Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

Blue power: Will ocean waves be California’s new source of clean energy?

News Feed
Wednesday, November 29, 2023

In summary Only a few small demonstration projects off the West Coast have harnessed the power of waves and tides. Costs are high and hurdles are challenging. The world’s oceans may be vast, but they are getting crowded. Coastal areas are congested with cargo ships, international commercial fishing fleets, naval vessels, oil rigs and, soon, floating platforms for deep-sea mining. But the Pacific Ocean is going to get even busier: Nearly 600 square miles of ocean off California have been leased for floating wind farms, with more expected. Now the state is considering hosting another renewable energy technology in the sea: Blue power, electricity created from waves and tides. A new law signed by Gov. Gavin Newsom in October instructs state agencies to study the feasibility and impacts of capturing ocean movement to create power and report back to the Legislature by January 2025.  The goal is to jumpstart an industry that could fill in the power gaps as California tries to achieve its goal of transitioning to an all-renewable electric grid by 2045. But for all the interest in renewable energy — and the government subsidies — public investment in ocean energy has lagged. And the technology that would make the projects more efficient, cost effective and able to withstand a punishing sea environment is still under development.  So far, a handful of small demonstration projects have been launched off the West Coast, although none has produced commercial power for the grid. Through 2045, the California Energy Commission’s new projections for future power do not include any wave and tidal power. Yet energy experts say there is great potential along the Pacific coast. “Of all the energies out there, marine energy has been the slowest to develop. We are kind of where land-based wind was 20 or 30 years ago,” said Tim Ramsey, marine energy program manager at the U.S. Department of Energy’s Water Power Technologies Office. Energy from waves and tides is generated by an action that the ocean almost always provides — movement. Although wave and tidal devices take different forms, most capture the ocean’s kinetic motion as seawater flows through cylinders or when floating devices move up and down or sideways. In some cases, that movement creates hydraulic pressure that spins a turbine or generator. As with all developing energy technologies, Ramsey said, the cost to produce wave and tidal power is expected to be quite high in the early years. Although there have been advances in technology, getting ocean-based projects from the pilot stage to providing commercial power to the grid is the next hurdle for the industry — and it’s a substantial one. “It’s very expensive right now, and really hard to do. Working out in the water is very complex, in some cases in the harshest places on Earth…Then being able to build something that can last 20 to 30 years. We’ve made progress, but we’re a decade away,” Ramsey said. “Of all the energies out there, marine energy has been the slowest to develop. We are kind of where land-based wind was 20 or 30 years ago.”Tim Ramsey, U.S. Department of Energy’s Water Power Technologies Office State Sen. Steve Padilla, a Democrat from Chula Vista and the author of the wave energy bill, said ocean power has “great potential” but it has been agonizingly slow. “Folks have been busy focusing on other things,” he said, citing the state’s current push for floating offshore wind development. “There has been a combination of a lack of knowledge and awareness of the infrastructure and impacts. We know the state’s energy portfolio has to be as broad as possible.”  A spokesperson for the California Energy Commission, which is taking the lead on the new state study, declined to comment about waves power, saying its work has not yet begun. Learn more about legislators mentioned in this story D Steve Padilla State Senate, District 18 (Chula Vista) Expand for more about this legislator D Steve Padilla State Senate, District 18 (Chula Vista) Time in office 2022—present Background Chula Vista Councilmember / Commissioner Contact Email Legislator District 18 Demographics Voter Registration Dem 47% GOP 21% No party 25% Campaign Contributions Sen. Steve Padilla has taken at least $234,000 from the Labor sector since he was elected to the legislature. That represents 22% of his total campaign contributions. The potential is enticing: The National Renewable Energy Laboratory estimated that the total wave and tide energy resources that are available in the U.S. with current technology are equivalent to 57% of 2019’s domestic energy production. While the report noted that the technologies are in early stages of development, “even if only a small portion of the technical resource potential is captured, marine energy technologies would make significant contributions to our nation’s energy needs.”  The U.S. Department of Energy’s “Powering the Blue Economy” initiative, among others, provides grants and sponsors competitions to explore new and better technology. The fiscal year 2023 federal budget for ocean waves energy is $123 million, Ramsey said.  One program is funding research led by national labs, including designs to improve wave-driven turbines and building better motor drives for wave-energy converters.  Motion in the ocean The idea of harnessing wave power has been kicking around California for decades. So has the state policy of ordering research into its potential: A 2008 study prepared for the  Energy Commission and the Ocean Protection Council concluded that much more research was needed to better assess the potential impacts of wave and tidal energy.  