Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

As Starlink and Other Satellites Proliferate, Astronomers Learn to Manage Interference

News Feed
Friday, March 28, 2025

In the next few months, from its perch atop a mountain in Chile, the Vera C. Rubin Observatory will begin surveying the cosmos with the largest camera ever built. Every three nights, it will produce a map of the entire southern sky filled with stars, galaxies, asteroids and supernovae — and swarms of bright satellites ruining some of the view.Astronomers didn’t worry much about satellites photobombing Rubin’s images when they started drawing up plans for the observatory more than two decades ago. But as the space around Earth becomes increasingly congested, researchers are having to find fresh ways to cope — or else lose precious data from Rubin and hundreds of other observatories.The number of working satellites has soared in the past five years to around 11,000, mostly because of constellations of orbiters that provide Internet connectivity around the globe (see ‘Satellite surge’). Just one company, SpaceX in Hawthorne, California, has more than 7,000 operational Starlink satellites, all launched since 2019; OneWeb, a space communications company in London, has more than 630 satellites in its constellation. On paper, tens to hundreds of thousands more are planned from a variety of companies and nations, although probably not all of these will be launched.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.Satellites play a crucial part in connecting people, including bringing Internet to remote communities and emergency responders. But the rising number can be a problem for scientists because the satellites interfere with ground-based astronomical observations, by creating bright streaks on images and electromagnetic interference with radio telescopes. The satellite boom also poses other threats, including adding pollution to the atmosphere.When the first Starlinks launched, some astronomers warned of existential threats to their discipline. Now, researchers in astronomy and other fields are working with satellite companies to help quantify and mitigate the impacts on science — and society. “There is growing interest in collaborating and finding solutions together,” says Giuliana Rotola, a space-policy researcher at the Sant’Anna School of Advanced Studies in Pisa, Italy.Timing things rightThe first step to reduce satellite interference is knowing when and where a satellite will pass above an observatory. “The aim is to minimize the surprise,” says Mike Peel, an astronomer at Imperial College London.Before the launch of Starlinks, astronomers had no centralized reference for tracking satellites. Now, the International Astronomical Union (IAU) has a virtual Centre for the Protection of the Dark and Quiet Sky from Satellite Constellation Interference (CPS), which serves as an information hub and to which researchers, including Peel and Rotola, volunteer their time.One of the centre’s tools, called SatChecker, draws on a public database of satellite orbits, fed by information from observers and companies that track objects in space. Astronomers can use SatChecker to confirm what satellite is passing overhead during their observations. The tool isn’t perfect; atmospheric drag and intentional manoeuvring can affect a satellite’s position, and the public database doesn’t always reflect the latest information. For instance, the BlueWalker 3 satellite from telecommunications firm AST SpaceMobile in Midland, Texas, launched in 2022 and was sometimes brighter than most stars; yet uncertainty of its position was so great at times that astronomers had difficulty predicting whether it would be in their field of view for their night-time observations.Starlink satellites leave streaks in a 2019 image taken by a 4-meter telescope at the Cerro Tololo Inter-American Observatory in Chile.Tools such as SatChecker help telescope operators to avoid problems by allowing them to target a different part of the sky when a satellite passes overhead or by simply pausing observations as it flies by. It would aid astronomers if SatChecker had even more accurate information about satellite positions, but there are constraints on improving the system. SatChecker data come from the US Space Force, which draws on a global network of sensors that tracks objects in orbit and issues updates on satellite locations as often as several times a day. The frequency of these updates is limited by factors such as how often a sensor can observe an object and whether the sensor can distinguish what it’s looking at.Currently, satellite streaks are a relatively minor issue for telescope operators. But the problem will grow as satellite numbers continue to increase drastically, meaning more observation time will be lost, and this issue will be magnified for Rubin.Fixing the streaksRubin, which cost US$810 million to build, is a unique case because it scans large swathes of the sky frequently — meaning it can detect rapidly changing phenomena such as incoming asteroids or cosmic explosions. Astronomers don’t want to be fooled by passing satellites, as happened in 2017 when researchers spotted what they thought was a γ-ray burst — high-energy flashes of light — from a distant galaxy but turned out to be sunlight reflecting off a piece of space junk.Rubin’s powerful camera, coupled with its 8.4-metre telescope, will take about 1,000 nightly exposures of the sky, each about 45 times the area of the full Moon. That’s more wide-field pictures of the sky than any optical observatory has ever taken. Simulations suggest that if satellite numbers in low Earth orbit rise to around 40,000 over the 10 years of Rubin’s survey — a not-impossible forecast — then at least 10% of its images, and the majority of those taken during twilight, will contain a satellite trail3.SpaceX took early steps to try to mitigate the problem. Working with Rubin astronomers, the company tested changes to the design and positions of Starlinks to try to keep their brightness beneath a target threshold. Amazon, the retail and technology giant based in Seattle, Washington, is also testing mitigations on prototype satellites for its planned Kuiper constellation. Such changes reduce, but don’t eliminate, the problem.To limit satellite interference, Rubin astronomers are creating observation schedules to help researchers avoid certain parts of the sky (for example, near the horizon) and at certain times (such as around twilight)4. For when they can’t avoid the satellites, Rubin researchers have incorporated steps into their data-processing pipeline to detect and remove satellite streaks. All these changes mean less time doing science and more time processing data, but they need to be done, astronomers say. “We are really looking forward to getting data from Rubin and seeing how it turns out,” Peel