Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

Coming soon to a lake near you: Floating solar panels

News Feed
Thursday, June 13, 2024

A reservoir is many things: a source of drinking water, a playground for swimmers, a refuge for migrating birds. But if you ask solar-power enthusiasts, a reservoir is also not realizing its full potential. That open water could be covered with buoyant panels, a burgeoning technology known as floating photovoltaics, aka “floatovoltaics.” They could simultaneously gather energy from the sun and shade the water, reducing evaporation — an especially welcome bonus where droughts are getting worse.  Now, scientists have crunched the numbers and found that if humans deployed floatovoltaics in a fraction of lakes and reservoirs around the world — covering just 10 percent of the surface area of each — the systems could collectively generate four times the amount of power the United Kingdom uses in a year. The effectiveness of so-called FPVs would vary from country to country, but their research found that some could theoretically supply all their electricity this way, including Ethiopia, Rwanda, and Papua New Guinea.  “The countries around the world that we saw gain the most from these FPVs were these low-latitude, tropical countries that did not have a high energy demand in the first place,” said Iestyn Woolway, an Earth system scientist at Bangor University and lead author of a new paper describing the findings in the journal Nature Water. “It meant that if only a small percentage of their lakes — this 10 percent — was covered by FPVs, it could be enough to fuel the energy demand of the entire country.” For developing countries, floatovoltaics could be especially powerful as a means of generating clean electricity. Instead of building out more planet-warming infrastructure running on fossil fuels, like gas-fired power plants, fledgling economies could run panels on land and water, in addition to other renewables like wind and hydropower. With solar power comes autonomy: Utilities don’t have to rely on shipments of fossil fuels, but can tap into the abundant power of the sun. Floatovoltaic solar panels — which have been proliferating globally, from California to France to Taiwan — are the same ones found on a rooftop. “It’s the same electrical system, same panels, same inverters,” said Chris Bartle, director of sales and marketing at Ciel and Terre USA, which is deploying floatovoltaic systems. “We’re just providing a structure that floats to mount that electrical system.” The solar rafts are anchored either to the bottom of the water body or to the shore, or both, to keep them from wandering. In many ways, solar panels and bodies of water can benefit one another. Photovoltaics get less efficient the hotter they get, so having them floating on a lake or reservoir helps cool them off. “Because of the cooling effect, we see increased efficiency of the systems,” said Sika Gadzanku, a researcher at the National Renewable Energy Laboratory in Colorado, who studies floatovoltaics but wasn’t involved in the new research. Returning the favor, the panels provide shading, reducing evaporation. If floatovoltaics are spread across a reservoir, that could mean more water would be available for drinking. If a reservoir is equipped with a dam for hydroelectric generation, the floatovoltaics could hook into that existing transmission infrastructure. (Countries like Kenya, for instance, are building out more of this hydroelectric infrastructure already.) That could save local governments money because they wouldn’t need to string new transmission lines from the floatovoltaics to the nearest city. In the event of a drought, when water levels drop too low to generate hydropower, the panels could still operate as backup power.  A floatovoltaic system in a water treatment pond in Healdsburg, California. Ciel & Terre International To do their new modeling, Woolway and his colleagues began with over a million lakes and reservoirs around the world  big enough and deep enough for floatovoltaics. Then they whittled those down based on critical qualities. For one, the body of water couldn’t dry up, beaching the panels, or freeze over for more than six months a year, entombing the panels in ice and damaging them. The lake couldn’t be protected by law, either, like as a natural refuge. And the site had to be near a human population that could use the generated power.  A remote lake, by contrast, would require long transmission lines to connect a faraway city to the floatovoltaics. This doesn’t necessarily rule out the technology for more remote communities of people living near an otherwise suitable lake. In fact, floatovoltaics could be particularly potent there as a way to provide clean energy. These cases just weren’t included in the scope of this modeling. Regardless, all those characteristics considered, the team ended up with 68,000 feasible locations in 163 countries. They found that on average, countries could meet 16 percent of their energy demand with floatovoltaics, but some places could generate a lot more. In Bolivia, for instance, floatovoltaics could provide up to 87 percent of national electricity demand, and in Tonga, they could meet 92 percent. The potential is much lower in the United States, however, meeting just 4 percent of energy demand — even though the country has a plethora of large lakes and reservoirs, overall energy usage is extremely high. In less-sunny climes, like northern Europe, the effectiveness of floatovoltaics drops, but Finland could still satisfy 17 percent of its electricity demand with floating panels.  “The regions or the countries that we saw had the highest potential had these two critical variables, in that they were close to the equator, or were at high elevations, so they received high amounts of incoming solar radiation,” Woolway said. “And secondly, they had large water bodies.”  Covering 10 percent of a 100-square-mile lake, for instance, would end up with a lot more solar panels than covering the same percentage of a 10-square-mile lake. “We considered 10 percent to be a reasonable surface area coverage without having a devastating impact on the ecology and the biodiversity,” Woolway said. “If you were to cover the surface 90 percent with solar panels, there would be no light going into the water itself.” This is where the new science of floatovoltaics gets tricky, as there’s still little data on the potential environmental and social downsides of these floating systems. Scientists are investigating, for example, whether the floats might leach harmful chemicals or microplastics into the water.  And keep in mind that these ecosystems are solar-powered, too: Light fuels the growth of aquatic vegetation, which feeds all kinds of other organisms. If a floatovoltaic system cuts off too much of that light, it might reduce the food supply, and hinder plants’ ability to produce  oxygen. “You’re changing light penetration, and that’s the most fundamental physical variable for an aquatic ecosystem,” said Rafael Almeida, a freshwater ecosystem scientist at the University of Texas Rio Grande Valley, who studies floatovoltaics but wasn’t involved in the new study. “If you don’t have enough light, and you’re reducing oxygen concentrations in that system, and that may cascade through the food web, potentially impacting fish.” At the same time, early research suggests that the panels can counter the growth of harmful algal blooms that make water dangerous for people to drink. Scientists are still trying to figure out what amount of coverage can still produce enough power to justify the monetary cost of deploying floatovoltaics, while not incurring ecological costs. Each body of water is its own unique universe of chemical and biological interactions, so the same coverage on two different lakes might have dramatically different effects. “Would 10 percent be enough to cascade into system-wide changes?” asks Almeida. “These are things that we really don’t know.” Researchers also need more data on how effective the panels are at reducing evaporation, and therefore how much water a given system might actually save. “What we are yet to fully understand is that so many of the existing floating solar systems that have tried to collect data on this have been smaller,” Gadzanku said. “So it is more: How do potential evaporation savings scale as you build larger systems?”  Humans rely on bodies of water in many ways other than for drinking. Subsistence fishers rely on them for food. And owners of lakefront properties might bristle if they think floating solar panels would cut their property values.  Still, Almeida says, this new research identifies where floatovoltaics might work, and how much energy they might provide given local conditions. “I think that now what we need,” said Almeida, “is understanding — out of these suitable sites — which ones are really the low-hanging fruits.” This story was originally published by Grist with the headline Coming soon to a lake near you: Floating solar panels on Jun 13, 2024.