At the time that study was released, one of the technology’s most ardent proponents was a young politician named Gavin Newsom. While mayor of San Francisco in 2007, Newsom proposed a tidal energy project near the Golden Gate Bridge. That idea was scrapped because it was prohibitively expensive. Not long after, as lieutenant governor, Newsom backed a pilot wave energy project he hoped would be up and running by 2012 or 2013. It wasn’t. But the dream has not died. California is already hosting wave energy projects, including one being assembled at AltaSea, a public-private research center that supports marine scientists focusing on the so-called Blue Economy. It operates out of a 35-acre campus at the Port of Los Angeles. Its CEO is Terry Tamminen, a former California environmental secretary, who had a hand in writing the new wave and tidal energy law. Tamminen said wave energy has been ignored by some state and federal officials in the face of “irrational exuberance” for offshore wind. He said the smaller, cheaper wave energy development would help the state meet its clean energy goal and could produce power well before massive floating offshore wind projects. “These machines can only be developed toward commercial viability by putting them in the water and assessing their performance. .. It’s a long slog to build and deploy and make money.”Jason Busch, Pacific Ocean Energy Trust One of AltaSea’s tenants, Eco Wave Power, is designed to deploy near shore, in breakwaters and jetties that roil with moving water. Its floating, paddle-like arms bob up and down in waves, triggering hydraulic pistons that power a motor. Tamminen said the system is “ready to deploy. Within two years we could have a commercial installation of Eco Wave technology.” The demonstration project will be installed at a wharf in L.A.’s harbor and will not generate any significant power, he said. California is not likely to see much electricity from tidal energy, said Jason Busch, executive director of Pacific Ocean Energy Trust, an Oregon-based nonprofit fostering research into marine energy. He said the state of Washington is more conducive to this new energy, for example,  because it has deep bays and estuaries for funneling water through turbine equipment. “A little bit of homework would have told you there isn’t much of a tidal opportunity in California,” he said. A small number of companies are preparing to launch pilot wave projects in other states. The Navy operates a wave energy test site in Hawaii; three developers are preparing to launch new projects in the water there.  PacWave, which operates two test sites off Newport, Oregon, is another demonstration project. A California-based company, CalWave, which concluded a 10-month demonstration off the Scripps Institute of Oceanography’s research pier in San Diego, will deploy its wave energy devices in a grid-connected, pre-permitted open-water test. The demonstration at the Oregon site is scheduled to begin next year. This type of wave-energy device is moored in the open ocean, where it is submerged. Units like this from CalWave will be used in a project off the coast of Oregon that will provide power to the grid. Photo courtesy of CalWave Much is riding on the success of the project, which took 11 years to acquire permits. Some testing has been conducted with small-scale versions of the final device, but not in harsh open water conditions and with no expectation of supplying power to the grid. “It’s the first-of-its-kind full-scale deployment. Not in ‘nursery’ conditions. It’s the real world, off you go,” said Bryson Robertson, director of the Pacific Marine Energy Center at Oregon State University, which is constructing the two testing sites. “We want to prove that we can deliver power.” Robertson, an engineer who studies wave dynamics, said one of the technologies being tested places large, buoyant squares in the water just below the surface, attached by lines to the sea floor. Kinetic energy is created as the floats bob and pitch with the action of the waves. Some companies’ technology sits atop the waves and others are fully submerged. Another is deployed on the surface and moves like a snake, with each segment creating energy from its movement. Each bespoke device is expensive, and some of the one-of-a-kind devices can cost $10 million to design and build. The industry “hasn’t narrowed in on a winning archetype,” Ramsey said. Some smaller designs can be picked up and thrown off a boat, he said, while others are large enough to need a boat to tow them into position. “It’s the first-of-its-kind full-scale deployment…We want to prove that we can deliver power.”Bryson Robertson, Pacific Marine Energy Center at Oregon State University To Busch, it’s a critical moment for ocean energy, with small companies requiring years to raise enough funding to continue testing. And with attention on the industry, they cannot afford to stumble. “Early companies that got full-scale machines in the water committed the mortal sin of overpromising and under-delivering to shareholders. One by one they went into bankruptcy,” he said.  “This is the second generation. These machines can only be developed toward commercial viability by putting them in the water and assessing their performance. That process is very long. Companies receive only limited private capital. The venture capital model does not fit marine energy. It’s a long slog to build and deploy and make money.” In the near future, wave and tidal energy may not provide huge amounts of power in  the clean-energy mosaic that will form the grid, but the technology may prove to be one of the most versatile. Experts say marine power doesn’t have to be transported to shore to be useful — it could charge oceangoing vessels, research devices, navigation equipment and aquaculture operations. Closer to shore, modest wave-powered projects could support small, remote so-called “extension cord communities” at the end of the power supply. Federal researchers also foresee ocean power being used for desalination plants.  Wave-powered generators and other renewables are already supplying all of the needs of the Orkney Islands in Scotland, with the surplus energy used to create hydrogen to run ferries to the mainland.  Lots of unknowns New technology often comes cloaked in questions: How will the wave devices impact marine animals, shipping and other ocean users? What about transmission lines and possible floating power stations? “Blue energy synergy’ is a future possibility, with wave projects sited alongside floating offshore wind projects, allowing the power producers to share transmission lines and other infrastructure.  The state report due next year is meant to answer those questions and more.  “We still don’t fully understand all of the interactions of the device in the marine environment,” Ramsey said. “Until you can put devices in the water and get long-term data collection, we don’t know. We do try to extrapolate from other industries and activities in the ocean — oil and gas, offshore wind — but that only gets you so far. “I think the potential is so enormous. If we can figure out how to do it cost-effectively, I know it will get solved. I hope the U.S. is at the forefront of solving that. If we lose a big industry to overseas, that is a lost opportunity.”

