Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

As Hurricanes Bear Down and Get Stronger, Can a $34 Billion Plan Save Texas?

News Feed
Thursday, August 8, 2024

Illustration by Emily Lankiewicz / Images via public domain / Library of Congress / FEMA / NASA / Carl & Ann Purcell / Getty Images After Hurricane Ike destroyed thousands of homes and inflicted an estimated $30 billion in damages in 2008, engineers hatched an ambitious plan to protect southeast Texas and its coastal refineries and shipping routes from violent storms. The $34 billion collaboration spearheaded by the U.S. Army Corps of Engineers is a harbinger of the type of massive public works projects that could be required to protect coastal cities like New York and Miami as sea levels rise and hurricanes become less predictable and more severe due to climate change. In this episode of “There’s More to That,” Smithsonian magazine contributor and Texas native Xander Peters reflects on his experiences growing up in a hurricane corridor and tells us how the wildly ambitious effort came together. Then, Eric Sanderson, an ecological historian, tells us how the project could be applied to other low-lying coastal cities. A transcript is below. To subscribe to “There’s More to That,” and to listen to past episodes on how a new generation of high-end West African restaurants is revealing the roots of “Southern” cuisine, why Colombian conservationists are now trying to sterilize the hippos descended from drug kingpin Pablo Escobar’s personal menagerie, what humans’ great acumen for sweating has contributed to our evolution and more, find us on Apple Podcasts, Spotify or wherever you get your podcasts. Chris Klimek: What part of Texas are you from? Xander Peters: I’m over here in East Texas. We’re about 30 miles from the Louisiana border. Klimek: Xander Peters is a contributor to Smithsonian magazine. Peters: It’s a real small town, about 2,000 people. Klimek: What’s life like there? Peters: As a 33-year-old single guy? Kind of boring at times, but it’s home, you know. Not a lot of people move here, but not a lot of people leave, either. So maybe that speaks for itself. Klimek: What’s the geography like? Peters: It’s marshy. It’s wet. We’re kind of the last stretch of the Louisiana swamp, as we all know it. So it’s a wet, humid, difficult place at times. Klimek: One of the constants in Xander’s life growing up in East Texas was hurricanes. Peters: The most memorable was in 2005. Hurricane Rita pretty much was a direct impact to the region. I think it was my freshman year of high school. The power was out for three or four weeks. Society literally shut down. It was hard to get gas. You couldn’t really get groceries. Of course, there was Hurricane Harvey in 2017, and the list goes on. But it’s a fact of life here. Klimek: This area has already been impacted by hurricanes this summer, and there may be more to come. In July, Hurricane Beryl left millions without power in the dangerously high heat, leading to more than 20 deaths. Local officials can’t prevent these big storms, but they can try to prevent the damage, which is why one of the most ambitious and expensive infrastructure projects in the country is in progress, right there along the Galveston coast. But will it be enough to prevent loss of property and life? Or do we need an entirely different way of thinking? From Smithsonian magazine and PRX Productions, this is “There’s More to That,” the show that’s glad to be your nerdy listening alternative to the song of the summer. In this episode, we learn about the so-called Ike Dike going up in East Texas, as well as alternative flood prevention efforts that rely on nature itself. I’m Chris Klimek.Klimek: In the July/August issue of Smithsonian magazine, Xander Peters wrote about a place just a short drive from his hometown: the Bolivar Peninsula. Peters: It’s hard to imagine a more vulnerable geographic location than Bolivar Peninsula. It’s almost totally surrounded by water, so when a storm surge comes, it comes in nearly every direction. Klimek: What’s this region’s history with big storms? Peters: It’s hard to talk about southeast Texas without talking about its storms. It’s defined not just every generation, but every decade. Going back to the Galveston Storm of 1900, which claimed the most fatalities of any American natural disaster. We had Harvey in 2017, which was catastrophic flooding. The list goes on. At this point, I have mixed up the more recent names. I feel like, you know, your grandmother kind of does a roll call of all the children in the family. That’s how I feel about hurricanes now. Klimek: The biggest storm in Xander’s recent memory was 2008’s Hurricane Ike. Peters: We’d never seen the kind of storm surge result from a hurricane as we saw from Ike. And after that storm, it actually changed the way the National Hurricane Center conducts analysis and gives insight ahead of event into a storm surge. And, really, our broader understanding of what creates the disaster aspect of this kind of natural disaster. Klimek: Was it forecasted to be as catastrophic as it was? Peters: We knew it was going to be bad. It was a mandatory evacuation for, I think, even up to my region in East Texas, about 100 miles north of the coast. So we knew it was going to be bad. We at first thought it was going to be a direct hit to the Houston shipping channel, which is all kinds of bad news. We’re looking at $900 billion of goods that go up and down, much of which is oil and gas related, up and down the Houston shipping channel every year. We have the world’s largest petrochemical corridor. And if it’s a fuel, if it’s a gas, it’s being refined there. It’s being made there somehow. And then it’s going to faraway places like Europe. But we got lucky. It missed the shipping channel by about two miles, and it hit around Galveston and Bolivar instead. So Bolivar was not so lucky. But in terms of the larger human toll, very lucky. Because if a storm surge hits the Houston shipping channel directly, we could be looking at a Chernobyl-like event, just given some of the refining capacity across the region. Klimek: What did it look like there on the peninsula after Ike? Peters: There was nothing left. Sixty to 80 percent of the structures were gone. You look at Highway 87, which stretches down pretty much the entire span of the peninsula, and [it was covered in] one or two feet of sediment and mud. There were cattle carcasses, alligator carcasses. There were snakes and rats running wild, confused. There were laundry machines scattered everywhere. There was twisted metal, broken telephone poles, everything in a million huge piles. Klimek: In your story, you mentioned a smell that was very particular. Peters: Yeah. Death lingered for months. I mentioned the cattle carcasses, and there are human carcasses in some places. And all the grasses and the stuff in people’s houses was molding and rotting, and there’s just every foul smell you can imagine. I’m not a military veteran. I’ve never fought in a war. But I can imagine that’s what a battlefield would smell like, you know? Klimek: For more than 100 years, people in the area have been trying to prevent storm surges like this one. Peters: After the Galveston Storm in 1900, they built a kind of state-of-the-art seawall, which has been raised a couple times, if I’m not mistaken, over the last century or so. It was commissioned only a few years after the storm. Meanwhile, you look at Bolivar Peninsula, it has none of those same infrastructure protections. Klimek: So how did the idea of the Ike Dike come together? Peters: A lot of arguing. Klimek: The Ike Dike is the informal name for the massive infrastructure project that officials are betting the future of the Bolivar Peninsula on. Officially called the coastal Texas project, it involves three dozen sea gates leading up to the Houston shipping channel, and large concrete floodwalls to reinforce the city of Galveston. With a $34 billion price tag, it’s being overseen by the Army Corps of Engineers, but it was first envisioned by a local researcher. Peters: Dr. William Merrell. He’s a professor at Texas A&M Galveston, and he’s a marine scientist. He and his wife are also investors in some of the antique architecture across Galveston. As Ike blew in, he came up with a concept that was a barrier system around Galveston that would open and close ahead of events such as Ike. He sat down that evening, as the lights remained out, and started sketching out some of the first designs of what the federal government will break ground on in the coming months—after some 16 years. Klimek: Part of the delay came from the controversial nature of the project. Critics argued the Ike Dike would do irreparable damage to the environment, that it was too complex to work and that it was too expensive. Several different groups submitted their own plans. But after local officials asked Congress to step in, the Army Corps of Engineers was put in charge. Federal help comes with federal money. Klimek (to Peters): Who’s funding this, and what kind of money are we talking about? Peters: Sixty-five percent is coming from the federal government. Texas will pick up the remaining 35 percent. Only about $500,000 of that’s been allocated so far. But the Army Corps says accounting for inflation and everything else that threw it off the end of the project, we’re probably looking at something close to $55 billion. And I wouldn’t be surprised if it’s higher than that. Klimek: All right. So, assuming all this investment buys what we hope it does, how is the dike intended to protect Galveston from storm surges? How will it work? Peters: The whole idea is to stop the water at the sea, not let the water get into the Houston Ship Channel, which causes flooding all the way across it. So essentially, it’s a big gate that, in theory, will stop this huge wall of water as it surges toward the coast ahead of hurricane events like Ike and other ones. It draws on a Dutch flood theory, and the Dutch have some of the earliest forms of flood mitigation systems. Nothing like this has ever been even attempted in the U.S. Not at this scale, not with these high of stakes. It’s a new defining of how not just the federal government, but state governments as well, are going to approach building our way out of the climate crisis. Klimek: How will the gate-and-ring system work? Peters: Twenty-four to 48 hours ahead of a storm surge event, the alerts start going out, and they start moving some of the first ships out of the Houston Ship Channel. And, essentially, they have to hit that button to close the two main gates at the right time so that not too much water gets past it as the storm surge begins coming in in the 12 or 18 hours ahead of a hurricane. When I think of the Ike Dike gates closing, I think of, like, Indiana Jones when the stone rolls out of the cave after him, in terms of what these massive walls will look like moving toward each other. Klimek: How will the Ike Dike incorporate natural storm barriers like sand dunes? Peters: There along Bolivar Peninsula, we’re going to see a massive dune system. I think it was 12- to 14-foot dunes with a swale between them. That is going to line the stretch between Highway 87 and the beachfront. And that’s just piling sediment and sand on top of each other to create a wall. That’s nothing different than what the tides have done themselves, except to a much, much, much larger degree. And then in other places, we’re going to see wetlands restoration, which helps buffer