New research finds that "floatovoltaics" could generate a substantial amount of energy worldwide.

A reservoir is many things: a source of drinking water, a playground for swimmers, a refuge for migrating birds. But if you ask solar-power enthusiasts, a reservoir is also not realizing its full potential. That open water could be covered with buoyant panels, a burgeoning technology known as floating photovoltaics, aka “floatovoltaics.” They could simultaneously gather energy from the sun and shade the water, reducing evaporation — an especially welcome bonus where droughts are getting worse. 

Now, scientists have crunched the numbers and found that if humans deployed floatovoltaics in a fraction of lakes and reservoirs around the world — covering just 10 percent of the surface area of each — the systems could collectively generate four times the amount of power the United Kingdom uses in a year. The effectiveness of so-called FPVs would vary from country to country, but their research found that some could theoretically supply all their electricity this way, including Ethiopia, Rwanda, and Papua New Guinea. 

“The countries around the world that we saw gain the most from these FPVs were these low-latitude, tropical countries that did not have a high energy demand in the first place,” said Iestyn Woolway, an Earth system scientist at Bangor University and lead author of a new paper describing the findings in the journal Nature Water. “It meant that if only a small percentage of their lakes — this 10 percent — was covered by FPVs, it could be enough to fuel the energy demand of the entire country.”

For developing countries, floatovoltaics could be especially powerful as a means of generating clean electricity. Instead of building out more planet-warming infrastructure running on fossil fuels, like gas-fired power plants, fledgling economies could run panels on land and water, in addition to other renewables like wind and hydropower. With solar power comes autonomy: Utilities don’t have to rely on shipments of fossil fuels, but can tap into the abundant power of the sun.

Floatovoltaic solar panels — which have been proliferating globally, from California to France to Taiwan — are the same ones found on a rooftop. “It’s the same electrical system, same panels, same inverters,” said Chris Bartle, director of sales and marketing at Ciel and Terre USA, which is deploying floatovoltaic systems. “We’re just providing a structure that floats to mount that electrical system.” The solar rafts are anchored either to the bottom of the water body or to the shore, or both, to keep them from wandering.

In many ways, solar panels and bodies of water can benefit one another. Photovoltaics get less efficient the hotter they get, so having them floating on a lake or reservoir helps cool them off. “Because of the cooling effect, we see increased efficiency of the systems,” said Sika Gadzanku, a researcher at the National Renewable Energy Laboratory in Colorado, who studies floatovoltaics but wasn’t involved in the new research. Returning the favor, the panels provide shading, reducing evaporation. If floatovoltaics are spread across a reservoir, that could mean more water would be available for drinking.

If a reservoir is equipped with a dam for hydroelectric generation, the floatovoltaics could hook into that existing transmission infrastructure. (Countries like Kenya, for instance, are building out more of this hydroelectric infrastructure already.) That could save local governments money because they wouldn’t need to string new transmission lines from the floatovoltaics to the nearest city. In the event of a drought, when water levels drop too low to generate hydropower, the panels could still operate as backup power. 