Only a few small demonstration projects off the West Coast have harnessed the power of waves and tides. Costs are high and hurdles are challenging.

Some wave technology, like this one from Eco Wave Power, is deployed near shore, attached to seawalls or jetties, where paddle-like devices are driven up and down by wave action, activating hydraulic energy. Photo courtesy of Eco Wave Power

In summary

Only a few small demonstration projects off the West Coast have harnessed the power of waves and tides. Costs are high and hurdles are challenging.

The world’s oceans may be vast, but they are getting crowded. Coastal areas are congested with cargo ships, international commercial fishing fleets, naval vessels, oil rigs and, soon, floating platforms for deep-sea mining.

But the Pacific Ocean is going to get even busier: Nearly 600 square miles of ocean off California have been leased for floating wind farms, with more expected. Now the state is considering hosting another renewable energy technology in the sea: Blue power, electricity created from waves and tides.

A new law signed by Gov. Gavin Newsom in October instructs state agencies to study the feasibility and impacts of capturing ocean movement to create power and report back to the Legislature by January 2025. 

The goal is to jumpstart an industry that could fill in the power gaps as California tries to achieve its goal of transitioning to an all-renewable electric grid by 2045.

But for all the interest in renewable energy — and the government subsidies — public investment in ocean energy has lagged. And the technology that would make the projects more efficient, cost effective and able to withstand a punishing sea environment is still under development. 

So far, a handful of small demonstration projects have been launched off the West Coast, although none has produced commercial power for the grid. Through 2045, the California Energy Commission’s new projections for future power do not include any wave and tidal power. Yet energy experts say there is great potential along the Pacific coast.

“Of all the energies out there, marine energy has been the slowest to develop. We are kind of where land-based wind was 20 or 30 years ago,” said Tim Ramsey, marine energy program manager at the U.S. Department of Energy’s Water Power Technologies Office.

Energy from waves and tides is generated by an action that the ocean almost always provides — movement. Although wave and tidal devices take different forms, most capture the ocean’s kinetic motion as seawater flows through cylinders or when floating devices move up and down or sideways. In some cases, that movement creates hydraulic pressure that spins a turbine or generator.

As with all developing energy technologies, Ramsey said, the cost to produce wave and tidal power is expected to be quite high in the early years.

Although there have been advances in technology, getting ocean-based projects from the pilot stage to providing commercial power to the grid is the next hurdle for the industry — and it’s a substantial one.

“It’s very expensive right now, and really hard to do. Working out in the water is very complex, in some cases in the harshest places on Earth…Then being able to build something that can last 20 to 30 years. We’ve made progress, but we’re a decade away,” Ramsey said.

“Of all the energies out there, marine energy has been the slowest to develop. We are kind of where land-based wind was 20 or 30 years ago.”

Tim Ramsey, U.S. Department of Energy’s Water Power Technologies Office

State Sen. Steve Padilla, a Democrat from Chula Vista and the author of the wave energy bill, said ocean power has “great potential” but it has been agonizingly slow.

“Folks have been busy focusing on other things,” he said, citing the state’s current push for floating offshore wind development. “There has been a combination of a lack of knowledge and awareness of the infrastructure and impacts. We know the state’s energy portfolio has to be as broad as possible.” 

A spokesperson for the California Energy Commission, which is taking the lead on the new state study, declined to comment about waves power, saying its work has not yet begun.

Learn more about legislators mentioned in this story

Steve Padilla
D

Steve Padilla

State Senate, District 18 (Chula Vista)

Expand for more about this legislator
Steve Padilla

State Senate, District 18 (Chula Vista)

Time in office

2022—present

Background

Chula Vista Councilmember / Commissioner

District 18 Demographics

Voter Registration

Dem 47%
GOP 21%
No party 25%
Campaign Contributions

Sen. Steve Padilla has taken at least $234,000 from the Labor sector since he was elected to the legislature. That represents 22% of his total campaign contributions.

The potential is enticing: The National Renewable Energy Laboratory estimated that the total wave and tide energy resources that are available in the U.S. with current technology are equivalent to 57% of 2019’s domestic energy production. While the report noted that the technologies are in early stages of development, “even if only a small portion of the technical resource potential is captured, marine energy technologies would make significant contributions to our nation’s energy needs.” 

The U.S. Department of Energy’s “Powering the Blue Economy” initiative, among others, provides grants and sponsors competitions to explore new and better technology. The fiscal year 2023 federal budget for ocean waves energy is $123 million, Ramsey said. 

One program is funding research led by national labs, including designs to improve wave-driven turbines and building better motor drives for wave-energy converters. 

Motion in the ocean

The idea of harnessing wave power has been kicking around California for decades. So has the state policy of ordering research into its potential: A 2008 study prepared for the  Energy Commission and the Ocean Protection Council concluded that much more research was needed to better assess the potential impacts of wave and tidal energy. 

At the time that study was released, one of the technology’s most ardent proponents was a young politician named Gavin Newsom. While mayor of San Francisco in 2007, Newsom proposed a tidal energy project near the Golden Gate Bridge. That idea was scrapped because it was prohibitively expensive.

Not long after, as lieutenant governor, Newsom backed a pilot wave energy project he hoped would be up and running by 2012 or 2013. It wasn’t.