says.For other observatories, the IAU CPS is working on tools to help astronomers identify and correct satellite streaks in their data. One is a new database of crowdsourced observations of satellite brightnesses called SCORE, which is currently being beta tested and is planned for wider release in the coming months. This will help scientists to work backwards — they might see something puzzling in their past observations and be able to work it out, Peel says.The database “is definitely a very valuable tool” because it’s one of few that have data freely available, says Marco Langbroek, a space-tracking specialist at Delft University of Technology in the Netherlands. As a beta tester, Langbroek has added a number of entries to SCORE, including measurements of a NASA solar sail that changes in brightness as it tumbles through space. Going forwards, he says, SCORE will be most useful if a lot of astronomers contribute high-quality observations to the database, thereby building up a resource over time.Tuning things outAstronomers who work in the radio portion of the electromagnetic spectrum face extra challenges when it comes to satellites.Big radio telescopes are typically located in remote regions, to be as far as possible from mobile-phone masts and other technological infrastructure that leak radio emissions. But satellites can’t be avoided. “If signals are coming from the sky, they’re always there,” says Federico Di Vruno, an astronomer at the Square Kilometre Array Observatory in Jodrell Bank, UK, and co-director of the IAU CPS.When satellites transmit signals, the electromagnetic interference can overwhelm faint radio signals coming from the cosmos. One solution is to re-direct or temporarily turn off satellite transmissions. The US National Radio Astronomy Observatory and SpaceX have been working on ways to accomplish this, and the company now momentarily redirects or disables transmissions when Starlinks pass above sensitive telescopes including the Green Bank Telescope in West Virginia5. The method requires voluntary buy-in by all partners, plus a lot of data sharing and intensive programming by the companies and by the astronomers, but it does reduce interference. It has been successful enough that small group of radio astronomers visited China last month to discuss the strategy with satellite operators and scientists there.An image made from multiple exposures shows streaks from Starlink satellites, the International Space Station and other satellites over a site in Wales.But as soon as one solution is found, fresh challenges appear. One is the rise of ‘direct-to-cell’ satellites, which function like mobile-phone towers in space and can transmit to areas on the ground that otherwise don’t have coverage. Optical astronomers worry about these because they are physically large and therefore bright6, and they are a big problem for radio astronomers because direct-to-cell transmissions are extremely powerful. If one of those hits a radio observatory, “the telescope might be blind for a little bit”, Di Vruno says. So astronomers and satellite operators are discussing how they can share information about these as well, to avoid each other when a satellite passes over an observatory.Another emerging challenge is ‘unintended’ emissions — which happen when satellites ‘leak’ radiation in wavelengths far outside the bands typically used for transmissions and other tasks. Early tests for the Square Kilometre Array radio telescopes, which are under construction in Australia and South Africa, discovered such leakage coming from Starlinks and other satellites7.Many of these unintended emissions are at the low frequencies that are used in some studies including those of the early Universe. So far, astronomers haven’t come up with a good solution, other than scheduling telescopes to not record data when a satellite passes through the part of the sky being observed. In the future, it is possible that authorities such as the International Telecommunication Union might be able to issue regulations on this, as it already does for other shared uses of the electromagnetic spectrum.Cleaning up the atmosphereAstronomers aren’t the only researchers concerned about the impacts of satellite constellations. In the past few years, a growing number of atmospheric scientists have been warning that these fleets will pollute Earth’s upper atmosphere during launches and then when their orbits decline and they burn up. Researchers are just starting to get to grips with the scope of this pollution, says Connor Barker, an atmospheric chemist at University College London (UCL).The point of satellite constellations is to have lots of satellites in orbit, but refreshing them when new technology comes along means that the pace of launches and re-entries will accelerate. In February alone, an average of four Starlink satellites a day re-entered the atmosphere and burned up.Each re-entry adds chemicals to the upper atmosphere. In a 2023 study, researchers reported that measurements made during high-altitude aeroplane flights detected more than 20 chemical elements in Earth’s upper atmosphere that probably came from satellite re-entries, including aluminium, copper and lead8. Other work has found that satellite constellations contributed around 40% of many types of carbon emission from the space industry in 2022, including black carbon particles and carbon dioxide9 that could contribute to warming the atmosphere. It’s not yet clear how much this warms the planet or contributes to other environmental problems. Some early analyses suggest that satellite launches could contribute a small but measurable amount of ozone destruction.There are no regulations on satellite atmospheric pollution. Barker and his colleagues at UCL say a good first step towards a solution is to get better estimates of the scope of the problem. They have been building an emissions inventory for rocket launches and satellite re-entries, carefully tallying up the contaminants involved and estimating the altitudes at which they enter the atmosphere. “Even though this is currently a relatively small industry that’s having a relatively small impact on the atmosphere, we should still be aware of it,” says Eloise Marais, an atmospheric chemist at UCL.Researchers are trying to raise the profile of these and other concerns linked to satellite fleets. Some of these issues were discussed in February in Vienna, at a meeting of the United Nations Committee on the Peaceful Uses of Outer Space. It was the first time that the committee formally discussed the impacts of satellite constellations on astronomy.No major actions were taken, as expected for these early discussions. But “now all of the member states know of dark and quiet skies”, Di Vruno says. That in itself, he says, is a success.This article is reproduced with permission and was first published on March 18, 2025.