Aerial view of solar panels on a body of water
A floatovoltaic system in a water treatment pond in Healdsburg, California. Ciel & Terre International

To do their new modeling, Woolway and his colleagues began with over a million lakes and reservoirs around the world  big enough and deep enough for floatovoltaics. Then they whittled those down based on critical qualities. For one, the body of water couldn’t dry up, beaching the panels, or freeze over for more than six months a year, entombing the panels in ice and damaging them. The lake couldn’t be protected by law, either, like as a natural refuge. And the site had to be near a human population that could use the generated power. 

A remote lake, by contrast, would require long transmission lines to connect a faraway city to the floatovoltaics. This doesn’t necessarily rule out the technology for more remote communities of people living near an otherwise suitable lake. In fact, floatovoltaics could be particularly potent there as a way to provide clean energy. These cases just weren’t included in the scope of this modeling.

Regardless, all those characteristics considered, the team ended up with 68,000 feasible locations in 163 countries. They found that on average, countries could meet 16 percent of their energy demand with floatovoltaics, but some places could generate a lot more. In Bolivia, for instance, floatovoltaics could provide up to 87 percent of national electricity demand, and in Tonga, they could meet 92 percent. The potential is much lower in the United States, however, meeting just 4 percent of energy demand — even though the country has a plethora of large lakes and reservoirs, overall energy usage is extremely high. In less-sunny climes, like northern Europe, the effectiveness of floatovoltaics drops, but Finland could still satisfy 17 percent of its electricity demand with floating panels. 

“The regions or the countries that we saw had the highest potential had these two critical variables, in that they were close to the equator, or were at high elevations, so they received high amounts of incoming solar radiation,” Woolway said. “And secondly, they had large water bodies.” 

Covering 10 percent of a 100-square-mile lake, for instance, would end up with a lot more solar panels than covering the same percentage of a 10-square-mile lake. “We considered 10 percent to be a reasonable surface area coverage without having a devastating impact on the ecology and the biodiversity,” Woolway said. “If you were to cover the surface 90 percent with solar panels, there would be no light going into the water itself.”

This is where the new science of floatovoltaics gets tricky, as there’s still little data on the potential environmental and social downsides of these floating systems. Scientists are investigating, for example, whether the floats might leach harmful chemicals or microplastics into the water. 

And keep in mind that these ecosystems are solar-powered, too: Light fuels the growth of aquatic vegetation, which feeds all kinds of other organisms. If a floatovoltaic system cuts off too much of that light, it might reduce the food supply, and hinder plants’ ability to produce  oxygen. “You’re changing light penetration, and that’s the most fundamental physical variable for an aquatic ecosystem,” said Rafael Almeida, a freshwater ecosystem scientist at the University of Texas Rio Grande Valley, who studies floatovoltaics but wasn’t involved in the new study. “If you don’t have enough light, and you’re reducing oxygen concentrations in that system, and that may cascade through the food web, potentially impacting fish.” At the same time, early research suggests that the panels can counter the growth of harmful algal blooms that make water dangerous for people to drink.

Scientists are still trying to figure out what amount of coverage can still produce enough power to justify the monetary cost of deploying floatovoltaics, while not incurring ecological costs. Each body of water is its own unique universe of chemical and biological interactions, so the same coverage on two different lakes might have dramatically different effects. “Would 10 percent be enough to cascade into system-wide changes?” asks Almeida. “These are things that we really don’t know.”

Researchers also need more data on how effective the panels are at reducing evaporation, and therefore how much water a given system might actually save. “What we are yet to fully understand is that so many of the existing floating solar systems that have tried to collect data on this have been smaller,” Gadzanku said. “So it is more: How do potential evaporation savings scale as you build larger systems?” 

Humans rely on bodies of water in many ways other than for drinking. Subsistence fishers rely on them for food. And owners of lakefront properties might bristle if they think floating solar panels would cut their property values. 

Still, Almeida says, this new research identifies where floatovoltaics might work, and how much energy they might provide given local conditions. “I think that now what we need,” said Almeida, “is understanding — out of these suitable sites — which ones are really the low-hanging fruits.”

This story was originally published by Grist with the headline Coming soon to a lake near you: Floating solar panels on Jun 13, 2024.

Read the full story here.
Photos courtesy of

Latest Kote climate order aims to speed up Oregon’s clean energy transition

The executive order seeks to accelerate wind and solar energy and energy storage, energy efficiency and the transition to clean fuels in Oregon.

