivals or if synthetic genes spread beyond the target species and do unintended damage to other species and ecosystems. It will be essential to tackle these issues head on with robust risk management and forward planning. Second, synthetic biology approaches will likely become products. To make these organisms cheaply and gain market share, biotech companies will have an incentive to focus on immediate profits. This could lead companies to downplay actual risks to protect their profit margins. Regulation will be essential here. Third, some worthwhile approaches may not appeal to companies seeking a return on investment. Instead, governments or public institutions may have to develop them to benefit plants, animals and natural habitats, given human existence rests on healthy ecosystems. Which way forward? These issues shouldn’t stop researchers from testing out these technologies. But these risks must be taken into account, as not all risks are equal. Unchecked climate change would be much worse, as it could lead to societal collapse, large-scale climate migration and mass species extinction. Large scale removal of carbon dioxide from the atmosphere is now essential. In the face of catastrophic risks, it can be ethically justifiable to take the smaller risk of unintended consequences from these organisms. But it’s far less justifiable if these same risks are accepted to secure financial returns for private investors. As time passes and the climate crisis intensifies, these technologies will look more and more appealing. Synthetic biology won’t be the silver bullet many imagine it to be, and it’s unlikely it will be the gold mine many hope for. But the technology has undeniable promise. Used thoughtfully and ethically, it could help us make a healthier planet for all living species. Daniele Fulvi receives funding from the ARC Centre of Excellence in Synthetic Biology, and his current project investigates the ethical dimensions of synthetic biology for climate mitigation. He also received a small grant from the Advanced Engineering Biology Future Science Platform at CSIRO. The views expressed in this article are those of the author and are not necessarily those of the Australian Government or the Australian Research Council.

Exclusive-Europe Plans Service to Gauge Climate Change Role in Extreme Weather

By Alison Withers and Kate AbnettCOPENHAGEN (Reuters) -The EU is launching a service to measure the role climate change is playing in extreme...

By Alison Withers and Kate AbnettCOPENHAGEN (Reuters) -The EU is launching a service to measure the role climate change is playing in extreme weather events like heatwaves and extreme rain, and experts say this could help governments set climate policy, improve financial risk assessments and provide evidence for use in lawsuits.Scientists with the EU's Copernicus Climate Change Service told Reuters the service can help governments in weighing the physical risks posed by worsening weather and setting policy in response. "It's the demand of understanding when an extreme event happens, how is this related to climate change?" said the new service's technical lead, Freja Vamborg.The European Commission did not immediately respond to a Reuters request for comment.The service will perform attribution science, which involves running computer simulations of how weather systems might have behaved if people had never started pumping greenhouse gases into the air and then comparing those results with what is happening today.Funded for about 2.5 million euros over three years, Copernicus will publish results by the end of next year and offer two assessments a month - each within a week of an extreme weather event.For the first time, "there will be an attribution office operating constantly," said Carlo Buontempo, director of Copernicus Climate Change Service. "Climate policy is unfortunately again a very polarized topic," said Friederike Otto, a climate scientist at Imperial College London who helped to pioneer the scientific approach but is not involved in the new EU service. She welcomed the service's plans to partner with national weather services of EU members along with the UK Met and the Red Cross Red Crescent Climate Centre."From that point of view, it also helps if the governments do it themselves and just see themselves really the evidence from their own weather services," Otto said. Some independent climate scientists and lawyers cheered the EU move. "We want to have the most information available," said senior attorney Erika Lennon at the non-profit Center for International Environmental Law."The more information we have about attribution science, the easier it will be for the most impacted to be able to successfully bring claims to courts."By calculating probabilities of climate change impacting weather patterns, the approach also helps insurance companies and others in the financial sector.In a way, "they're already using it" with in-house teams calculating probabilities for floods or storms, said environmental scientist Johan Rockstroem with the Potsdam Institute for Climate Impact Research."Financial institutions understand risk and risk has to be quantified, and this is one way of quantifying," Rockstroem said.In litigation, attribution science is also being used already in calculating how much a country's or company's emissions may have contributed to climate-fuelled disasters.The International Court of Justice said in July that attribution science is legally viable for linking emissions with climate extremes - but it has yet to fully be tested in court. A German court in May dismissed a Peruvian farmer's lawsuit against German utility RWE for emissions-driven warming causing Andean glaciers to thaw. The case had used attribution science in calculating the damage claim, but the court said the claim amount was too low to take the case forward.So "the court never got to discussing attribution science in detail and going into whether the climate models are good enough, and all of these complex and thorny questions," said Noah Walker-Crawford, a climate litigation researcher at the London School of Economics. (Reporting by Ali Withers in Copenhagen and Kate Abnett in Belem, Brazil; Writing by Katy Daigle; Editing by David Gregorio)Copyright 2025 Thomson Reuters.