storm surge from the coast. I think it was 6,600 acres of wetlands restoration or remediation for similar marshlands. So it’s equally significant — the natural restoration process — as much as the engineering phase of the project. Klimek: What kind of concerns have environmentalists raised about the coastal Texas project? Peters: Rightful ones, actually. It’s to be expected when you essentially inject these enormous concrete structures into ecosystems. Over the last 50 years in the Netherlands, environmental researchers have noticed changes to ecosystems, sediment patterns being shifted around. And that’s the same concern that we’re seeing on the Texas coast. These are unprecedented actions. A lot of this project is operating on hypothesis and theory. We probably can expect to see some ecological changes along the Texas coast as a result of it long term. Klimek: So how does what they’re trying to do in Galveston reflect how we’re responding nationally to increasingly severe storms and floods? Peters: I guess we’re paying attention now. It took a long time to get to this point. We’re approaching the 16-year anniversary of Ike, and you look at the Houston Ship Channel. You look at Bolivar and the months after Ike. It’s a pretty convincing argument. And over the years, we’ve seen the same argument made over and over. It’s very slow-moving, and I feel it’s very difficult to respond to a fast-moving crisis with a slow-moving solution, but it seems to be the best we have.Klimek: For more context on floods and their potential solutions, we reached out to an expert. Eric Sanderson: Hi everyone, I’m Dr. Eric Sanderson. I’m the vice president for urban conservation at the New York Botanical Garden. I live and work in New York City, and I’ve studied the historical ecology of New York for many years. Klimek: Eric recently spoke about flooding on New York Botanical Garden’s new podcast, “Plant People.” And while New York City may be far from Houston, it faces many of the same challenges. Sanderson: I was here during Hurricane Sandy, and I was here during Hurricane Ida. And after Sandy, I made this map that showed that the areas that flooded during Sandy were more or less where the tidal marshes were around the city. And I showed that around. And at the time, a lot of people are like, oh, well, that’s kind of interesting. But I guess that makes sense. Those would be the lowest places, right? But then Hurricane Ida happened in 2021, and Hurricane Ida was not a coastal storm, but an intense rainstorm. And what re-emerged were the upland streams and wetlands and ponds and places that people weren’t expecting. I made a map there, kind of compared that, and I started talking about it, and I wrote a little thing that was in the New York Times that just made the case that the water is going to go where the water is going to go, and that’s going to be downhill, and that’s going to be where the old streams were. Klimek: Eric does a lot of work with historic maps. He overlays the original topography of a place with the city we know now to reveal where the rivers, lakes, streams and marshes used to be. Often these are the very same places that flood during storms. Sanderson: We call those areas “blue zones,” and they cover some 20 percent of New York City. Places where about a million people live. Klimek: So you’re saying that some of the flooding resulting from Hurricane Ida happened in surprising places, places that were not predicted to flood? Sanderson: Yes. Basements were flooded. And it turns out that a lot of those places were former wetlands or ponds or streams. Because when we build, the city will fill in the wetland. But it’s actually hard to raise the topography high enough that you divert the direction of the water. The water goes where the water has always gone. Klimek: Eric says some of the best examples can be found in our nation’s airports. Sanderson: Think about where JFK Airport is, or LaGuardia Airport, in New York. JFK Airport is built on a big salt marsh. The Great Haystack, as it was called. LaGuardia is actually built in Bowery Bay. It was built in a bay! They filled in the bay, and they built the airport. And why is that? Why did they do that? It’s because by the time we decided we wanted commercial aviation in the late ’20s and 1930s, most of the upland had been built on, right? And so, you know, you weren’t going to, like, clear Flatbush in order to build an airport. What the city did is they took whatever they had, which was the near-coastal zone, and they filled it in. That’s what LaGuardia [is]. And that’s what we did for JFK, and that’s Newark Airport. But that’s also, you know, Reagan Airport in D.C., and that’s also SFO in San Francisco and the Oakland Airport and practically every airport in a coastal city. And it’s because of the relationship of when that technological economic activity developed in the historical projection of the city. It’s fascinating. Klimek: Are there specific human populations most likely to be affected by floods? Sanderson: Yeah. Well, everybody who’s in a low spot. It turns out, of course, that those places have been wet for a long time. Many of them were less desirable. And there’s two consequences of that: One is that they’re disproportionately in public hands, still. So there are places where schools are, where public housing is, where parks are. Because those places were less desirable for private development in the past. And so they tended to stay in the public sphere. The other sort of important factor is poor people. You know, people with less power and less financial capacity tend to go to the places that are more affordable and in some sense have been, you know, shunted by the various systematic mechanisms. You know, redlining and these sorts of things tend to push people into certain precincts of the city. It just turns out that some of those precincts of the city were formerly wetlands, and then those former wetlands are starting to flood again. We did an analysis of our blue zones against environmental justice areas of the city. And about a third of the blue zones overlap with areas that are identified as environmental justice communities. Klimek: Our magazine story about flooding is largely set in Houston, which, you know, in recent days as we’re speaking has been hit by Hurricane Beryl-related flooding. But this obviously has been a problem there for decades, considering that Houston, too, was built on a swamp. Why are so many of our major U.S. cities built on floodplains? Sanderson: They weren’t built to destroy swamps, per se. It’s more, if you think about where it’s a good place to put a city, there’s sort of four factors. One is that there is food. So you have to have agricultural land nearby, and you need water. You need fresh water, right? You also want to be on a trade route. So that means cities like to be on the coast, or on major rivers, or some way of moving stuff around. And the fourth one is defense. A lot of cities were founded at a time where, you know, you had to worry about other people. So they’re often in defensive places. It’s maybe worth saying, Chris, that once a city is established, the next best place to put a city is right beside the city you already have. Once you have that core, then they tend to grow out sort of radially from them. Klimek: So in Houston, the so-called Ike Dike, this massive infrastructure project—I want to ask how you feel about these kinds of large-scale solutions. Is there a limit to what can be achieved with these kinds of massive infrastructure projects? Sanderson: I can’t speak specifically to the details of Houston, but there’s similar sorts of things proposed here in New York. And what I would just say is, I don’t think you can solve the problem with the same kind of thinking that created it in the first place. There was this idea that developed during the Enlightenment, and was expressed through the Industrial Age and into the 20th century, that we could basically control nature. That we were smarter and more powerful than nature is. And the consequences of that are that we have radically changed the atmospheric composition of the Earth in such a way that it’s holding in more energy and creating these storms. So there’s that. And then, you know, we thought, “We can build on a beach, we can build on a wetland. We’ll just fill it in; it’ll be fine.” But we didn’t anticipate sea-level rise and climate change and more severe storms. And so I really think this is a moment where we need a different way of thinking and another kind of wisdom. Klimek: What would a more comprehensive long-term solution for a coastal city, whether it’s Houston or New York, what would that look like if we had some way to address all of this pre-existing construction, and the fact that we’re having to interpolate centuries of prior development? If we could somehow put that aside and just think about the future, what would you do? Sanderson: So I would take the historical lesson, which is that we’ve overbuilt in some places, we built in places that we shouldn’t have. And so, what should we do? I think there are some places where we need to invest in nature instead of more infrastructure. I think it’s actually the reverse thing. Don’t build a giant wall; build a giant park. Don’t build a new storm drain; build a stream. Don’t build another massive retention pond that you don’t know how big to make it; build a wetland that knows how to adapt to changing conditions. And that’s hard, because it means that it just isn’t a problem of the neighborhoods that are flooding. It’s also a problem of the upland areas that aren’t flooding. If a million people need to move, and we need to build another million housing units in safer places—and probably more to help with the housing affordability and other things, right? This is what I mean. It challenges us at many levels. It challenges us in terms of the wisdom to know what to do as an individual person or individual family, but it also challenges our social structures. We need to have a mechanism to try and work that out, and then we need to restore the nature that we destroyed, and that will save us. Klimek: Do plants have a role to play in addressing some of the problems we’re having with flooding? Sanderson: Planting really is the key here. And that’s what I mean by restoring nature from a water perspective. When you see a tree, you should think of a straw. You have this organism that has these roots that are going down into the ground, and they’re pulling the water out and they’re putting it back in the atmosphere. The traditional way of managing water in the city is to build pipes and infrastructures that replace the streams, right? And then take it to the water treatment plants. That’s sort of this one way of managing water. And the goal is to get rid of it as fast as possible. Nature’s way is: There’s many routes that water can take. Water can run down a stream, but it can also percolate into the ground and into the aquifer. Or it can evaporate or evapotranspiration through trees and up into the atmosphere, right? It has multiple pathways to go. So these are all sorts of lessons out of ecology that we can apply with plants to make flooding better. More trees is going to help with interception. It’s going to help with groundwater flows, and it’s going to help with evapotranspiration. More wetland plants is going to help with slowing the water, holding the water and providing habitat for other organisms that use that water. Nature’s been at this for a long time. Like, it