Swarms of satellites launched by SpaceX and other companies are disrupting astronomical observations. Here's how scientists are coping

In the next few months, from its perch atop a mountain in Chile, the Vera C. Rubin Observatory will begin surveying the cosmos with the largest camera ever built. Every three nights, it will produce a map of the entire southern sky filled with stars, galaxies, asteroids and supernovae — and swarms of bright satellites ruining some of the view.

Astronomers didn’t worry much about satellites photobombing Rubin’s images when they started drawing up plans for the observatory more than two decades ago. But as the space around Earth becomes increasingly congested, researchers are having to find fresh ways to cope — or else lose precious data from Rubin and hundreds of other observatories.

The number of working satellites has soared in the past five years to around 11,000, mostly because of constellations of orbiters that provide Internet connectivity around the globe (see ‘Satellite surge’). Just one company, SpaceX in Hawthorne, California, has more than 7,000 operational Starlink satellites, all launched since 2019; OneWeb, a space communications company in London, has more than 630 satellites in its constellation. On paper, tens to hundreds of thousands more are planned from a variety of companies and nations, although probably not all of these will be launched.


On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.


Satellites play a crucial part in connecting people, including bringing Internet to remote communities and emergency responders. But the rising number can be a problem for scientists because the satellites interfere with ground-based astronomical observations, by creating bright streaks on images and electromagnetic interference with radio telescopes. The satellite boom also poses other threats, including adding pollution to the atmosphere.

When the first Starlinks launched, some astronomers warned of existential threats to their discipline. Now, researchers in astronomy and other fields are working with satellite companies to help quantify and mitigate the impacts on science — and society. “There is growing interest in collaborating and finding solutions together,” says Giuliana Rotola, a space-policy researcher at the Sant’Anna School of Advanced Studies in Pisa, Italy.

Timing things right

The first step to reduce satellite interference is knowing when and where a satellite will pass above an observatory. “The aim is to minimize the surprise,” says Mike Peel, an astronomer at Imperial College London.

Before the launch of Starlinks, astronomers had no centralized reference for tracking satellites. Now, the International Astronomical Union (IAU) has a virtual Centre for the Protection of the Dark and Quiet Sky from Satellite Constellation Interference (CPS), which serves as an information hub and to which researchers, including Peel and Rotola, volunteer their time.

One of the centre’s tools, called SatChecker, draws on a public database of satellite orbits, fed by information from observers and companies that track objects in space. Astronomers can use SatChecker to confirm what satellite is passing overhead during their observations. The tool isn’t perfect; atmospheric drag and intentional manoeuvring can affect a satellite’s position, and the public database doesn’t always reflect the latest information. For instance, the BlueWalker 3 satellite from telecommunications firm AST SpaceMobile in Midland, Texas, launched in 2022 and was sometimes brighter than most stars; yet uncertainty of its position was so great at times that astronomers had difficulty predicting whether it would be in their field of view for their night-time observations.