But the dream has not died. California is already hosting wave energy projects, including one being assembled at AltaSea, a public-private research center that supports marine scientists focusing on the so-called Blue Economy. It operates out of a 35-acre campus at the Port of Los Angeles.

Its CEO is Terry Tamminen, a former California environmental secretary, who had a hand in writing the new wave and tidal energy law. Tamminen said wave energy has been ignored by some state and federal officials in the face of “irrational exuberance” for offshore wind.

He said the smaller, cheaper wave energy development would help the state meet its clean energy goal and could produce power well before massive floating offshore wind projects.

“These machines can only be developed toward commercial viability by putting them in the water and assessing their performance. .. It’s a long slog to build and deploy and make money.”

Jason Busch, Pacific Ocean Energy Trust

One of AltaSea’s tenants, Eco Wave Power, is designed to deploy near shore, in breakwaters and jetties that roil with moving water. Its floating, paddle-like arms bob up and down in waves, triggering hydraulic pistons that power a motor.

Tamminen said the system is “ready to deploy. Within two years we could have a commercial installation of Eco Wave technology.” The demonstration project will be installed at a wharf in L.A.’s harbor and will not generate any significant power, he said.

California is not likely to see much electricity from tidal energy, said Jason Busch, executive director of Pacific Ocean Energy Trust, an Oregon-based nonprofit fostering research into marine energy. He said the state of Washington is more conducive to this new energy, for example,  because it has deep bays and estuaries for funneling water through turbine equipment.

“A little bit of homework would have told you there isn’t much of a tidal opportunity in California,” he said.

A small number of companies are preparing to launch pilot wave projects in other states. The Navy operates a wave energy test site in Hawaii; three developers are preparing to launch new projects in the water there. 

PacWave, which operates two test sites off Newport, Oregon, is another demonstration project. A California-based company, CalWave, which concluded a 10-month demonstration off the Scripps Institute of Oceanography’s research pier in San Diego, will deploy its wave energy devices in a grid-connected, pre-permitted open-water test. The demonstration at the Oregon site is scheduled to begin next year.

This type of wave-energy device is moored in the open ocean, where it is submerged. Units like this from CalWave will be used in a project off the coast of Oregon that will provide power to the grid. Photo courtesy of CalWave

Much is riding on the success of the project, which took 11 years to acquire permits. Some testing has been conducted with small-scale versions of the final device, but not in harsh open water conditions and with no expectation of supplying power to the grid.

“It’s the first-of-its-kind full-scale deployment. Not in ‘nursery’ conditions. It’s the real world, off you go,” said Bryson Robertson, director of the Pacific Marine Energy Center at Oregon State University, which is constructing the two testing sites. “We want to prove that we can deliver power.”

Robertson, an engineer who studies wave dynamics, said one of the technologies being tested places large, buoyant squares in the water just below the surface, attached by lines to the sea floor. Kinetic energy is created as the floats bob and pitch with the action of the waves.

Some companies’ technology sits atop the waves and others are fully submerged. Another is deployed on the surface and moves like a snake, with each segment creating energy from its movement. Each bespoke device is expensive, and some of the one-of-a-kind devices can cost $10 million to design and build.

The industry “hasn’t narrowed in on a winning archetype,” Ramsey said. Some smaller designs can be picked up and thrown off a boat, he said, while others are large enough to need a boat to tow them into position.

“It’s the first-of-its-kind full-scale deployment…We want to prove that we can deliver power.”

Bryson Robertson, Pacific Marine Energy Center at Oregon State University

To Busch, it’s a critical moment for ocean energy, with small companies requiring years to raise enough funding to continue testing. And with attention on the industry, they cannot afford to stumble.

“Early companies that got full-scale machines in the water committed the mortal sin of overpromising and under-delivering to shareholders. One by one they went into bankruptcy,” he said. 

“This is the second generation. These machines can only be developed toward commercial viability by putting them in the water and assessing their performance. That process is very long. Companies receive only limited private capital. The venture capital model does not fit marine energy. It’s a long slog to build and deploy and make money.”

In the near future, wave and tidal energy may not provide huge amounts of power in  the clean-energy mosaic that will form the grid, but the technology may prove to be one of the most versatile. Experts say marine power doesn’t have to be transported to shore to be useful — it could charge oceangoing vessels, research devices, navigation equipment and aquaculture operations.

Closer to shore, modest wave-powered projects could support small, remote so-called “extension cord communities” at the end of the power supply. Federal researchers also foresee ocean power being used for desalination plants. 

Wave-powered generators and other renewables are already supplying all of the needs of the Orkney Islands in Scotland, with the surplus energy used to create hydrogen to run ferries to the mainland. 

Lots of unknowns

New technology often comes cloaked in questions: How will the wave devices impact marine animals, shipping and other ocean users? What about transmission lines and possible floating power stations?

“Blue energy synergy’ is a future possibility, with wave projects sited alongside floating offshore wind projects, allowing the power producers to share transmission lines and other infrastructure. 

The state report due next year is meant to answer those questions and more. 

“We still don’t fully understand all of the interactions of the device in the marine environment,” Ramsey said. “Until you can put devices in the water and get long-term data collection, we don’t know. We do try to extrapolate from other industries and activities in the ocean — oil and gas, offshore wind — but that only gets you so far.