Gov. Tina Kotek has issued another broad climate executive order directing state agencies to take specific actions to reduce greenhouse gas emissions and speed up Oregon’s move to carbon-free electricity. Her order Wednesday seeks to accelerate wind and solar energy and energy storage by streamlining land use and environmental reviews, siting, permitting and grid connections.It sets an energy storage goal and directs agencies to prioritize public-private partnerships for clean energy projects and to find ways to support emerging technologies such as enhanced geothermal technology, offshore wind and advanced battery storage. The order also calls for state agencies to increase energy efficiency in public and private buildings and extends Oregon’s Clean Fuels Program through 2040. The program requires suppliers to steadily cut fuel pollution.“The rising cost of living is hitting Oregonians household budgets hard, so we must act effectively and prudently to protect ratepayers from increased energy costs, while also building a more resilient, clean energy future,” Kotek said at a press conference at the state Capitol while flanked by a group of clean energy and climate action supporters.Kotek’s move comes amid growing doubts about Oregon’s ability to hit its ambitious 100% clean energy target. State law requires investor-owned utilities in Oregon to reduce emissions by 80% by 2030 and to transition to all clean electricity by 2040, something experts say utilities are unlikely to do given the lack of transmission lines and the extraordinary growth in electricity demand from data centers, buildings and cars. The order also lands as the Trump administration has moved aggressively to roll back federal climate policies, reversing many emissions-reduction measures enacted under President Joe Biden – including halting wind and solar projects on federal lands and dismantling generous tax credits funded by the Biden-era Inflation Reduction Act. It’s Kotek’s third climate-related executive order in less than a month. At the end of October, she directed state agencies to harness the potential of forests, farms, wetlands and waterways to reduce emissions, preserve wildlife habitat and help communities withstand the threat of climate change. And in early October, she pushed to streamline and accelerate the pace of wind and solar project development in the state before the clock runs out on federal clean energy tax credits.Kotek said the latest executive order can help slow climate change, expand transmission grid capacity, attract new businesses and create economic opportunities across Oregon’s energy sector. The order sets a goal of 8 gigawatts of energy storage in Oregon by 2045. Building more energy storage is key, the governor’s office said, because it provides backup electricity when wind or solar power production is low and during outages or peak demand periods. Energy storage projects also reduce the need for building additional electricity-generating resources such as wind or solar projects.Eight gigawatts is achievable, the governor’s office said, because the state already has nearly 500 megawatts of energy storage and more than 7 gigawatts of storage projects are currently planned for development. The order also directs the state Department of Energy to designate transmission corridors, including on public land, and streamline siting and approval in those corridors or in existing rights of way. The order requires a 50% reduction in carbon intensity of Oregon fuels by 2040. The current rule requires a 10% reduction in average carbon intensity from 2015 levels by 2025, followed by a 20% reduction by 2030 and 37% by 2035. Most fuel producers mix in cleaner fuels such as ethanol, biodiesel or renewable diesel into traditional gasoline and diesel or buy credits from others who have gone beyond the state requirement. In 2024, the Clean Fuels Program led to the reduction of approximately 3 million metric tons of greenhouse gases. Over the lifetime of the program, since 2016, approximately 14.6 million metric tons of greenhouse gases have been reduced.Much of the order focuses on state agencies – including the Department of Energy, the Department of Land Conservation and Development, Department of Environmental Quality and the Public Utility Commission – aligning their decisions, investments and activities, including the implementation of existing programs, to advance clean energy, clean fuels and energy efficiency. It doesn’t entail new programs or additional funding for the remainder of the 2025-2027 biennium but may lead to new funding demands in future years, said Kotek spokesperson Anca Matica. The order directs agencies to tally the barriers to clean energy permitting, construction and connecting into the transmission grid and come up with solutions by next fall. The agencies are to focus on projects that benefit Oregon ratepayers and that involve upgrades to the existing grid and transmission expansion in existing rights-of-way.By September 2026, agencies are to identify strategies to streamline and accelerate the construction of wind and solar projects. Agencies must provide quarterly updates on progress in advancing public-private partnerships. The governor’s office said the order won’t raise rates. Rather, the order directs agencies to prioritize energy efficiency and investments that deliver the greatest value to ratepayers, the governor’s office said. (should you move this up where she has the quote?)Reporter Carlos Fuentes contributed to this story. If you purchase a product or register for an account through a link on our site, we may receive compensation. By using this site, you consent to our User Agreement and agree that your clicks, interactions, and personal information may be collected, recorded, and/or stored by us and social media and other third-party partners in accordance with our Privacy Policy.

Groups Push Back on Montana’s ‘Data Center Boom’ in Petition Before Utility Commission

A group of nonprofit organizations are asking Montana's utility board to tighten its oversight of NorthWestern Energy as it plans to provide large amounts of electricity to data centers