Starlink satellites leave streaks in a 2019 image taken by a 4-meter telescope at the Cerro Tololo Inter-American Observatory in Chile.

Starlink satellites leave streaks in a 2019 image taken by a 4-meter telescope at the Cerro Tololo Inter-American Observatory in Chile.

Tools such as SatChecker help telescope operators to avoid problems by allowing them to target a different part of the sky when a satellite passes overhead or by simply pausing observations as it flies by. It would aid astronomers if SatChecker had even more accurate information about satellite positions, but there are constraints on improving the system. SatChecker data come from the US Space Force, which draws on a global network of sensors that tracks objects in orbit and issues updates on satellite locations as often as several times a day. The frequency of these updates is limited by factors such as how often a sensor can observe an object and whether the sensor can distinguish what it’s looking at.

Currently, satellite streaks are a relatively minor issue for telescope operators. But the problem will grow as satellite numbers continue to increase drastically, meaning more observation time will be lost, and this issue will be magnified for Rubin.

Fixing the streaks

Rubin, which cost US$810 million to build, is a unique case because it scans large swathes of the sky frequently — meaning it can detect rapidly changing phenomena such as incoming asteroids or cosmic explosions. Astronomers don’t want to be fooled by passing satellites, as happened in 2017 when researchers spotted what they thought was a γ-ray burst — high-energy flashes of light — from a distant galaxy but turned out to be sunlight reflecting off a piece of space junk.

Rubin’s powerful camera, coupled with its 8.4-metre telescope, will take about 1,000 nightly exposures of the sky, each about 45 times the area of the full Moon. That’s more wide-field pictures of the sky than any optical observatory has ever taken. Simulations suggest that if satellite numbers in low Earth orbit rise to around 40,000 over the 10 years of Rubin’s survey — a not-impossible forecast — then at least 10% of its images, and the majority of those taken during twilight, will contain a satellite trail3.

SpaceX took early steps to try to mitigate the problem. Working with Rubin astronomers, the company tested changes to the design and positions of Starlinks to try to keep their brightness beneath a target threshold. Amazon, the retail and technology giant based in Seattle, Washington, is also testing mitigations on prototype satellites for its planned Kuiper constellation. Such changes reduce, but don’t eliminate, the problem.

To limit satellite interference, Rubin astronomers are creating observation schedules to help researchers avoid certain parts of the sky (for example, near the horizon) and at certain times (such as around twilight)4. For when they can’t avoid the satellites, Rubin researchers have incorporated steps into their data-processing pipeline to detect and remove satellite streaks. All these changes mean less time doing science and more time processing data, but they need to be done, astronomers say. “We are really looking forward to getting data from Rubin and seeing how it turns out,” Peel says.

For other observatories, the IAU CPS is working on tools to help astronomers identify and correct satellite streaks in their data. One is a new database of crowdsourced observations of satellite brightnesses called SCORE, which is currently being beta tested and is planned for wider release in the coming months. This will help scientists to work backwards — they might see something puzzling in their past observations and be able to work it out, Peel says.

The database “is definitely a very valuable tool” because it’s one of few that have data freely available, says Marco Langbroek, a space-tracking specialist at Delft University of Technology in the Netherlands. As a beta tester, Langbroek has added a number of entries to SCORE, including measurements of a NASA solar sail that changes in brightness as it tumbles through space. Going forwards, he says, SCORE will be most useful if a lot of astronomers contribute high-quality observations to the database, thereby building up a resource over time.

Tuning things out

Astronomers who work in the radio portion of the electromagnetic spectrum face extra challenges when it comes to satellites.

Big radio telescopes are typically located in remote regions, to be as far as possible from mobile-phone masts and other technological infrastructure that leak radio emissions. But satellites can’t be avoided. “If signals are coming from the sky, they’re always there,” says Federico Di Vruno, an astronomer at the Square Kilometre Array Observatory in Jodrell Bank, UK, and co-director of the IAU CPS.

When satellites transmit signals, the electromagnetic interference can overwhelm faint radio signals coming from the cosmos. One solution is to re-direct or temporarily turn off satellite transmissions. The US National Radio Astronomy Observatory and SpaceX have been working on ways to accomplish this, and the company now momentarily redirects or disables transmissions when Starlinks pass above sensitive telescopes including the Green Bank Telescope in West Virginia5. The method requires voluntary buy-in by all partners, plus a lot of data sharing and intensive programming by the companies and by the astronomers, but it does reduce interference. It has been successful enough that small group of radio astronomers visited China last month to discuss the strategy with satellite operators and scientists there.