really has a lot of great tricks that we can lean into in a way that can make our lives better, too. Klimek: Eric spoke about another innovative solution called “stream daylighting.” Most of the small streams that used to exist in the landscape have been forced underground, rerouted into pipes or otherwise covered by our urban infrastructure. Daylighting restores the streams, bringing them back up to the surface. Sanderson: Here in New York City, there’s this fascinating story on Staten Island that when Staten Island was developing, there was this moment where they were about to spend a lot of money on their sewage infrastructure. And then someone said, well, why don’t we put some of that money into just restoring the streams? And then the streams can help with the stormwater. We can do some adaptations. We can build some ponds and things to help hold a little bit more water in the system. And then the sewage system can just deal with the sewage and not have to deal with the stormwater. But then there’s other things that are being invented, like a green roof. You know, a green roof actually slows the water down. And it used to be that our green roofs, you know, were pretty shallow. But there’s been a lot of experimentation. I was slightly involved with a project that Google built in New York, where they took an old industrial building that was strong enough that they used to drive trains into this building, like locomotives, at the end of the High Line. It’s now an office building, and they popped up the middle of it to create the office structures, and then they put green roofs on them, and those green roofs could hold enough weight that they can have trees on them. Trees and shrubs and plants. And then they planted them with 95 percent native plants. So they’re doing the water thing and they’re doing the biodiversity thing at the same time. It’s a really beautiful project, and an acre and a half of habitat on the West Side of Manhattan. Incredible. Klimek: The solutions to flooding as a result of coastal surges—are those different from rainfall-induced flooding, or do we address them in the same way? Sanderson: We have to address them in different kinds of ways, because the coastal storm surge, that’s the sea level. And then the waves that are being driven by a storm. And so that’s really about, in my view, dunes and beaches and maybe oyster reefs to help break that energy of the storm water and then salt marshes to help absorb it. If it’s an intense rainfall, I think that’s about streams and wetlands and interior modifications giving the water someplace to go. The problem is that you could try and solve one and mess up the other. I think this is why the engineers are so interested in this problem, and they can design something if you tell them what to design for. It’s easy to do the design, but then to miss the specification by a little bit. Remember during Hurricane Sandy when there was that famous photograph of Lower Manhattan being all dark? That’s because the flood took out a power plant that was on the East Side of Manhattan. There was on a little hill beside an old salt marsh. It was designed to be 12 feet above the tide, and that storm surge was 14 feet. So it was just two feet over. You know, like, if they designed it at 14 or 16 feet or would have been OK. When they built that thing, nobody knew exactly what it was. You’re taking a guess. You’re sort of rolling the dice. Natural systems are adaptive on their own. So it’s not like there’s a design blueprint for nature that says, this is exactly what it’ll do. Nature’s a little bit more adaptable, and it can do kind of different sorts of things. And I think that’s a strength in the long run. But it makes people uncertain in the short run. Klimek: Are there any other solutions we haven’t gotten to yet, either in New York City or other cities, approaches to addressing flooding that you find worthy of exploration? Sanderson: We didn’t mention specifically things like bioswales, which are sort of like a small little version of a forest or a little wetland on the side of a street. There’s this idea of permeable pavers, you know, allowing water to get to the ground. Essentially, we’ve covered our cities in stone because we don’t like mud. Essentially, we’ve paved over the city, and our buildings are built in these hard materials, which are like stone and glass and so forth. And so that’s why the water sheets off of it. And, you know, anybody can do this experiment. You just take a bucket of water and go outside and pour it on a rock and watch how fast the water comes off. And then you pour it on the adjacent soil and you’ll see how fast it infiltrates to the ground and doesn’t run off. And so we’ve hardened the city. Anything we can do to soften the city that way, to expose the soil, it’s going to help us with water. I think the only thing to say about that, of course, is that, you know, in the historical conditions, when it was a forest, the water that was in the ground would either eventually emerge in a spring and a stream or go down into the aquifer and then out into the ocean. Now we have other stuff that’s also on the ground, like the subway system and like all the electrical wires, and all the plumbing. So it’s a little bit more complicated. There’s a lot of work in cities to put water in the ground, and I totally understand why. But if you’re ever in New York City on a rainy day, it’s raining above the ground and it’s raining below the ground, in the subway system. Water is single-minded like this. It just wants to go downhill. Klimek: It sounds like we really need to think about more than just rerouting water to solve some of these problems that coastal cities are experiencing. What are the opportunities that we could open up by thinking about more than just moving excess water from one place to another place? Sanderson: Well, I think we need to think about the mitigation side. Of course, everything we’ve talked about adapting to flooding doesn’t mean we don’t have to do something about trying to decrease the amount of carbon that’s in the atmosphere. Floods are a big problem in cities, both because of the way we’ve made our cities and because of the way cities have changed the atmosphere. I mean, there’s the basic climate change fact that the atmosphere has a lot more carbon dioxide in it and other greenhouse gases than it did before. Those holding the heat, the warmer air holds more water and has more energy. And so that creates larger storms. So there’s that. One thing I think a lot about is we tend to forget that we make a lot of choices about how we live in the city. So there’s a sort of lifestyle aspect to this, as well as a sort of urban planning aspect to it, if you like. And I think we could do a lot more on the lifestyle side. Some of that is just coming to this expectation that, yes, there’s going to be flooding in our cities and another ecosystems, right? These things are not going away anytime soon. So we just need to, like, reset, maybe, our expectation that we can build pipes large enough to handle all the water and that, you know, despite whatever the conditions are, if it’s pouring rain, maybe you can’t go outside, or maybe you can’t do something that you were able to do before. So that’s one thing. A second one is to sort of think about those sort of lifestyle choices in terms of all the things you need to do about them. Flooding, about where the water goes, that’s in conversation with where the cars go and where people go. So the transportation networks. There’s some clever ideas there. If you look at the New York City streets now, they’re designed with this bend, so they’re higher in the middle so that the water sheets off toward the gutters on the side. But there’s been some experiments in cities around the world to build them the other way, lower in the middle, and the water comes in. And so basically when there’s a flood, you close the road. And for the short period of time, that road is a stream. Not traffic. It’s a stream. And it turns out that some of our roads are on old streams. And so that kind of solution could work. So these are quite clever things that you can do. Klimek: How would it benefit people to take that into account, to start to think more ecologically and adjust our expectations? How would we ultimately benefit from this? Sanderson: Well, in the near term, we won’t die, right? Like we won’t drown, and we won’t lose our stuff, and we won’t have the social unrest that arises from those bad things. But to sort of turn around in a positive mode at some level, I think this is what life is for, right? Knowing how to live here on Earth with the nature that we have. It’s that kind of deep-seated understanding and desire to be the best person I can be in this amazing, amazing planet that we have that has led my whole career in conservation. Klimek: Eric Sanderson is the vice president of urban conservation for the New York Botanical Garden. He is also the author of Mannahatta: A Natural History of New York City, which is an ecological history of Manhattan Island. Thank you, Dr. Sanderson, for talking with us. Sanderson: Terrific. Thank you so much, Chris. Klimek: To hear more from Eric Sanderson, subscribe to NYBG’s brand new podcast, which is called “Plant People.” We’ll put a link in our show notes along with links to more resources, including Xander Peters’ Smithsonian article about the Ike Dike.Klimek: Before we let you go, let’s give you one last dinner party fact to tide you over as we wrap up our season. Ted Scheinman: I’m Ted Scheinman. I’m a senior editor here at Smithsonian magazine, and I recently edited a great piece by our frequent contributor Richard Grant about Akito Kawahara, who is a butterfly scientist at the University of Florida. And Kawahara’s recent research has changed our understanding of butterflies in major ways. He has traced the evolution of butterflies directly from moths. Butterflies became butterflies when they became day-flying, essentially. But a really curious and, to me, sort of funny wrinkle here is that some of those butterflies who escaped the night and became day-flying, then evolved back into being night fliers and into essentially being moths again, which I can’t help but consider a sort of step backward, like moving back in with your parents or something. But it goes to show you that, you know, evolution is not, you know, directional. And it always brings up some crazy stuff.Klimek: I hope you liked this season of “There’s More of That.” We did something new for us, and we hope that our episodes gave you a sense of what the world of Smithsonian magazine is all about. We’d love to hear from you about how the season was and, more importantly, what you want to hear more of. We’re taking time between seasons to make the show even better. Having your help is key. So if you have the time to help us design our future episodes, please take this survey. You can find it at SmithsonianMag.com/podcastsurvey. It should take about five minutes. “There’s More to That” is a production of Smithsonian magazine and PRX Productions. From the magazine. Our team is me, Debra Rosenberg and Brian Wolly. From PRX, our team is Jessica Miller, Genevieve Sponsler, Adriana Rozas Rivera, Ry Dorsey and Edwin Ochoa. The executive producer of PRX Productions is Jocelyn Gonzales. Our episode artwork is by Emily Lankiewicz. Fact-checking by Stephanie Abramson. Our music is from APM Music. I’m Chris Klimek. Thank you for listening. Get the latest Science stories in your inbox.