A group of nonprofits is petitioning Montana’s utility board to tighten its oversight of NorthWestern Energy, arguing existing customers could foot the bill for the utility’s plan to provide data centers with electricity.Nine groups working on energy, conservation, social justice and affordability issues on Tuesday asked the Public Service Commission to impose rules on NorthWestern so its 413,000-plus residential customers won’t be forced to shoulder the cost of new power plants and transmission lines to power data centers.Here’s what we know about the data centers in question, how Montana law intersects with the debate and what the petitioners are asking the PSC to do in response. How much power do these data centers want NorthWestern Energy to supply? NorthWestern Energy has signed letters of intent to supply power to three data centers, according to the complaint. If all goes according to the forecasted demand, by 2030, NorthWestern will supply 1,400 megawatts of power to these data centers to meet their needs. That’s roughly equivalent to the annual electricity needs of more than 1 million homes and more than double the 759 megawatts of power NorthWestern’s existing customers require on a typical day.NorthWestern has signed agreements with Atlas Power, which seeks 75 megawatts of power for a facility in Butte starting in 2026 and and another 75 megawatts by 2030; Sabey Data Center Properties, which would initially require 50 megawatts to power a 600-acre campus planned for Butte and eventually expand its use to 250 megawatts; and Quantica Infrastructure, which wants to secure 175 megawatts for a project in Yellowstone County by late 2027 and increase its electrical footprint to 1,000 megawatts by 2030.According to the complaint, NorthWestern currently owns or has standing contracts for about 2,100 megawatts of power. It will acquire 592 additional megawatts of power from the Colstrip coal-fired power plant on Jan. 1, although it already has plans for some of that additional electricity. Why are the petitioners worried about these data centers? The petitioners argue that NorthWestern’s plan to sign electricity service agreements before garnering regulatory approval is “unreasonable, insufficient and contrary to Montana law.”More specifically, they argue that NorthWestern has “short circuited” the public’s right to know what the company is doing. The petitioners also say NorthWestern is inappropriately blocking oversight by, for example, moving to shield the letters of intent from public review. The PSC has the authority to ensure NorthWestern won’t shift new costs to its ratepayers, who are unable to shop around for power from other utilities, the petitioners contend.The petitioners are Big Sky 55+, Butte Watchdogs for Social and Environmental Justice, Climate Smart Missoula, Golden Triangle Resource Council, Helena Interfaith Climate Advocates, Honor the Earth, Montana Environmental Information Center, Montana Public Interest Research Group and NW Energy Coalition.Shannon James, Montana Environmental Information Center’s climate and campaigns organizer, said in a press release Tuesday that Montana should learn from other states’ missteps and avoid a hands-off approach to data center regulation.“Communities across the country have suffered when large, noisy data centers move into their neighborhoods, raising their power bills and taking their water,” James said. “Montana has a chance to get ahead of the curve and protect existing utility customers from having to pay for expensive new fossil fuel power plants so NorthWestern Energy can cater to wealthy tech companies.” What do the petitioners want the PSC to do? The petition asks the PSC to create a separate customer class for data centers, complete with a separate tariff, or rate structure, for the power they buy. In addition to establishing a unique formula for data centers’ power bills, a specialized tariff could stipulate that data centers give NorthWestern plenty of notice before changing their power usage. That could “provide more predictability” to the utility and shield its other customers from undue risk, the complaint reads.If the PSC grants the request, the petitioners will have an opportunity to ask NorthWestern about its plans in a quasi-judicial public hearing. The groups will also have the opportunity to call experts to testify about potential impacts to NorthWestern’s customers if data centers tie into NorthWestern’s grid. What kinds of state laws are in play? The petition references a Montana law outlining the process for large new customers to secure electrical service from a regulated utility. That law says that a new retail customer can’t purchase more than 5 megawatts of power from a public utility unless it first demonstrates to the PSC “that the provision of electricity supply service … will not adversely impact the public utility’s other customers over the long term.”The petition also highlights sections of Montana law that establish the authority and duties of the PSC, which is made up of five elected officials. In keeping with a two-decade trend, the PSC is an all-Republican board.The laws in question give the PSC the authority to “inquire into the management of the business of all public utilities,” and obtain “all necessary information to enable the commission to perform its duties.” It also authorizes the PSC to “inspect the books, accounts, papers, records and memoranda of any public utility and examine, under oath, any officer, agent, or employee of the public utility in relation to its business and affairs.” What does NorthWestern say about the data center agreements? Jo Dee Black, a spokesperson for NorthWestern Energy, wrote in an email to MTFP on Tuesday that the company has committed to establishing a tariff specifically for large-load customers. She added that contracts for new data center customers will be submitted to the PSC “as they are executed.”“New commercial customers with large energy loads, including data centers, will pay their fair share of integration and service costs,” Black wrote. “Infrastructure investments will ultimately mean a larger, more resilient energy system in Montana, however, new large load customers, such as data centers, will have to pay for their costs to integrate with the energy system.” Black didn’t directly answer MTFP’s question regarding the number of agreements NorthWestern has signed with data centers, offering only that the company “has the three Letters of Intent” referenced in the petitioners’ complaint.If the PSC grants the request, parties to the proceeding — the petitioners, NorthWestern Energy and other organizations or individuals that the PSC clears for participation — will start building a case for commissioners to review. The PSC could issue an order based on the case, with or without first scheduling a hearing.This story was originally published by Montana Free Press and distributed through a partnership with The Associated Press. Copyright 2025 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.Photos You Should See – Nov. 2025

Community Benefits

Across California, communities and developers are coming to the negotiating table in an effort to distribute prosperity. Community Benefits Agreements can help.