An image made from multiple exposures shows streaks from Starlink satellites, the International Space Station and other satellites over a site in Wales.

An image made from multiple exposures shows streaks from Starlink satellites, the International Space Station and other satellites over a site in Wales.

But as soon as one solution is found, fresh challenges appear. One is the rise of ‘direct-to-cell’ satellites, which function like mobile-phone towers in space and can transmit to areas on the ground that otherwise don’t have coverage. Optical astronomers worry about these because they are physically large and therefore bright6, and they are a big problem for radio astronomers because direct-to-cell transmissions are extremely powerful. If one of those hits a radio observatory, “the telescope might be blind for a little bit”, Di Vruno says. So astronomers and satellite operators are discussing how they can share information about these as well, to avoid each other when a satellite passes over an observatory.

Another emerging challenge is ‘unintended’ emissions — which happen when satellites ‘leak’ radiation in wavelengths far outside the bands typically used for transmissions and other tasks. Early tests for the Square Kilometre Array radio telescopes, which are under construction in Australia and South Africa, discovered such leakage coming from Starlinks and other satellites7.

Many of these unintended emissions are at the low frequencies that are used in some studies including those of the early Universe. So far, astronomers haven’t come up with a good solution, other than scheduling telescopes to not record data when a satellite passes through the part of the sky being observed. In the future, it is possible that authorities such as the International Telecommunication Union might be able to issue regulations on this, as it already does for other shared uses of the electromagnetic spectrum.

Cleaning up the atmosphere

Astronomers aren’t the only researchers concerned about the impacts of satellite constellations. In the past few years, a growing number of atmospheric scientists have been warning that these fleets will pollute Earth’s upper atmosphere during launches and then when their orbits decline and they burn up. Researchers are just starting to get to grips with the scope of this pollution, says Connor Barker, an atmospheric chemist at University College London (UCL).

The point of satellite constellations is to have lots of satellites in orbit, but refreshing them when new technology comes along means that the pace of launches and re-entries will accelerate. In February alone, an average of four Starlink satellites a day re-entered the atmosphere and burned up.

Each re-entry adds chemicals to the upper atmosphere. In a 2023 study, researchers reported that measurements made during high-altitude aeroplane flights detected more than 20 chemical elements in Earth’s upper atmosphere that probably came from satellite re-entries, including aluminium, copper and lead8. Other work has found that satellite constellations contributed around 40% of many types of carbon emission from the space industry in 2022, including black carbon particles and carbon dioxide9 that could contribute to warming the atmosphere. It’s not yet clear how much this warms the planet or contributes to other environmental problems. Some early analyses suggest that satellite launches could contribute a small but measurable amount of ozone destruction.

There are no regulations on satellite atmospheric pollution. Barker and his colleagues at UCL say a good first step towards a solution is to get better estimates of the scope of the problem. They have been building an emissions inventory for rocket launches and satellite re-entries, carefully tallying up the contaminants involved and estimating the altitudes at which they enter the atmosphere. “Even though this is currently a relatively small industry that’s having a relatively small impact on the atmosphere, we should still be aware of it,” says Eloise Marais, an atmospheric chemist at UCL.

Researchers are trying to raise the profile of these and other concerns linked to satellite fleets. Some of these issues were discussed in February in Vienna, at a meeting of the United Nations Committee on the Peaceful Uses of Outer Space. It was the first time that the committee formally discussed the impacts of satellite constellations on astronomy.

No major actions were taken, as expected for these early discussions. But “now all of the member states know of dark and quiet skies”, Di Vruno says. That in itself, he says, is a success.

This article is reproduced with permission and was first published on March 18, 2025.

Read the full story here.
Photos courtesy of

Forever Chemicals' Might Triple Teens' Risk Of Fatty Liver Disease

By Dennis Thompson HealthDay ReporterTHURSDAY, Jan. 8, 2026 (HealthDay News) — PFAS “forever chemicals” might nearly triple a young person’s risk...