A massive project prompted by the wildly destructive Hurricane Ike offers a solutions-based preview of our climate future

Smithmag-Podcast-S02-Ep13-Hurricane-article.jpg
Illustration by Emily Lankiewicz / Images via public domain / Library of Congress / FEMA / NASA / Carl & Ann Purcell / Getty Images

After Hurricane Ike destroyed thousands of homes and inflicted an estimated $30 billion in damages in 2008, engineers hatched an ambitious plan to protect southeast Texas and its coastal refineries and shipping routes from violent storms. The $34 billion collaboration spearheaded by the U.S. Army Corps of Engineers is a harbinger of the type of massive public works projects that could be required to protect coastal cities like New York and Miami as sea levels rise and hurricanes become less predictable and more severe due to climate change.

In this episode of “There’s More to That,” Smithsonian magazine contributor and Texas native Xander Peters reflects on his experiences growing up in a hurricane corridor and tells us how the wildly ambitious effort came together. Then, Eric Sanderson, an ecological historian, tells us how the project could be applied to other low-lying coastal cities.

A transcript is below. To subscribe to “There’s More to That,” and to listen to past episodes on how a new generation of high-end West African restaurants is revealing the roots of “Southern” cuisine, why Colombian conservationists are now trying to sterilize the hippos descended from drug kingpin Pablo Escobar’s personal menagerie, what humans’ great acumen for sweating has contributed to our evolution and more, find us on Apple Podcasts, Spotify or wherever you get your podcasts.


Chris Klimek: What part of Texas are you from?

Xander Peters: I’m over here in East Texas. We’re about 30 miles from the Louisiana border.

Klimek: Xander Peters is a contributor to Smithsonian magazine.

Peters: It’s a real small town, about 2,000 people.

Klimek: What’s life like there?

Peters: As a 33-year-old single guy? Kind of boring at times, but it’s home, you know. Not a lot of people move here, but not a lot of people leave, either. So maybe that speaks for itself.

Klimek: What’s the geography like?

Peters: It’s marshy. It’s wet. We’re kind of the last stretch of the Louisiana swamp, as we all know it. So it’s a wet, humid, difficult place at times.

Klimek: One of the constants in Xander’s life growing up in East Texas was hurricanes.

Peters: The most memorable was in 2005. Hurricane Rita pretty much was a direct impact to the region. I think it was my freshman year of high school. The power was out for three or four weeks. Society literally shut down. It was hard to get gas. You couldn’t really get groceries. Of course, there was Hurricane Harvey in 2017, and the list goes on. But it’s a fact of life here.

Klimek: This area has already been impacted by hurricanes this summer, and there may be more to come. In July, Hurricane Beryl left millions without power in the dangerously high heat, leading to more than 20 deaths. Local officials can’t prevent these big storms, but they can try to prevent the damage, which is why one of the most ambitious and expensive infrastructure projects in the country is in progress, right there along the Galveston coast. But will it be enough to prevent loss of property and life? Or do we need an entirely different way of thinking?

From Smithsonian magazine and PRX Productions, this is “There’s More to That,” the show that’s glad to be your nerdy listening alternative to the song of the summer. In this episode, we learn about the so-called Ike Dike going up in East Texas, as well as alternative flood prevention efforts that rely on nature itself. I’m Chris Klimek.


Klimek: In the July/August issue of Smithsonian magazine, Xander Peters wrote about a place just a short drive from his hometown: the Bolivar Peninsula.

Peters: It’s hard to imagine a more vulnerable geographic location than Bolivar Peninsula. It’s almost totally surrounded by water, so when a storm surge comes, it comes in nearly every direction.

Klimek: What’s this region’s history with big storms?

Peters: It’s hard to talk about southeast Texas without talking about its storms. It’s defined not just every generation, but every decade. Going back to the Galveston Storm of 1900, which claimed the most fatalities of any American natural disaster. We had Harvey in 2017, which was catastrophic flooding. The list goes on. At this point, I have mixed up the more recent names. I feel like, you know, your grandmother kind of does a roll call of all the children in the family. That’s how I feel about hurricanes now.

Klimek: The biggest storm in Xander’s recent memory was 2008’s Hurricane Ike.