Construction of a new stadium or solar farm can spark both alarm and promise for local residents, and for good reasons. Often, communities are sidelined in decision making about these projects, and the benefits of such large-scale developments are not always evenly distributed.  Historically, when these opportunities arrive, local officials have held public hearings where residents could voice concerns. However, this type of engagement has its drawbacks. It tends to favor vocal residents with the time and resources to attend. Moreover, research shows residents who attend these public hearings are disproportionately project opponents, rather than those who are pushing for more energy infrastructure or housing. And, ultimately, there is no guarantee that local electeds will take community feedback into consideration.Community Benefit Agreements (CBA) have emerged as one way to increase local control over development decisions and ensure that economic and other gains from new infrastructure are more widely shared.  What is a CBA? A Community Benefit Agreement is a legally binding contract between a developer and local governments or community groups such as labor unions, neighborhood associations, or environmental advocates.  In exchange for specific, tangible benefits, such as job training programs, affordable housing units, local hiring guarantees, parks, reduced electricity rates, or direct financial payments, local organizations agree to support a proposed project – or at least not oppose it. In this way, CBAs might be able to help speed up approval processes and accelerate development by navigating potential community opposition. CBAs to Support Clean Energy Development As California moves toward its goal of 100% renewable energy by 2045, communities are beginning to see many more wind and solar infrastructure projects — particularly those in the inland and rural counties of the state. As of November 2025, there are 282 planned utility-scale solar projects in California. Their total planned capacity is 59,721 megawatts (MW). Historically, Community Benefits Agreements have resulted from extensive advocacy and organizing by local community members. However, instead of pushing communities to self-organize for these benefits, California has begun to require clean energy developers to enter into legally-binding agreements with local community organizations in order to benefit from streamlined permitting at the state level.  CBAs for renewable energy are becoming increasingly prominent in policy and some jurisdictions both in California and other states have institutionalized community benefits:  Riverside County’s Policy B-29 requires large solar projects to pay approximately $150 per acre. Imperial County’s Public Benefit Program collects fees from solar projects to issue grants for infrastructure improvements and job creation.  California’s AB 205 now requires developers seeking state-level permits for large solar and wind facilities to execute a CBA Michigan’s recent legislation mandates that developers enter Host Community Agreements with minimum payments of $2,000 per megawatt. New York established a Host Community Benefits program with annual fees per megawatt issued as electric bill credits to residents of municipalities hosting renewable energy projects Read the Report: Rethinking Community Benefits: Industry-Specific Insights for a Transforming California  In order to help community groups who want to negotiate benefits agreements with developers, our team at the Possibility Lab – in partnership with CA FWD – built an Energy Project Benefits Agreement Database to identify common characteristics of successful agreements.  Explore our Energy Project Benefits Agreement Database  The Promise and Challenges of CBAs The promise of CBAs is that they give communities direct power to negotiate for their needs and preferences. However, it can be unclear who actually represents “the community.” Because CBAs are often negotiated by select community groups, they can lack democratic accountability. And just as the residents attending a public hearing may not be representative of the demographics of a community, with varying and unequal access to economic and political capital, the same could be true of the community groups who participate in negotiating CBAs.  As a result, some critics view CBAs as essentially allowing developers to “buy off” opposition in order to streamline approvals. The importance of timing in these agreements doesn’t improve optics: offered too early, benefits might feel like bribes; too late, they may seem like unjust compensation for negative impacts.  In the end, CBAs are private contracts and the details of many agreements stay hidden. As a result, despite many examples of CBAs in and outside California, surprisingly little is known about their actual structure, benefits, and outcomes. Many important questions remain unanswered, including whether CBAs speed up or slow down development. Which communities successfully negotiate CBAs, and which don’t? What happens when negotiations are unsuccessful? Who follows through to ensure commitments are fulfilled? CBAs are a promising vehicle to address the potential tensions between the need to quickly build more infrastructure and the desire to engage communities in decision-making. Nonetheless, more research is needed to understand their effectiveness in delivering real benefits to communities while enabling progress on housing, energy, and other new development. To learn more, visit the UC Berkeley Possibility Lab’s People-Centered Policymaking site

Introducing the MIT-GE Vernova Climate and Energy Alliance

Five-year collaboration between MIT and GE Vernova aims to accelerate the energy transition and scale new innovations.