By Dennis Thompson HealthDay ReporterTHURSDAY, Jan. 8, 2026 (HealthDay News) — PFAS “forever chemicals” might nearly triple a young person’s risk of developing fatty liver disease, a new study says.Each doubling in blood levels of the PFAS chemical perfluorooctanoic acid is linked to 2.7 times the odds of fatty liver disease among teenagers, according to findings published in the January issue of the journal Environmental Research.Fatty liver disease — also known as metabolic dysfunction-associated steatotic liver disease (MASLD) — occurs when fat builds up in the organ, leading to inflammation, scarring and increased risk of cancer.About 10% of all children, and up to 40% of children with obesity, have fatty liver disease, researchers said in background notes.“MASLD can progress silently for years before causing serious health problems,” said senior researcher Dr. Lida Chatzi, a professor of population and public health sciences and pediatrics at the Keck School of Medicine of USC in Los Angeles.“When liver fat starts accumulating in adolescence, it may set the stage for a lifetime of metabolic and liver health challenges,” Chatzi added in a news release. “If we reduce PFAS exposure early, we may help prevent liver disease later. That’s a powerful public health opportunity.”Per- and polyfluoroalkyl substances (PFAS) are called “forever chemicals” because they combine carbon and fluorine molecules, one of the strongest chemical bonds possible. This makes PFAS removal and breakdown very difficult.PFAS compounds have been used in consumer products since the 1940s, including fire extinguishing foam, nonstick cookware, food wrappers, stain-resistant furniture and waterproof clothing.More than 99% of Americans have measurable PFAS in their blood, and at least one PFAS chemical is present in roughly half of U.S. drinking water supplies, researchers said.“Adolescents are particularly more vulnerable to the health effects of PFAS as it is a critical period of development and growth,” lead researcher Shiwen “Sherlock” Li, an assistant professor of public health sciences at the University of Hawaii, said in a news release.“In addition to liver disease, PFAS exposure has been associated with a range of adverse health outcomes, including several types of cancer,” Li said.For the new study, researchers examined data on 284 Southern California adolescents and young adults gathered as part of two prior USC studies.All of the participants already had a high risk of metabolic disease because their parents had type 2 diabetes or were overweight, researchers said.Their PFAS levels were measured through blood tests, and liver fat was assessed using MRI scans.Higher blood levels of two common PFAS — perfluorooctanoic acid (PFOA) and perfluoroheptanoic acid (PFHpA) — were linked to an increased risk of fatty liver disease.Results showed a young person’s risk was even higher if they smoked or carried a genetic variant known to influence liver fat.“These findings suggest that PFAS exposures, genetics and lifestyle factors work together to influence who has greater risk of developing MASLD as a function of your life stage,” researcher Max Aung, assistant professor of population and public health sciences at the Keck School of Medicine, said in a news release.“Understanding gene and environment interactions can help advance precision environmental health for MASLD,” he added.The study also showed that fatty liver disease became more common as teens grew older, adding to evidence that younger people might be more vulnerable to PFAS exposure, Chatzi said.“PFAS exposures not only disrupt liver biology but also translate into real liver disease risk in youth,” Chatzi said. “Adolescence seems to be a critical window of susceptibility, suggesting PFAS exposure may matter most when the liver is still developing.”The Environmental Working Group has more on PFAS.SOURCES: Keck School of Medicine of USC, news release, Jan. 6, 2026; Environmental Research, Jan. 1, 2026Copyright © 2026 HealthDay. All rights reserved.

China Announces Another New Trade Measure Against Japan as Tensions Rise

China has escalated its trade tensions with Japan by launching an investigation into imported dichlorosilane, a chemical gas used in making semiconductors