Peters: We’d never seen the kind of storm surge result from a hurricane as we saw from Ike. And after that storm, it actually changed the way the National Hurricane Center conducts analysis and gives insight ahead of event into a storm surge. And, really, our broader understanding of what creates the disaster aspect of this kind of natural disaster.

Klimek: Was it forecasted to be as catastrophic as it was?

Peters: We knew it was going to be bad. It was a mandatory evacuation for, I think, even up to my region in East Texas, about 100 miles north of the coast. So we knew it was going to be bad. We at first thought it was going to be a direct hit to the Houston shipping channel, which is all kinds of bad news. We’re looking at $900 billion of goods that go up and down, much of which is oil and gas related, up and down the Houston shipping channel every year. We have the world’s largest petrochemical corridor. And if it’s a fuel, if it’s a gas, it’s being refined there. It’s being made there somehow. And then it’s going to faraway places like Europe.

But we got lucky. It missed the shipping channel by about two miles, and it hit around Galveston and Bolivar instead. So Bolivar was not so lucky. But in terms of the larger human toll, very lucky. Because if a storm surge hits the Houston shipping channel directly, we could be looking at a Chernobyl-like event, just given some of the refining capacity across the region.

Klimek: What did it look like there on the peninsula after Ike?

Peters: There was nothing left. Sixty to 80 percent of the structures were gone. You look at Highway 87, which stretches down pretty much the entire span of the peninsula, and [it was covered in] one or two feet of sediment and mud. There were cattle carcasses, alligator carcasses. There were snakes and rats running wild, confused. There were laundry machines scattered everywhere. There was twisted metal, broken telephone poles, everything in a million huge piles.

Klimek: In your story, you mentioned a smell that was very particular.

Peters: Yeah. Death lingered for months. I mentioned the cattle carcasses, and there are human carcasses in some places. And all the grasses and the stuff in people’s houses was molding and rotting, and there’s just every foul smell you can imagine. I’m not a military veteran. I’ve never fought in a war. But I can imagine that’s what a battlefield would smell like, you know?

Klimek: For more than 100 years, people in the area have been trying to prevent storm surges like this one.

Peters: After the Galveston Storm in 1900, they built a kind of state-of-the-art seawall, which has been raised a couple times, if I’m not mistaken, over the last century or so. It was commissioned only a few years after the storm. Meanwhile, you look at Bolivar Peninsula, it has none of those same infrastructure protections.

Klimek: So how did the idea of the Ike Dike come together?

Peters: A lot of arguing.

Klimek: The Ike Dike is the informal name for the massive infrastructure project that officials are betting the future of the Bolivar Peninsula on. Officially called the coastal Texas project, it involves three dozen sea gates leading up to the Houston shipping channel, and large concrete floodwalls to reinforce the city of Galveston. With a $34 billion price tag, it’s being overseen by the Army Corps of Engineers, but it was first envisioned by a local researcher.

Peters: Dr. William Merrell. He’s a professor at Texas A&M Galveston, and he’s a marine scientist. He and his wife are also investors in some of the antique architecture across Galveston. As Ike blew in, he came up with a concept that was a barrier system around Galveston that would open and close ahead of events such as Ike. He sat down that evening, as the lights remained out, and started sketching out some of the first designs of what the federal government will break ground on in the coming months—after some 16 years.

Klimek: Part of the delay came from the controversial nature of the project. Critics argued the Ike Dike would do irreparable damage to the environment, that it was too complex to work and that it was too expensive. Several different groups submitted their own plans. But after local officials asked Congress to step in, the Army Corps of Engineers was put in charge. Federal help comes with federal money.

Klimek (to Peters): Who’s funding this, and what kind of money are we talking about?

Peters: Sixty-five percent is coming from the federal government. Texas will pick up the remaining 35 percent. Only about $500,000 of that’s been allocated so far. But the Army Corps says accounting for inflation and everything else that threw it off the end of the project, we’re probably looking at something close to $55 billion. And I wouldn’t be surprised if it’s higher than that.

Klimek: All right. So, assuming all this investment buys what we hope it does, how is the dike intended to protect Galveston from storm surges? How will it work?

Peters: The whole idea is to stop the water at the sea, not let the water get into the Houston Ship Channel, which causes flooding all the way across it. So essentially, it’s a big gate that, in theory, will stop this huge wall of water as it surges toward the coast ahead of hurricane events like Ike and other ones. It draws on a Dutch flood theory, and the Dutch have some of the earliest forms of flood mitigation systems. Nothing like this has ever been even attempted in the U.S. Not at this scale, not with these high of stakes. It’s a new defining of how not just the federal government, but state governments as well, are going to approach building our way out of the climate crisis.

Klimek: How will the gate-and-ring system work?

Peters: Twenty-four to 48 hours ahead of a storm surge event, the alerts start going out, and they start moving some of the first ships out of the Houston Ship Channel. And, essentially, they have to hit that button to close the two main gates at the right time so that not too much water gets past it as the storm surge begins coming in in the 12 or 18 hours ahead of a hurricane. When I think of the Ike Dike gates closing, I think of, like, Indiana Jones when the stone rolls out of the cave after him, in terms of what these massive walls will look like moving toward each other.

Klimek: How will the Ike Dike incorporate natural storm barriers like sand dunes?

Peters: There along Bolivar Peninsula, we’re going to see a massive dune system. I think it was 12- to 14-foot dunes with a swale between them. That is going to line the stretch between Highway 87 and the beachfront. And that’s just piling sediment and sand on top of each other to create a wall. That’s nothing different than what the tides have done themselves, except to a much, much, much larger degree. And then in other places, we’re going to see wetlands restoration, which helps buffer storm surge from the coast. I think it was 6,600 acres of wetlands restoration or remediation for similar marshlands. So it’s equally significant — the natural restoration process — as much as the engineering phase of the project.

Klimek: What kind of concerns have environmentalists raised about the coastal Texas project?

Peters: Rightful ones, actually. It’s to be expected when you essentially inject these enormous concrete structures into ecosystems. Over the last 50 years in the Netherlands, environmental researchers have noticed changes to ecosystems, sediment patterns being shifted around. And that’s the same concern that we’re seeing on the Texas coast. These are unprecedented actions. A lot of this project is operating on hypothesis and theory. We probably can expect to see some ecological changes along the Texas coast as a result of it long term.

Klimek: So how does what they’re trying to do in Galveston reflect how we’re responding nationally to increasingly severe storms and floods?

Peters: I guess we’re paying attention now. It took a long time to get to this point. We’re approaching the 16-year anniversary of Ike, and you look at the Houston Ship Channel. You look at Bolivar and the months after Ike. It’s a pretty convincing argument. And over the years, we’ve seen the same argument made over and over. It’s very slow-moving, and I feel it’s very difficult to respond to a fast-moving crisis with a slow-moving solution, but it seems to be the best we have.


Klimek: For more context on floods and their potential solutions, we reached out to an expert.

Eric Sanderson: Hi everyone, I’m Dr. Eric Sanderson. I’m the vice president for urban conservation at the New York Botanical Garden. I live and work in New York City, and I’ve studied the historical ecology of New York for many years.

Klimek: Eric recently spoke about flooding on New York Botanical Garden’s new podcast, “Plant People.” And while New York City may be far from Houston, it faces many of the same challenges.

Sanderson: I was here during Hurricane Sandy, and I was here during Hurricane Ida. And after Sandy, I made this map that showed that the areas that flooded during Sandy were more or less where the tidal marshes were around the city. And I showed that around. And at the time, a lot of people are like, oh, well, that’s kind of interesting. But I guess that makes sense. Those would be the lowest places, right? But then Hurricane Ida happened in 2021, and Hurricane Ida was not a coastal storm, but an intense rainstorm. And what re-emerged were the upland streams and wetlands and ponds and places that people weren’t expecting. I made a map there, kind of compared that, and I started talking about it, and I wrote a little thing that was in the New York Times that just made the case that the water is going to go where the water is going to go, and that’s going to be downhill, and that’s going to be where the old streams were.