MIT and GE Vernova launched the MIT-GE Vernova Energy and Climate Alliance on Sept. 15, a collaboration to advance research and education focused on accelerating the global energy transition.Through the alliance — an industry-academia initiative conceived by MIT Provost Anantha Chandrakasan and GE Vernova CEO Scott Strazik — GE Vernova has committed $50 million over five years in the form of sponsored research projects and philanthropic funding for research, graduate student fellowships, internships, and experiential learning, as well as professional development programs for GE Vernova leaders.“MIT has a long history of impactful collaborations with industry, and the collaboration between MIT and GE Vernova is a shining example of that legacy,” said Chandrakasan in opening remarks at a launch event. “Together, we are working on energy and climate solutions through interdisciplinary research and diverse perspectives, while providing MIT students the benefit of real-world insights from an industry leader positioned to bring those ideas into the world at scale.”The energy of changeAn independent company since its spinoff from GE in April 2024, GE Vernova is focused on accelerating the global energy transition. The company generates approximately 25 percent of the world’s electricity — with the world’s largest installed base of over 7,000 gas turbines, about 57,000 wind turbines, and leading-edge electrification technology.GE Vernova’s slogan, “The Energy of Change,” is reflected in decisions such as locating its headquarters in Cambridge, Massachusetts — in close proximity to MIT. In pursuing transformative approaches to the energy transition, the company has identified MIT as a key collaborator.A key component of the mission to electrify and decarbonize the world is collaboration, according to CEO Scott Strazik. “We want to inspire, and be inspired by, students as we work together on our generation’s greatest challenge, climate change. We have great ambition for what we want the world to become, but we need collaborators. And we need folks that want to iterate with us on what the world should be from here.”Representing the Healey-Driscoll administration at the launch event were Massachusetts Secretary of Energy and Environmental Affairs Rebecca Tepper and Secretary of the Executive Office of Economic Development Eric Paley. Secretary Tepper highlighted the Mass Leads Act, a $1 billion climate tech and life sciences initiative enacted by Governor Maura Healey last November to strengthen Massachusetts’ leadership in climate tech and AI.“We're harnessing every part of the state, from hydropower manufacturing facilities to the blue-to-blue economy in our south coast, and right here at the center of our colleges and universities. We want to invent and scale the solutions to climate change in our own backyard,” said Tepper. “That’s been the Massachusetts way for decades.”Real-world problems, insights, and solutionsThe launch celebration featured interactive science displays and student presenters introducing the first round of 13 research projects led by MIT faculty. These projects focus on generating scalable solutions to our most pressing challenges in the areas of electrification, decarbonization, renewables acceleration, and digital solutions. Read more about the funded projects here.Collaborating with industry offers the opportunity for researchers and students to address real-world problems informed by practical insights. The diverse, interdisciplinary perspectives from both industry and academia will significantly strengthen the research supported through the GE Vernova Fellowships announced at the launch event.“I’m excited to talk to the industry experts at GE Vernova about the problems that they work on,” said GE Vernova Fellow Aaron Langham. “I’m looking forward to learning more about how real people and industries use electrical power.”Fellow Julia Estrin echoed a similar sentiment: “I see this as a chance to connect fundamental research with practical applications — using insights from industry to shape innovative solutions in the lab that can have a meaningful impact at scale.”GE Vernova’s commitment to research is also providing support and inspiration for fellows. “This level of substantive enthusiasm for new ideas and technology is what comes from a company that not only looks toward the future, but also has the resources and determination to innovate impactfully,” says Owen Mylotte, a GE Vernova Fellow.The inaugural cohort of eight fellows will continue their research at MIT with tuition support from GE Vernova. Find the full list of fellows and their research topics here.Pipeline of future energy leadersHighlighting the alliance’s emphasis on cultivating student talent and leadership, GE Vernova CEO Scott Strazik introduced four MIT alumni who are now leaders at GE Vernova: Dhanush Mariappan SM ’03, PhD ’19, senior engineering manager in the GE Vernova Advanced Research Center; Brent Brunell SM ’00, technology director in the Advanced Research Center; Paolo Marone MBA ’21, CFO of wind; and Grace Caza MAP ’22, chief of staff in supply chain and operations.The four shared their experiences of working with MIT as students and their hopes for the future of this alliance in the realm of “people development,” as Mariappan highlighted. “Energy transition means leaders. And every one of the innovative research and professional education programs that will come out of this alliance is going to produce the leaders of the energy transition industry.”The alliance is underscoring its commitment to developing future energy leaders by supporting the New Engineering Education Transformation program (NEET) and expanding opportunities for student internships. With 100 new internships for MIT students announced in the days following the launch, GE Vernova is opening broad opportunities for MIT students at all levels to contribute to a sustainable future.“GE Vernova has been a tremendous collaborator every step of the way, with a clear vision of the technical breakthroughs we need to affect change at scale and a deep respect for MIT’s strengths and culture, as well as a hunger to listen and learn from us as well,” said Betar Gallant, alliance director who is also the Kendall Rohsenow Associate Professor of Mechanical Engineering at MIT. “Students, take this opportunity to learn, connect, and appreciate how much you’re valued, and how bright your futures are in this area of decarbonizing our energy systems. Your ideas and insight are going to help us determine and drive what’s next.”Daring to create the future we wantThe launch event transformed MIT’s Lobby 13 with green lighting and animated conversation around the posters and hardware demos on display, reflecting the sense of optimism for the future and the type of change the alliance — and the Commonwealth of Massachusetts — seeks to advance.“Because of this collaboration and the commitment to the work that needs doing, many things will be created,” said Secretary Paley. “People in this room will work together on all kinds of projects that will do incredible things for our economy, for our innovation, for our country, and for our climate.”The alliance builds on MIT’s growing portfolio of initiatives around sustainable energy systems, including the Climate Project at MIT, a presidential initiative focused on developing solutions to some of the toughest barriers to an effective global climate response. “This new alliance is a significant opportunity to move the needle of energy and climate research as we dare to create the future that we want, with the promise of impactful solutions for the world,” said Evelyn Wang, MIT vice president for energy and climate, who attended the launch.To that end, the alliance is supporting critical cross-institution efforts in energy and climate policy, including funding three master’s students in MIT Technology and Policy Program and hosting an annual symposium in February 2026 to advance interdisciplinary research. GE Vernova is also providing philanthropic support to the MIT Human Insight Collaborative. For 2025-26, this support will contribute to addressing global energy poverty by supporting the MIT Abdul Latif Jameel Poverty Action Lab (J-PAL) in its work to expand access to affordable electricity in South Africa.“Our hope to our fellows, our hope to our students is this: While the stakes are high and the urgency has never been higher, the impact that you are going to have over the decades to come has never been greater,” said Roger Martella, chief corporate and sustainability officer at GE Vernova. “You have so much opportunity to move the world in a better direction. We need you to succeed. And our mission is to serve you and enable your success.”With the alliance’s launch — and GE Vernova’s new membership in several other MIT consortium programs related to sustainability, automation and robotics, and AI, including the Initiative for New Manufacturing, MIT Energy Initiative, MIT Climate and Sustainability Consortium, and Center for Transportation and Logistics — it’s evident why Betar Gallant says the company is “all-in at MIT.”The potential for tremendous impact on the energy industry is clear to those involved in the alliance. As GE Vernova Fellow Jack Morris said at the launch, “This is the beginning of something big.”