“I think the potential is so enormous. If we can figure out how to do it cost-effectively, I know it will get solved. I hope the U.S. is at the forefront of solving that. If we lose a big industry to overseas, that is a lost opportunity.”

Read the full story here.
Photos courtesy of

How Mississippians Can Intervene in Natural Gas Pipeline Proposal

Mississippi residents can comment on a proposal for a natural gas pipeline that would span nearly the full width of the state

Mississippians have until Tuesday to intervene in a proposal for a natural gas pipeline that would span nearly the full width of the state.The pipeline, called the “Mississippi Crossing Project,” would start in Greenville, cross through Humphreys, Holmes, Attala, Leake, Neshoba, Newton, Lauderdale and Clarke counties and end near Butler, Alabama, stretching nearly 208 miles.Tennessee Gas Pipeline Co., a subsidiary of Kinder Morgan, sent an application for the project to the Federal Energy Regulatory Commission on June 30. The company hopes the pipeline, which would transfer up to 12 billion cubic feet of natural gas per day, will address a rising energy demand by increasing its transportation capacity.Kinder Morgan says on its website that, should it receive approval, construction would begin at the end of 2027 and the pipeline would begin service in November 2028. The company says the project would cost $1.7 billion and create 750 temporary jobs as well as 15 permanent positions.The project would also include new compressor stations in Humphreys, Attala and Lauderdale counties, although exact locations haven’t been set.Singleton Schreiber, a national law firm that focuses on environmental justice, is looking to spread awareness of the public’s ability to participate in the approval process, whether or not they support the proposal.“We’re just trying to raise awareness to make sure that people know this is happening,” said Laura Singleton, an attorney with the firm. “They’re going to have to dig and construct new pipelines, so it’s going to pass through sensitive ecosystems like wetlands, private property, farmland, things like that. So you can have issues that come up like soil degradation, water contamination, and then after the pipeline is built you could potentially have leaks, spills.”Singleton added while such issues with pipelines are rare, when “things go bad, they go pretty bad.”To comment, protest, or file a motion to intervene, the public can go to FERC’s website (new users have to create an account, and then use the docket number “CP25-514-000”). The exact deadline is 4 p.m. on Aug. 5. More instructions can also be found here.In addition to FERC, the proposal will also face review from the U.S. Army Corps of Engineers, U.S. Fish and Wildlife Service, National Park Service and the state environmental agencies in Mississippi and Alabama.Mississippians have seen multiple incidents related to gas leaks in recent years. In March, three workers were injured after accidentally rupturing an Atmos Energy pipeline doing routine maintenance in Lee County, leaving thousands without service. Then last year, the National Transportation Safety Board found that Atmos discovered gas leaks over a month prior to two explosions in Jackson, one of which claimed the life of an 82-year-old woman.This story was originally published by Mississippi Today and distributed through a partnership with The Associated Press.Copyright 2025 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.Photos You Should See - June 2025

BPA faces suit over energy market decision that opponents say would raise rates

The lawsuit comes after governors, lawmakers, utility regulators and renewable energy proponents in the region unsuccessfully pressed the BPA to reconsider its plans.