Klimek: Eric does a lot of work with historic maps. He overlays the original topography of a place with the city we know now to reveal where the rivers, lakes, streams and marshes used to be. Often these are the very same places that flood during storms.

Sanderson: We call those areas “blue zones,” and they cover some 20 percent of New York City. Places where about a million people live.

Klimek: So you’re saying that some of the flooding resulting from Hurricane Ida happened in surprising places, places that were not predicted to flood?

Sanderson: Yes. Basements were flooded. And it turns out that a lot of those places were former wetlands or ponds or streams. Because when we build, the city will fill in the wetland. But it’s actually hard to raise the topography high enough that you divert the direction of the water. The water goes where the water has always gone.

Klimek: Eric says some of the best examples can be found in our nation’s airports.

Sanderson: Think about where JFK Airport is, or LaGuardia Airport, in New York. JFK Airport is built on a big salt marsh. The Great Haystack, as it was called. LaGuardia is actually built in Bowery Bay. It was built in a bay! They filled in the bay, and they built the airport. And why is that? Why did they do that? It’s because by the time we decided we wanted commercial aviation in the late ’20s and 1930s, most of the upland had been built on, right?

And so, you know, you weren’t going to, like, clear Flatbush in order to build an airport. What the city did is they took whatever they had, which was the near-coastal zone, and they filled it in. That’s what LaGuardia [is]. And that’s what we did for JFK, and that’s Newark Airport. But that’s also, you know, Reagan Airport in D.C., and that’s also SFO in San Francisco and the Oakland Airport and practically every airport in a coastal city. And it’s because of the relationship of when that technological economic activity developed in the historical projection of the city. It’s fascinating.

Klimek: Are there specific human populations most likely to be affected by floods?

Sanderson: Yeah. Well, everybody who’s in a low spot. It turns out, of course, that those places have been wet for a long time. Many of them were less desirable. And there’s two consequences of that: One is that they’re disproportionately in public hands, still. So there are places where schools are, where public housing is, where parks are. Because those places were less desirable for private development in the past. And so they tended to stay in the public sphere. The other sort of important factor is poor people. You know, people with less power and less financial capacity tend to go to the places that are more affordable and in some sense have been, you know, shunted by the various systematic mechanisms. You know, redlining and these sorts of things tend to push people into certain precincts of the city. It just turns out that some of those precincts of the city were formerly wetlands, and then those former wetlands are starting to flood again. We did an analysis of our blue zones against environmental justice areas of the city. And about a third of the blue zones overlap with areas that are identified as environmental justice communities.

Klimek: Our magazine story about flooding is largely set in Houston, which, you know, in recent days as we’re speaking has been hit by Hurricane Beryl-related flooding. But this obviously has been a problem there for decades, considering that Houston, too, was built on a swamp. Why are so many of our major U.S. cities built on floodplains?

Sanderson: They weren’t built to destroy swamps, per se. It’s more, if you think about where it’s a good place to put a city, there’s sort of four factors. One is that there is food. So you have to have agricultural land nearby, and you need water. You need fresh water, right? You also want to be on a trade route. So that means cities like to be on the coast, or on major rivers, or some way of moving stuff around. And the fourth one is defense. A lot of cities were founded at a time where, you know, you had to worry about other people. So they’re often in defensive places. It’s maybe worth saying, Chris, that once a city is established, the next best place to put a city is right beside the city you already have. Once you have that core, then they tend to grow out sort of radially from them.

Klimek: So in Houston, the so-called Ike Dike, this massive infrastructure project—I want to ask how you feel about these kinds of large-scale solutions. Is there a limit to what can be achieved with these kinds of massive infrastructure projects?

Sanderson: I can’t speak specifically to the details of Houston, but there’s similar sorts of things proposed here in New York. And what I would just say is, I don’t think you can solve the problem with the same kind of thinking that created it in the first place.

There was this idea that developed during the Enlightenment, and was expressed through the Industrial Age and into the 20th century, that we could basically control nature. That we were smarter and more powerful than nature is. And the consequences of that are that we have radically changed the atmospheric composition of the Earth in such a way that it’s holding in more energy and creating these storms. So there’s that. And then, you know, we thought, “We can build on a beach, we can build on a wetland. We’ll just fill it in; it’ll be fine.” But we didn’t anticipate sea-level rise and climate change and more severe storms. And so I really think this is a moment where we need a different way of thinking and another kind of wisdom.

Klimek: What would a more comprehensive long-term solution for a coastal city, whether it’s Houston or New York, what would that look like if we had some way to address all of this pre-existing construction, and the fact that we’re having to interpolate centuries of prior development? If we could somehow put that aside and just think about the future, what would you do?

Sanderson: So I would take the historical lesson, which is that we’ve overbuilt in some places, we built in places that we shouldn’t have. And so, what should we do? I think there are some places where we need to invest in nature instead of more infrastructure. I think it’s actually the reverse thing. Don’t build a giant wall; build a giant park. Don’t build a new storm drain; build a stream. Don’t build another massive retention pond that you don’t know how big to make it; build a wetland that knows how to adapt to changing conditions.

And that’s hard, because it means that it just isn’t a problem of the neighborhoods that are flooding. It’s also a problem of the upland areas that aren’t flooding. If a million people need to move, and we need to build another million housing units in safer places—and probably more to help with the housing affordability and other things, right? This is what I mean. It challenges us at many levels. It challenges us in terms of the wisdom to know what to do as an individual person or individual family, but it also challenges our social structures. We need to have a mechanism to try and work that out, and then we need to restore the nature that we destroyed, and that will save us.

Klimek: Do plants have a role to play in addressing some of the problems we’re having with flooding?

Sanderson: Planting really is the key here. And that’s what I mean by restoring nature from a water perspective. When you see a tree, you should think of a straw. You have this organism that has these roots that are going down into the ground, and they’re pulling the water out and they’re putting it back in the atmosphere. The traditional way of managing water in the city is to build pipes and infrastructures that replace the streams, right? And then take it to the water treatment plants. That’s sort of this one way of managing water. And the goal is to get rid of it as fast as possible. Nature’s way is: There’s many routes that water can take. Water can run down a stream, but it can also percolate into the ground and into the aquifer. Or it can evaporate or evapotranspiration through trees and up into the atmosphere, right? It has multiple pathways to go.

So these are all sorts of lessons out of ecology that we can apply with plants to make flooding better. More trees is going to help with interception. It’s going to help with groundwater flows, and it’s going to help with evapotranspiration. More wetland plants is going to help with slowing the water, holding the water and providing habitat for other organisms that use that water. Nature’s been at this for a long time. Like, it really has a lot of great tricks that we can lean into in a way that can make our lives better, too.

Klimek: Eric spoke about another innovative solution called “stream daylighting.” Most of the small streams that used to exist in the landscape have been forced underground, rerouted into pipes or otherwise covered by our urban infrastructure. Daylighting restores the streams, bringing them back up to the surface.

Sanderson: Here in New York City, there’s this fascinating story on Staten Island that when Staten Island was developing, there was this moment where they were about to spend a lot of money on their sewage infrastructure. And then someone said, well, why don’t we put some of that money into just restoring the streams? And then the streams can help with the stormwater. We can do some adaptations. We can build some ponds and things to help hold a little bit more water in the system. And then the sewage system can just deal with the sewage and not have to deal with the stormwater.

But then there’s other things that are being invented, like a green roof. You know, a green roof actually slows the water down. And it used to be that our green roofs, you know, were pretty shallow. But there’s been a lot of experimentation. I was slightly involved with a project that Google built in New York, where they took an old industrial building that was strong enough that they used to drive trains into this building, like locomotives, at the end of the High Line. It’s now an office building, and they popped up the middle of it to create the office structures, and then they put green roofs on them, and those green roofs could hold enough weight that they can have trees on them. Trees and shrubs and plants. And then they planted them with 95 percent native plants. So they’re doing the water thing and they’re doing the biodiversity thing at the same time. It’s a really beautiful project, and an acre and a half of habitat on the West Side of Manhattan. Incredible.