Bigger datasets aren’t always better

MIT researchers developed a way to identify the smallest dataset that guarantees optimal solutions to complex problems.

Determining the least expensive path for a new subway line underneath a metropolis like New York City is a colossal planning challenge — involving thousands of potential routes through hundreds of city blocks, each with uncertain construction costs. Conventional wisdom suggests extensive field studies across many locations would be needed to determine the costs associated with digging below certain city blocks.Because these studies are costly to conduct, a city planner would want to perform as few as possible while still gathering the most useful data for making an optimal decision.With almost countless possibilities, how would they know where to start?A new algorithmic method developed by MIT researchers could help. Their mathematical framework provably identifies the smallest dataset that guarantees finding the optimal solution to a problem, often requiring fewer measurements than traditional approaches suggest.In the case of the subway route, this method considers the structure of the problem (the network of city blocks, construction constraints, and budget limits) and the uncertainty surrounding costs. The algorithm then identifies the minimum set of locations where field studies would guarantee finding the least expensive route. The method also identifies how to use this strategically collected data to find the optimal decision.This framework applies to a broad class of structured decision-making problems under uncertainty, such as supply chain management or electricity network optimization.“Data are one of the most important aspects of the AI economy. Models are trained on more and more data, consuming enormous computational resources. But most real-world problems have structure that can be exploited. We’ve shown that with careful selection, you can guarantee optimal solutions with a small dataset, and we provide a method to identify exactly which data you need,” says Asu Ozdaglar, Mathworks Professor and head of the MIT Department of Electrical Engineering and Computer Science (EECS), deputy dean of the MIT Schwarzman College of Computing, and a principal investigator in the Laboratory for Information and Decision Systems (LIDS).Ozdaglar, co-senior author of a paper on this research, is joined by co-lead authors Omar Bennouna, an EECS graduate student, and his brother Amine Bennouna, a former MIT postdoc who is now an assistant professor at Northwestern University; and co-senior author Saurabh Amin, co-director of Operations Research Center, a professor in the MIT Department of Civil and Environmental Engineering, and a principal investigator in LIDS. The research will be presented at the Conference on Neural Information Processing Systems.An optimality guaranteeMuch of the recent work in operations research focuses on how to best use data to make decisions, but this assumes these data already exist.The MIT researchers started by asking a different question — what are the minimum data needed to optimally solve a problem? With this knowledge, one could collect far fewer data to find the best solution, spending less time, money, and energy conducting experiments and training AI models.The researchers first developed a precise geometric and mathematical characterization of what it means for a dataset to be sufficient. Every possible set of costs (travel times, construction expenses, energy prices) makes some particular decision optimal. These “optimality regions” partition the decision space. A dataset is sufficient if it can determine which region contains the true cost.This characterization offers the foundation of the practical algorithm they developed that identifies datasets that guarantee finding the optimal solution.Their theoretical exploration revealed that a small, carefully selected dataset is often all one needs.“When we say a dataset is sufficient, we mean that it contains exactly the information needed to solve the problem. You don’t need to estimate all the parameters accurately; you just need data that can discriminate between competing optimal solutions,” says Amine Bennouna.Building on these mathematical foundations, the researchers developed an algorithm that finds the smallest sufficient dataset.Capturing the right dataTo use this tool, one inputs the structure of the task, such as the objective and constraints, along with the information they know about the problem.For instance, in supply chain management, the task might be to reduce operational costs across a network of dozens of potential routes. The company may already know that some shipment routes are especially costly, but lack complete information on others.The researchers’ iterative algorithm works by repeatedly asking, “Is there any scenario that would change the optimal decision in a way my current data can't detect?” If yes, it adds a measurement that captures that difference. If no, the dataset is provably sufficient.This algorithm pinpoints the subset of locations that need to be explored to guarantee finding the minimum-cost solution.Then, after collecting those data, the user can feed them to another algorithm the researchers developed which finds that optimal solution. In this case, that would be the shipment routes to include in a cost-optimal supply chain.“The algorithm guarantees that, for whatever scenario could occur within your uncertainty, you’ll identify the best decision,” Omar Bennouna says.The researchers’ evaluations revealed that, using this method, it is possible to guarantee an optimal decision with a much smaller dataset than would typically be collected.“We challenge this misconception that small data means approximate solutions. These are exact sufficiency results with mathematical proofs. We’ve identified when you’re guaranteed to get the optimal solution with very little data — not probably, but with certainty,” Amin says.In the future, the researchers want to extend their framework to other types of problems and more complex situations. They also want to study how noisy observations could affect dataset optimality.“I was impressed by the work’s originality, clarity, and elegant geometric characterization. Their framework offers a fresh optimization perspective on data efficiency in decision-making,” says Yao Xie, the Coca-Cola Foundation Chair and Professor at Georgia Tech, who was not involved with this work.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.