Five energy and conservation nonprofits are suing the Bonneville Power Administration over its decision to join a new energy trading market, claiming it will raise electricity and transmission costs in Oregon and across the region. The lawsuit, filed Thursday in the 9th U.S. Circuit Court of Appeals, alleges that BPA’s move violates the Northwest Power Act and the National Environmental Policy Act and will also weaken energy grid reliability and reduce access to clean energy. BPA, the Northwest’s largest transmission grid operator, in May announced it would join the Arkansas-based Southwest Power Pool day-ahead market known as “Markets Plus” instead of joining California’s day-ahead market. The Southwest market is smaller with fewer electrical generation resources, experts say. Prior to that decision, Pacific Northwest governors, lawmakers, utility regulators and renewable energy proponents had pressed the BPA for months to reconsider its plans, which the agency initially announced in March.The nonprofits involved in the legal challenge are the Oregon Citizens’ Utility Board, a watchdog organization that advocates for utility customers; national environmental group the Sierra Club; the Montana Environmental Information Center, which promotes clean energy; the Idaho Conservation League, a natural landscape conservation group; and the NW Energy Coalition, which promotes affordable energy policies. The groups, represented by San Francisco-based environmental law nonprofit Earthjustice, want the court to vacate BPA’s decision, require the agency to prepare an environmental impact statement and rescind the financial commitments already made to the Southwest energy market.The BPA’s spokesperson Nick Quinata declined to comment on the pending litigation. Previously, the agency said the Southwest day-ahead market is superior to the California one because it would allow BPA to remain more independent due to its market design and governance structure. BPA, part of the U.S. Department of Energy, markets hydropower from 31 federal dams in the Columbia River Basin and supplies a third of the Northwest’s electricity, most of it to publicly owned rural utilities and electric cooperatives. It also owns and operates 15,000 miles – 75% – of the Northwest’s high-voltage transmission lines. Nearly every electric utility in Oregon benefits from either the clean hydroelectricity or the transmission lines controlled by BPA. BPA’s decision sets the stage for having two energy markets across the West.The lawsuit says that will likely lead to rising prices and blackouts during periods of high electricity demand because of the complexity of transmitting power across boundaries between different utilities and the agreements required for such transfers. Oregon’s two largest utilities, investor-owned Portland General Electric and Pacific Power, have both signed agreements to join California’s day-ahead market instead. They, too, have argued that once BPA leaves the Western market, the available energy they can purchase would diminish and become more expensive, leading to higher prices for customers across the region.Regional electricity providers also may have to construct additional power generation facilities, increase operation of existing facilities or both, to make up for BPA’s participation in a smaller and less efficient energy market, the suit contends. It could also increase reliance on generation resources powered by fossil fuels such as coal or natural gas plants because clean energy isn’t as widely available in the smaller Southwest market, the suit says. The Northwest Power Act, passed by Congress in the 1980s, requires BPA to provide low-cost power to the region while encouraging renewable energy, conservation and protection of fish and wildlife.BPA violated those duties when it chose the Southwest market option, according to the lawsuit. The groups also allege BPA’s market choice could harm fish and wildlife in the Columbia basin because it could alter the operation of the federal hydroelectric dams from which Bonneville markets power. The lawsuit claims BPA failed to comply with federal environmental law by not conducting any environmental impact analysis on impacts to fish and wildlife before making its decision. The Citizens’ Utility Board, a party to the lawsuit, said it hoped the BPA reverses course – otherwise its decision will splinter the West’s electricity markets, costing utility customers billions of dollars at a time when many are already dealing with skyrocketing bills.The board, as well as other critics of BPA’s decision, have pointed to an initiative developing an independent governance structure for California’s day-ahead market.“Oregon is facing overlapping energy challenges: rising utility bills, rising electricity demand from data centers, and stalling progress on meeting clean energy requirements. The last thing we need is for one of our region’s largest clean energy suppliers to reduce ties with the Pacific Northwest,” said the group’s spokesperson Charlotte Shuff. — Gosia Wozniacka covers environmental justice, climate change, the clean energy transition and other environmental issues. Reach her at gwozniacka@oregonian.com or 971-421-3154.If you purchase a product or register for an account through a link on our site, we may receive compensation. By using this site, you consent to our User Agreement and agree that your clicks, interactions, and personal information may be collected, recorded, and/or stored by us and social media and other third-party partners in accordance with our Privacy Policy.

States, enviro groups fight Trump plan to keep dirty power plants going

In late spring, the Department of Energy ordered two aging and costly fossil-fueled power plants that were on the verge of shutting down to stay open. The agency claimed that the moves were necessary to prevent the power grid from collapsing — and that it has the power to force the plants to stay open even if the…

In late spring, the Department of Energy ordered two aging and costly fossil-fueled power plants that were on the verge of shutting down to stay open. The agency claimed that the moves were necessary to prevent the power grid from collapsing — and that it has the power to force the plants to stay open even if the utilities, state regulators, and grid operators managing them say that no such emergency exists. But state regulators, regional grid operators, environmental groups, and consumer groups are pushing back on the notion that the grids in question even need these interventions — and are challenging the legality of the DOE’s stay-open orders. The DOE claimed that the threat of large-scale grid blackouts forced its hand. But state utility regulators, environmental groups, consumer advocates, and energy experts say that careful analysis from the plant’s owners, state regulators, regional grid operators, and grid reliability experts had determined both plants could be safely closed. These groups argue that clean energy, not fossil fuels, are the true solution to the country’s grid challenges — even if the ​“big, beautiful” bill signed by Trump last week will make those resources more expensive to build. Some of the environmental organizations challenging DOE’s orders have pledged to take their case to federal court if necessary. “We need to get more electrons on the grid. We need those to be clean, reliable, and affordable,” said Robert Routh, Pennsylvania climate and energy policy director for the Natural Resources Defense Council, one of the groups demanding that DOE reconsider its orders. Keeping J.H. Campbell and Eddystone open ​“results in the exact opposite. It’s costly, harmful, unnecessary, and unlawful.” Taking on the DOE’s grid emergency claims The groups challenging the DOE’s J.H. Campbell and Eddystone stay-open orders point out that the agency is using a power originally designed to protect the grid against unanticipated emergencies, including during wartime, but without proving that such an emergency is underway. “This authority that the Department of Energy is acting under — Section 202(c) of the Federal Power Act — is a very tailored emergency authority,” said Caroline Reiser, NRDC senior attorney for climate and energy. ​“Congress intentionally wrote it only to be usable in specific, narrow, short-term emergencies. This is not that.” For decades, the DOE has used its Section 202(c) power sparingly, and only in response to requests from utilities or grid operators to waive federal air pollution regulations or other requirements in moments when the grid faces imminent threats like widespread power outages, Reiser said. But DOE’s orders for Eddystone and J.H. Campbell were not spurred by requests from state regulators or regional grid operators. In fact, the orders caught those parties by surprise. They also came mere days before the plants were set to close down and after years of effort to ensure their closure wouldn’t threaten grid reliability. J.H. Campbell was scheduled to close in May under a plan that has been in the works since 2021 as part of a broader agreement between utility Consumers Energy and state regulators, and which was approved by the Midcontinent Independent System Operator (MISO), the entity that manages grid reliability across Michigan and 14 other states. “The plant is really old, unreliable, extremely polluting, and extremely expensive,” Reiser said. ​“Nobody is saying that this plant is needed or is going to be beneficial for any reliability purposes.” To justify its stay-open order, DOE cited reports from the North American Electric Reliability Corp. (NERC), a nonprofit regulatory authority that includes utilities and grid operators in the U.S. and Canada. NERC found MISO is at higher risk of summertime reliability problems than other U.S. grid regions, but environmental groups argue in their rehearing request that DOE has ​“misrepresented the reports on which it relies,” and that Consumers Energy, Michigan regulators, and MISO have collectively shown closing the plant won’t endanger grid reliability. Eddystone, which had operated only infrequently over the past few years, also went through a rigorous process with mid-Atlantic grid operator PJM Interconnection to ensure its closure wouldn’t harm grid reliability. The DOE’s reason for keeping that plant open is based on a report from PJM that states the grid operator might need to ask utility customers to use less power if it faces extreme conditions this summer — an even scantier justification than what the agency cited in its J.H. Campbell order, Reiser said. As long as the DOE continues to take the position that it can issue emergency stay-open orders to any power plant it decides to, these established methods for managing plant closures and fairly allocating costs will be thrown into disarray, she said. “We have a system of competitive energy markets in the United States that is successful in keeping the lights on and maintaining reliability the vast, vast majority of the time,” Reiser said. ​“The Department of Energy stepping in and using a command-and-control system interferes with those markets.”