Klimek: The solutions to flooding as a result of coastal surges—are those different from rainfall-induced flooding, or do we address them in the same way?

Sanderson: We have to address them in different kinds of ways, because the coastal storm surge, that’s the sea level. And then the waves that are being driven by a storm. And so that’s really about, in my view, dunes and beaches and maybe oyster reefs to help break that energy of the storm water and then salt marshes to help absorb it.

If it’s an intense rainfall, I think that’s about streams and wetlands and interior modifications giving the water someplace to go. The problem is that you could try and solve one and mess up the other. I think this is why the engineers are so interested in this problem, and they can design something if you tell them what to design for. It’s easy to do the design, but then to miss the specification by a little bit.

Remember during Hurricane Sandy when there was that famous photograph of Lower Manhattan being all dark? That’s because the flood took out a power plant that was on the East Side of Manhattan. There was on a little hill beside an old salt marsh. It was designed to be 12 feet above the tide, and that storm surge was 14 feet. So it was just two feet over. You know, like, if they designed it at 14 or 16 feet or would have been OK. When they built that thing, nobody knew exactly what it was. You’re taking a guess. You’re sort of rolling the dice. Natural systems are adaptive on their own.

So it’s not like there’s a design blueprint for nature that says, this is exactly what it’ll do. Nature’s a little bit more adaptable, and it can do kind of different sorts of things. And I think that’s a strength in the long run. But it makes people uncertain in the short run.

Klimek: Are there any other solutions we haven’t gotten to yet, either in New York City or other cities, approaches to addressing flooding that you find worthy of exploration?

Sanderson: We didn’t mention specifically things like bioswales, which are sort of like a small little version of a forest or a little wetland on the side of a street. There’s this idea of permeable pavers, you know, allowing water to get to the ground. Essentially, we’ve covered our cities in stone because we don’t like mud. Essentially, we’ve paved over the city, and our buildings are built in these hard materials, which are like stone and glass and so forth. And so that’s why the water sheets off of it.

And, you know, anybody can do this experiment. You just take a bucket of water and go outside and pour it on a rock and watch how fast the water comes off. And then you pour it on the adjacent soil and you’ll see how fast it infiltrates to the ground and doesn’t run off. And so we’ve hardened the city. Anything we can do to soften the city that way, to expose the soil, it’s going to help us with water. I think the only thing to say about that, of course, is that, you know, in the historical conditions, when it was a forest, the water that was in the ground would either eventually emerge in a spring and a stream or go down into the aquifer and then out into the ocean.

Now we have other stuff that’s also on the ground, like the subway system and like all the electrical wires, and all the plumbing. So it’s a little bit more complicated. There’s a lot of work in cities to put water in the ground, and I totally understand why. But if you’re ever in New York City on a rainy day, it’s raining above the ground and it’s raining below the ground, in the subway system. Water is single-minded like this. It just wants to go downhill.

Klimek: It sounds like we really need to think about more than just rerouting water to solve some of these problems that coastal cities are experiencing. What are the opportunities that we could open up by thinking about more than just moving excess water from one place to another place?

Sanderson: Well, I think we need to think about the mitigation side. Of course, everything we’ve talked about adapting to flooding doesn’t mean we don’t have to do something about trying to decrease the amount of carbon that’s in the atmosphere. Floods are a big problem in cities, both because of the way we’ve made our cities and because of the way cities have changed the atmosphere. I mean, there’s the basic climate change fact that the atmosphere has a lot more carbon dioxide in it and other greenhouse gases than it did before. Those holding the heat, the warmer air holds more water and has more energy. And so that creates larger storms. So there’s that.

One thing I think a lot about is we tend to forget that we make a lot of choices about how we live in the city. So there’s a sort of lifestyle aspect to this, as well as a sort of urban planning aspect to it, if you like. And I think we could do a lot more on the lifestyle side. Some of that is just coming to this expectation that, yes, there’s going to be flooding in our cities and another ecosystems, right? These things are not going away anytime soon. So we just need to, like, reset, maybe, our expectation that we can build pipes large enough to handle all the water and that, you know, despite whatever the conditions are, if it’s pouring rain, maybe you can’t go outside, or maybe you can’t do something that you were able to do before. So that’s one thing.

A second one is to sort of think about those sort of lifestyle choices in terms of all the things you need to do about them. Flooding, about where the water goes, that’s in conversation with where the cars go and where people go. So the transportation networks. There’s some clever ideas there. If you look at the New York City streets now, they’re designed with this bend, so they’re higher in the middle so that the water sheets off toward the gutters on the side. But there’s been some experiments in cities around the world to build them the other way, lower in the middle, and the water comes in. And so basically when there’s a flood, you close the road. And for the short period of time, that road is a stream. Not traffic. It’s a stream. And it turns out that some of our roads are on old streams. And so that kind of solution could work. So these are quite clever things that you can do.

Klimek: How would it benefit people to take that into account, to start to think more ecologically and adjust our expectations? How would we ultimately benefit from this?

Sanderson: Well, in the near term, we won’t die, right? Like we won’t drown, and we won’t lose our stuff, and we won’t have the social unrest that arises from those bad things. But to sort of turn around in a positive mode at some level, I think this is what life is for, right? Knowing how to live here on Earth with the nature that we have. It’s that kind of deep-seated understanding and desire to be the best person I can be in this amazing, amazing planet that we have that has led my whole career in conservation.

Klimek: Eric Sanderson is the vice president of urban conservation for the New York Botanical Garden. He is also the author of Mannahatta: A Natural History of New York City, which is an ecological history of Manhattan Island. Thank you, Dr. Sanderson, for talking with us.

Sanderson: Terrific. Thank you so much, Chris.

Klimek: To hear more from Eric Sanderson, subscribe to NYBG’s brand new podcast, which is called “Plant People.” We’ll put a link in our show notes along with links to more resources, including Xander Peters’ Smithsonian article about the Ike Dike.


Klimek: Before we let you go, let’s give you one last dinner party fact to tide you over as we wrap up our season.

Ted Scheinman: I’m Ted Scheinman. I’m a senior editor here at Smithsonian magazine, and I recently edited a great piece by our frequent contributor Richard Grant about Akito Kawahara, who is a butterfly scientist at the University of Florida. And Kawahara’s recent research has changed our understanding of butterflies in major ways. He has traced the evolution of butterflies directly from moths. Butterflies became butterflies when they became day-flying, essentially. But a really curious and, to me, sort of funny wrinkle here is that some of those butterflies who escaped the night and became day-flying, then evolved back into being night fliers and into essentially being moths again, which I can’t help but consider a sort of step backward, like moving back in with your parents or something. But it goes to show you that, you know, evolution is not, you know, directional. And it always brings up some crazy stuff.


Klimek: I hope you liked this season of “There’s More of That.” We did something new for us, and we hope that our episodes gave you a sense of what the world of Smithsonian magazine is all about. We’d love to hear from you about how the season was and, more importantly, what you want to hear more of. We’re taking time between seasons to make the show even better. Having your help is key. So if you have the time to help us design our future episodes, please take this survey. You can find it at SmithsonianMag.com/podcastsurvey. It should take about five minutes.

“There’s More to That” is a production of Smithsonian magazine and PRX Productions.

From the magazine. Our team is me, Debra Rosenberg and Brian Wolly.

From PRX, our team is Jessica Miller, Genevieve Sponsler, Adriana Rozas Rivera, Ry Dorsey and Edwin Ochoa. The executive producer of PRX Productions is Jocelyn Gonzales.

Our episode artwork is by Emily Lankiewicz. Fact-checking by Stephanie Abramson. Our music is from APM Music.

I’m Chris Klimek. Thank you for listening.

Get the latest Science stories in your inbox.