Billionaire hedge fund founder Tom Steyer is running for governor

Billionaire hedge fund founder, climate change warrior and major Democratic donor Tom Steyer is running for governor. Fossil fuel and migrant detention facility investments will likely draw attacks from his fellow Democrats.

Billionaire hedge fund founder Tom Steyer announced Wednesday that he is running for governor of California, arguing that he is not beholden to special interests and can take on corporations that are making life unaffordable in the state.“The richest people in America think that they earned everything themselves. Bulls—, man. That’s so ridiculous,” Steyer said in an online video announcing his campaign. “We have a broken government. It’s been bought by corporations and my question is: Who do you think is going to change that? Sacramento politicians are afraid to change up this system. I’m not. They’re going to hate this. Bring it on.” Protesters hold placards and banners during a rally against Whitehaven Coal in Sydney in 2014. Dozens of protesters and activists gathered downtown to protest against the controversial massive Maules Creek coal mine project in northern New South Wales. (Saeed Khan / AFP/Getty Images) Steyer, 68, founded Farallon Capital Management, one of the nation’s largest hedge funds, and left it in 2012 after 26 years. Since his departure, he has become a global environmental activist and a major donor to Democratic candidates and causes. But the hedge firm’s investments — notably a giant coal mine in Australia that cleared 3,700 acres of koala habitat and a company that runs migrant detention centers on the U.S.-Mexico border for U.S. Immigration and Customs Enforcement — will make him susceptible to political attack by his gubernatorial rivals. Steyer has expressed regret for his involvement in such projects, saying it was why he left Farallon and started focusing his energy on fighting climate change. Democratic presidential candidate Tom Steyer addresses a crowd during a presidential primary election-night party in Columbia, S.C. (Sean Rayford / Getty Images) Steyer previously flirted with running for governor and the U.S. Senate but decided against it, instead opting to run for president in 2020. He dropped out after spending nearly $342 million on his campaign, which gained little traction before he ended his run after the South Carolina primary.Next year’s gubernatorial race is in flux, after former Vice President Kamala Harris and Sen. Alex Padilla decided not to run and Proposition 50, the successful Democratic effort to redraw congressional districts, consumed all of the political oxygen during an off-year election.Most voters are undecided about who they would like to replace Gov. Gavin Newsom, who cannot run for reelection because of term limits, according to a poll released this month by the UC Berkeley Institute of Governmental Studies and co-sponsored by The Times. Steyer had the support of 1% of voters in the survey. In recent years, Steyer has been a longtime benefactor of progressive causes, most recently spending $12 million to support the redistricting ballot measure. But when he was the focus of one of the ads, rumors spiraled that he was considering a run for governor.In prior California ballot initiatives, Steyer successfully supported efforts to close a corporate tax loophole and to raise tobacco taxes, and fought oil-industry-backed efforts to roll back environmental law.His campaign platform is to build 1 million homes in four years, lower energy costs by ending monopolies, make preschool and community college free and ban corporate contributions to political action committees in California elections.Steyer’s brother Jim, the leader of Common Sense Media, and former Biden administration U.S. Surgeon General Vivek Murthy are aiming to put an initiative on next year’s ballot to protect children from social media, specifically the chatbots that have been accused of prompting young people to kill themselves. Newsom recently vetoed a bill aimed at addressing this artificial intelligence issue.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.