Designing a new way to optimize complex coordinated systems

Using diagrams to represent interactions in multipart systems can provide a faster way to design software improvements.

Coordinating complicated interactive systems, whether it’s the different modes of transportation in a city or the various components that must work together to make an effective and efficient robot, is an increasingly important subject for software designers to tackle. Now, researchers at MIT have developed an entirely new way of approaching these complex problems, using simple diagrams as a tool to reveal better approaches to software optimization in deep-learning models.They say the new method makes addressing these complex tasks so simple that it can be reduced to a drawing that would fit on the back of a napkin.The new approach is described in the journal Transactions of Machine Learning Research, in a paper by incoming doctoral student Vincent Abbott and Professor Gioele Zardini of MIT’s Laboratory for Information and Decision Systems (LIDS).“We designed a new language to talk about these new systems,” Zardini says. This new diagram-based “language” is heavily based on something called category theory, he explains.It all has to do with designing the underlying architecture of computer algorithms — the programs that will actually end up sensing and controlling the various different parts of the system that’s being optimized. “The components are different pieces of an algorithm, and they have to talk to each other, exchange information, but also account for energy usage, memory consumption, and so on.” Such optimizations are notoriously difficult because each change in one part of the system can in turn cause changes in other parts, which can further affect other parts, and so on.The researchers decided to focus on the particular class of deep-learning algorithms, which are currently a hot topic of research. Deep learning is the basis of the large artificial intelligence models, including large language models such as ChatGPT and image-generation models such as Midjourney. These models manipulate data by a “deep” series of matrix multiplications interspersed with other operations. The numbers within matrices are parameters, and are updated during long training runs, allowing for complex patterns to be found. Models consist of billions of parameters, making computation expensive, and hence improved resource usage and optimization invaluable.Diagrams can represent details of the parallelized operations that deep-learning models consist of, revealing the relationships between algorithms and the parallelized graphics processing unit (GPU) hardware they run on, supplied by companies such as NVIDIA. “I’m very excited about this,” says Zardini, because “we seem to have found a language that very nicely describes deep learning algorithms, explicitly representing all the important things, which is the operators you use,” for example the energy consumption, the memory allocation, and any other parameter that you’re trying to optimize for.Much of the progress within deep learning has stemmed from resource efficiency optimizations. The latest DeepSeek model showed that a small team can compete with top models from OpenAI and other major labs by focusing on resource efficiency and the relationship between software and hardware. Typically, in deriving these optimizations, he says, “people need a lot of trial and error to discover new architectures.” For example, a widely used optimization program called FlashAttention took more than four years to develop, he says. But with the new framework they developed, “we can really approach this problem in a more formal way.” And all of this is represented visually in a precisely defined graphical language.But the methods that have been used to find these improvements “are very limited,” he says. “I think this shows that there’s a major gap, in that we don’t have a formal systematic method of relating an algorithm to either its optimal execution, or even really understanding how many resources it will take to run.” But now, with the new diagram-based method they devised, such a system exists.Category theory, which underlies this approach, is a way of mathematically describing the different components of a system and how they interact in a generalized, abstract manner. Different perspectives can be related. For example, mathematical formulas can be related to algorithms that implement them and use resources, or descriptions of systems can be related to robust “monoidal string diagrams.” These visualizations allow you to directly play around and experiment with how the different parts connect and interact. What they developed, he says, amounts to “string diagrams on steroids,” which incorporates many more graphical conventions and many more properties.“Category theory can be thought of as the mathematics of abstraction and composition,” Abbott says. “Any compositional system can be described using category theory, and the relationship between compositional systems can then also be studied.” Algebraic rules that are typically associated with functions can also be represented as diagrams, he says. “Then, a lot of the visual tricks we can do with diagrams, we can relate to algebraic tricks and functions. So, it creates this correspondence between these different systems.”As a result, he says, “this solves a very important problem, which is that we have these deep-learning algorithms, but they’re not clearly understood as mathematical models.” But by representing them as diagrams, it becomes possible to approach them formally and systematically, he says.One thing this enables is a clear visual understanding of the way parallel real-world processes can be represented by parallel processing in multicore computer GPUs. “In this way,” Abbott says, “diagrams can both represent a function, and then reveal how to optimally execute it on a GPU.”The “attention” algorithm is used by deep-learning algorithms that require general, contextual information, and is a key phase of the serialized blocks that constitute large language models such as ChatGPT. FlashAttention is an optimization that took years to develop, but resulted in a sixfold improvement in the speed of attention algorithms.Applying their method to the well-established FlashAttention algorithm, Zardini says that “here we are able to derive it, literally, on a napkin.” He then adds, “OK, maybe it’s a large napkin.” But to drive home the point about how much their new approach can simplify dealing with these complex algorithms, they titled their formal research paper on the work “FlashAttention on a Napkin.”This method, Abbott says, “allows for optimization to be really quickly derived, in contrast to prevailing methods.” While they initially applied this approach to the already existing FlashAttention algorithm, thus verifying its effectiveness, “we hope to now use this language to automate the detection of improvements,” says Zardini, who in addition to being a principal investigator in LIDS, is the Rudge and Nancy Allen Assistant Professor of Civil and Environmental Engineering, and an affiliate faculty with the Institute for Data, Systems, and Society.The plan is that ultimately, he says, they will develop the software to the point that “the researcher uploads their code, and with the new algorithm you automatically detect what can be improved, what can be optimized, and you return an optimized version of the algorithm to the user.”In addition to automating algorithm optimization, Zardini notes that a robust analysis of how deep-learning algorithms relate to hardware resource usage allows for systematic co-design of hardware and software. This line of work integrates with Zardini’s focus on categorical co-design, which uses the tools of category theory to simultaneously optimize various components of engineered systems.Abbott says that “this whole field of optimized deep learning models, I believe, is quite critically unaddressed, and that’s why these diagrams are so exciting. They open the doors to a systematic approach to this problem.”“I’m very impressed by the quality of this research. ... The new approach to diagramming deep-learning algorithms used by this paper could be a very significant step,” says Jeremy Howard, founder and CEO of Answers.ai, who was not associated with this work. “This paper is the first time I’ve seen such a notation used to deeply analyze the performance of a deep-learning algorithm on real-world hardware. ... The next step will be to see whether real-world performance gains can be achieved.”“This is a beautifully executed piece of theoretical research, which also aims for high accessibility to uninitiated readers — a trait rarely seen in papers of this kind,” says Petar Velickovic, a senior research scientist at Google DeepMind and a lecturer at Cambridge University, who was not associated with this work. These researchers, he says, “are clearly excellent communicators, and I cannot wait to see what they come up with next!”The new diagram-based language, having been posted online, has already attracted great attention and interest from software developers. A reviewer from Abbott’s prior paper introducing the diagrams noted that “The proposed neural circuit diagrams look great from an artistic standpoint (as far as I am able to judge this).” “It’s technical research, but it’s also flashy!” Zardini says.