BEIJING (AP) — China escalated its trade tensions with Japan on Wednesday by launching an investigation into imported dichlorosilane, a chemical gas used in making semiconductors, a day after it imposed curbs on the export of so-called dual-use goods that could be used by Japan’s military.The Chinese Commerce Ministry said in a statement that it had launched the investigation following an application from the domestic industry showing the price of dichlorosilane imported from Japan had decreased 31% between 2022 and 2024.“The dumping of imported products from Japan has damaged the production and operation of our domestic industry,” the ministry said.The measure comes a day after Beijing banned exports to Japan of dual-use goods that can have military applications.Beijing has been showing mounting displeasure with Tokyo after new Japanese Prime Minister Sanae Takaichi suggested late last year that her nation's military could intervene if China were to take action against Taiwan — an island democracy that Beijing considers its own territory.Tensions were stoked again on Tuesday when Japanese lawmaker Hei Seki, who last year was sanctioned by China for “spreading fallacies” about Taiwan and other disputed territories, visited Taiwan and called it an independent country. Also known as Yo Kitano, he has been banned from entering China. He told reporters that his arrival in Taiwan demonstrated the two are “different countries.”“I came to Taiwan … to prove this point, and to tell the world that Taiwan is an independent country,” Hei Seki said, according to Taiwan’s Central News Agency.“The nasty words of a petty villain like him are not worth commenting on,” Chinese Foreign Ministry spokesperson Mao Ning retorted when asked about his comment. Fears of a rare earths curb Masaaki Kanai, head of Asia Oceanian Affairs at Japan's Foreign Ministry, urged China to scrap the trade curbs, saying a measure exclusively targeting Japan that deviates from international practice is unacceptable. Japan, however, has yet to announce any retaliatory measures.As the two countries feuded, speculation rose that China might target rare earths exports to Japan, in a move similar to the rounds of critical minerals export restrictions it has imposed as part of its trade war with the United States.China controls most of the global production of heavy rare earths, used for making powerful, heat-resistance magnets used in industries such as defense and electric vehicles.While the Commerce Ministry did not mention any new rare earths curbs, the official newspaper China Daily, seen as a government mouthpiece, quoted anonymous sources saying Beijing was considering tightening exports of certain rare earths to Japan. That report could not be independently confirmed. Improved South Korean ties contrast with Japan row As Beijing spars with Tokyo, it has made a point of courting a different East Asian power — South Korea.On Wednesday, South Korean President Lee Jae Myung wrapped up a four-day trip to China – his first since taking office in June. Lee and Chinese President Xi Jinping oversaw the signing of cooperation agreements in areas such as technology, trade, transportation and environmental protection.As if to illustrate a contrast with the China-Japan trade frictions, Lee joined two business events at which major South Korean and Chinese companies pledged to collaborate.The two sides signed 24 export contracts worth a combined $44 million, according to South Korea’s Ministry of Trade, Industry and Resources. During Lee’s visit, Chinese media also reported that South Korea overtook Japan as the leading destination for outbound flights from China’s mainland over the New Year’s holiday.China has been discouraging travel to Japan, saying Japanese leaders’ comments on Taiwan have created “significant risks to the personal safety and lives of Chinese citizens in Japan.”Copyright 2026 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.Photos You Should See – December 2025

Pesticide industry ‘immunity shield’ stripped from US appropriations bill

Democrats and the Make America Healthy Again movement pushed back on the rider in a funding bill led by BayerIn a setback for the pesticide industry, Democrats have succeeded in removing a rider from a congressional appropriations bill that would have helped protect pesticide makers from being sued and could have hindered state efforts to warn about pesticide risks.Chellie Pingree, a Democratic representative from Maine and ranking member of the House appropriations interior, environment, and related agencies subcommittee, said Monday that the controversial measure pushed by the agrochemical giant Bayer and industry allies has been stripped from the 2026 funding bill. Continue reading...

In a setback for the pesticide industry, Democrats have succeeded in removing a rider from a congressional appropriations bill that would have helped protect pesticide makers from being sued and could have hindered state efforts to warn about pesticide risks.Chellie Pingree, a Democratic representative from Maine and ranking member of the House appropriations interior, environment, and related agencies subcommittee, said Monday that the controversial measure pushed by the agrochemical giant Bayer and industry allies has been stripped from the 2026 funding bill.The move is final, as Senate Republican leaders have agreed not to revisit the issue, Pingree said.“I just drew a line in the sand and said this cannot stay in the bill,” Pingree told the Guardian. “There has been intensive lobbying by Bayer. This has been quite a hard fight.”The now-deleted language was part of a larger legislative effort that critics say is aimed at limiting litigation against pesticide industry leader Bayer, which sells the widely used Roundup herbicides.An industry alliance set up by Bayer has been pushing for both state and federal laws that would make it harder for consumers to sue over pesticide risks to human health and has successfully lobbied for the passing of such laws in Georgia and North Dakota so far.The specific proposed language added to the appropriations bill blocked federal funds from being used to “issue or adopt any guidance or any policy, take any regulatory action, or approve any labeling or change to such labeling” inconsistent with the conclusion of an Environmental Protection Agency (EPA) human health assessment.Critics said the language would have impeded states and local governments from warning about risks of pesticides even in the face of new scientific findings about health harms if such warnings were not consistent with outdated EPA assessments. The EPA itself would not be able to update warnings without finalizing a new assessment, the critics said.And because of the limits on warnings, critics of the rider said, consumers would have found it difficult, if not impossible, to sue pesticide makers for failing to warn them of health risks if the EPA assessments do not support such warnings.“This provision would have handed pesticide manufacturers exactly what they’ve been lobbying for: federal preemption that stops state and local governments from restricting the use of harmful, cancer-causing chemicals, adding health warnings, or holding companies accountable in court when people are harmed,” Pingree said in a statement. “It would have meant that only the federal government gets a say – even though we know federal reviews can take years, and are often subject to intense industry pressure.”Pingree tried but failed to overturn the language in a July appropriations committee hearing.Bayer, the key backer of the legislative efforts, has been struggling for years to put an end to thousands of lawsuits filed by people who allege they developed cancer from their use of Roundup and other glyphosate-based weed killers sold by Bayer. The company inherited the litigation when it bought Monsanto in 2018 and has paid out billions of dollars in settlements and jury verdicts but still faces several thousand ongoing lawsuits. Bayer maintains its glyphosate-based herbicides do not cause cancer and are safe when used as directed.When asked for comment on Monday, Bayer said that no company should have “blanket immunity” and it disputed that the appropriations bill language would have prevented anyone from suing pesticide manufacturers. The company said it supports state and federal legislation “because the future of American farming depends on reliable science-based regulation of important crop protection products – determined safe for use by the EPA”.The company additionally states on its website that without “legislative certainty”, lawsuits over its glyphosate-based Roundup and other weed killers can impact its research and product development and other “important investments”.Pingree said her efforts were aided by members of the Make America Healthy Again (Maha) movement who have spent the last few months meeting with congressional members and their staffers on this issue. She said her team reached out to Maha leadership in the last few days to pressure Republican lawmakers.“This is the first time that we’ve had a fairly significant advocacy group working on the Republican side,” she said.Last week, Zen Honeycutt, a Maha leader and founder of the group Moms Across America, posted a “call to action”, urging members to demand elected officials “Stop the Pesticide Immunity Shield”.“A lot of people helped make this happen,” Honeycutt said. “Many health advocates have been fervently expressing their requests to keep chemical companies accountable for safety … We are delighted that our elected officials listened to so many Americans who spoke up and are restoring trust in the American political system.”Pingree said the issue is not dead. Bayer has “made this a high priority”, and she expects to see continued efforts to get industry friendly language inserted into legislation, including into the new Farm Bill.“I don’t think this is over,” she said.This story is co-published with the New Lede, a journalism project of the Environmental Working Group

Forever Chemicals' Common in Cosmetics, but FDA Says Safety Data Are Scant

By Deanna Neff HealthDay ReporterSATURDAY, Jan. 3, 2026 (HealthDay News) — Federal regulators have released a mandated report regarding the...

By Deanna Neff HealthDay ReporterSATURDAY, Jan. 3, 2026 (HealthDay News) — Federal regulators have released a mandated report regarding the presence of "forever chemicals" in makeup and skincare products. Forever chemicals — known as perfluoroalkyl and polyfluoroalkyl substances or PFAS — are manmade chemicals that don't break down and have built up in people’s bodies and the environment. They are sometimes added to beauty products intentionally, and sometimes they are contaminants. While the findings confirm that PFAS are widely used in the beauty industry, the U.S. Food and Drug Administration (FDA) admitted it lacks enough scientific evidence to determine if they are truly safe for consumers.The new report reveals that 51 forever chemicals — are used in 1,744 cosmetic formulations. These synthetic chemicals are favored by manufacturers because they make products waterproof, increase their durability and improve texture.FDA scientists focused their review on the 25 most frequently used PFAS, which account for roughly 96% of these chemicals found in beauty products. The results were largely unclear. While five were deemed to have low safety concerns, one was flagged for potential health risks, and safety of the rest could not be confirmed.FDA Commissioner Dr. Marty Makary expressed concern over the difficulty in accessing private research. “Our scientists found that toxicological data for most PFAS are incomplete or unavailable, leaving significant uncertainty about consumer safety,” Makary said in a news release, adding that “this lack of reliable data demands further research.”Despite growing concerns about their potential toxicity, no federal laws specifically ban their use in cosmetics.The FDA report focuses on chemicals that are added to products on purpose, rather than those that might show up as accidental contaminants. Moving forward, FDA plans to work closely with the U.S. Centers for Disease Control and Prevention (CDC) and the Environmental Protection Agency (EPA) to update and strengthen recommendations on PFAS across the retail and food supply chain, Makary said. The agency has vowed to devote more resources to monitoring these chemicals and will take enforcement action if specific products are proven to be dangerous.The U.S. Food and Drug Administration provides updates and consumer guidance on the use of PFAS in cosmetics.SOURCE: U.S. Food and Drug Administration, news release, Dec. 29, 2025Copyright © 2026 HealthDay. All rights reserved.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.