The UK Says at an Energy Summit That Green Power Will Boost Security, as the US Differs

Britain has announced a major investment in wind power as it hosts an international summit on energy security

LONDON (AP) — Britain announced a major investment in wind power Thursday as it hosted an international summit on energy security — with Europe and the United States at odds over whether to cut their reliance on fossil fuels.U.K. Prime Minister Keir Starmer said the government will invest 300 million pounds ($400 million) in boosting Britain’s capacity to manufacture components for the offshore wind industry, a move it hopes will encourage private investment in the U.K.’s renewable energy sector.“As long as energy can be weaponized against us, our countries and our citizens are vulnerable and exposed,” U.K. Energy Secretary Ed Miliband told delegates.He said “low-carbon power” was a route to energy security as well as a way to slow climate change.Britain now gets more than half its electricity from renewable sources such as wind and solar power, and the rest from natural gas and nuclear energy. It aims to generate all the U.K.’s energy from renewable sources by 2030.Tommy Joyce, U.S. acting assistant secretary of energy for international affairs, told participants they should be “honest about the world’s growing energy needs, not focused on net-zero politics.”He called policies that push for clean power over fossil fuels "harmful and dangerous," and claimed building wind turbines requires "concessions to or coercion from China" because it supplies necessary rare minerals.Hosted by the British government and the International Energy Agency, the two-day summit brings together government ministers from 60 countries, senior European Union officials, energy sector CEOs, heads of international organizations and nonprofits to assess risks to the global energy system and figure out solutions. Associated Press writer Jennifer McDermott contributed to this story. ___The Associated Press’ climate and environmental coverage receives financial support from multiple private foundations. AP is solely responsible for all content. Find AP’s standards for working with philanthropies, a list of supporters and funded coverage areas at AP.org.Copyright 2025 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.Photos You Should See - Feb. 2025

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.