Read the full story here.
Photos courtesy of

‘It can’t withstand the heat’: fears ‘stable’ Patagonia glacier in irreversible decline

Scientists say Perito Moreno, which for decades defied trend of glacial retreat, now rapidly losing massOne of the few stable glaciers in a warming world, Perito Moreno, in Santa Cruz province, Argentina, is now undergoing a possibly irreversible retreat, scientists say.Over the past seven years, it has lost 1.92 sq km (0.74 sq miles) of ice cover and its thickness is decreasing by up to 8 metres (26 ft) a year. Continue reading...

One of the few stable glaciers in a warming world, Perito Moreno, in Santa Cruz province, Argentina, is now undergoing a possibly irreversible retreat, scientists say.Over the past seven years, it has lost 1.92 sq km (0.74 sq miles) of ice cover and its thickness is decreasing by up to 8 metres (26 ft) a year.For decades, Perito Moreno defied the global trend of glacial retreat, maintaining an exceptional balance between snow accumulation and melting. Its dramatic calving events, when massive blocks of ice crashed into Lago Argentino, became a symbol of natural wonder, drawing millions of visitors to southern Patagonia.Dr Lucas Ruiz, a glaciologist at the Argentine Institute of Nivology, Glaciology and Environmental Sciences, said: “The Perito Moreno is a very particular, exceptional glacier. Since records began, it stood out to the first explorers in the late 19th century because it showed no signs of retreat – on the contrary, it was advancing. And it continued to do so until 2018, when we began to see a different behaviour. Since then, its mass loss has become increasingly rapid.”Scientists and local guides warn that the balance is beginning to shift. “The first year the glacier didn’t return to its previous year’s position was 2022. The same happened in 2023, again in 2024, and now in 2025. The truth is, the retreat continues. The glacier keeps thinning, especially along its northern margin,” said Ruiz. This sector is the farthest from tourist walkways and lies above the deepest part of Lago Argentino, the largest freshwater lake in Argentina.Calving events at Perito Moreno, when ice collapses into the lake, are becoming louder, more frequent, and much larger. Photograph: Philipp Rohner/Getty Images/500pxThe summer of 2023-24 recorded a maximum temperature of 11.2C, according to meteorological data collected by Pedro Skvarca, a geophysical engineer and the scientific director of the Glaciarium centre in El Calafate, Patagonia. Over the past 30 years, the average summer temperature rose by 1.2C, a change significant enough to greatly accelerate ice melt.Ice thickness measurements are equally alarming. Between 2018 and 2022, the glacier was thinning at a rate of 4 metres a year. But in the past two years, that has doubled to 8 metres annually.“Perito Moreno’s size no longer matches the current climate; it’s simply too big. It can’t withstand the heat, and the current ice input isn’t enough to compensate,” Ruiz said.Ice that once rested on the lakebed owing to its weight, said Ruiz, had now thinned so much that it was beginning to float, as water pressure overtook the ice’s own.With that anchor lost, the glacier’s front accelerates – not because of increased mass input from the accumulation zone, where snow compacts into ice, but because the front slides and deforms. This movement triggers a feedback loop that further weakens the structure, making the process potentially irreversible.Xabier Blanch Gorriz, a professor in the department of civil and environmental engineering at the Polytechnic University of Catalonia, who studies ice calving at the Perito Moreno glacier front, said: “Describing the change as ‘irreversible’ is complex, because glaciers are dynamic systems. But the truth is that the current rate of retreat points to a clearly negative trend.” He added: “The glacier’s retreat and thinning are evident and have accelerated.”Ruiz confirmed another disturbing trend reported by local guides: calving events are becoming louder, more frequent, and much larger. In April, a guide at Los Glaciares national park described watching a tower of ice the height of a 20-storey building collapse into the lake. “It’s only in the last four to six years that we’ve started seeing icebergs this size,” he told Reuters.skip past newsletter promotionThe planet's most important stories. Get all the week's environment news - the good, the bad and the essentialPrivacy Notice: Newsletters may contain info about charities, online ads, and content funded by outside parties. For more information see our Privacy Policy. We use Google reCaptcha to protect our website and the Google Privacy Policy and Terms of Service apply.after newsletter promotionIn January of this year, Blanch Gorriz and his team installed eight photogrammetric systems that capture images every 30 minutes, enabling the generation of 3D models of about 300 metres of the glacier front. Initial comparisons between December and June already reveal significant ice loss. Satellite images further highlight a striking retreat over just 100 days.Today, nothing seems capable of halting the glacier’s retreat. Only a series of cooler summers and wetter winters might slow the trend, but climate projections point in the opposite direction.“What we expect is that, at some point, Perito Moreno will lose contact with the Magallanes peninsula, which has historically acted as a stabilising buttress and slowed the glacier’s response to climate change. When that happens, we’ll likely see a catastrophic retreat to a new equilibrium position, farther back in the narrow valley,” said Ruiz.Such a shift would represent a “new configuration” of the glacier, raising scientific questions about how this natural wonder would behave in the future. “It will be something never seen before – even farther back than what the first researchers documented in the late 19th century,” Ruiz nadded.How long the glacier might hold that future position remains unknown. But what scientists do know is that the valley, unlike the Magallanes peninsula, would not be able to hold the glacier in place.Perito Moreno – Latin America’s most iconic glacier and part of a Unesco world heritage site since 1981 – now joins a regrettable local trend: its neighbours, the Upsala and Viedma glaciers, have retreated at an astonishing rate over the past two decades. It is also part of a global pattern in which, as Ruiz put it, humanity is “digging the grave” of the world’s glaciers.

Seeing fewer fireflies this year? Here’s why, and how you can help.

Fireflies are vulnerable to climate change and habitat loss. Some simple landscaping tricks and turning off porch lights can make a big difference.

It’s firefly season in the Blue Ridge.  As the sun goes down, they begin to blink and glow along the water, in the trees, and across open fields. Some species twinkle in unison, others off and on. One of nature’s loveliest light shows enchants onlookers of all ages, especially in the Smoky Mountains, which is home to about 20 percent of the 100 or so species found in the United States. But many of those who have long delighted in this essential feature of a humid East Coast summer say something feels different. Casual observers and scientists alike are seeing fewer fireflies, and studies show that habitat loss, rising temperatures, light pollution, and drought threaten these beloved bugs. Some populations are already dwindling, including about 18 species in the U.S. and Canada. “We’ve been hearing anecdotal reports of fireflies’ population declining for years,” said Sarah Lower, a biologist at Bucknell University. “Every time I would go out and give a scientific talk somewhere, somebody would raise their hand and say, ‘You know, I’ve been out in my yard and when I’m with a kid I remember there being fireflies everywhere, now I don’t see them.’” Lower and Darin J. McNeil, a wildlife ecologist at the University of Kentucky, examined  firefly population patterns last summer, using citizen science data collected nationwide to draw connections with environmental conditions.Though their observations don’t specifically confirm a decline, they suggest reasons we might be seeing fewer fireflies in some places. Climate change is already reshaping the Southeast with hotter, drier summers — conditions that could push fireflies past their limits. In some wetter regions, though, they may find new habitat. McNeil said these changing patterns are impacting firefly populations already. “They’re very, very sensitive to temperature and weather and things like that,” McNeil said. “In Southern areas where we expect it to get quite warm — and maybe get outside the comfort zone of fireflies — we might expect the fireflies are going to do poorly.” Read Next A year after Helene, river guides in Appalachia are navigating a new world Katie Myers Fireflies are carnivorous beetles. They don’t live long, and spend two years of their short lives in the soil as larvae, hunting slugs and other moisture-loving critters. “Disrupt that access to the soil, McNeil said, “and fireflies disappear very quickly.” The insects thrive in woodland areas (and, oddly, on farmland, despite herbicides), and habitat loss poses a threat. “We have this effect of fragmentation where people are chopping up the forest into little chunks and then the forest that’s left behind doesn’t get managed in any way,” McNeil said. McNeil would like to see researchers study how forest management, including prescribed burning, impacts fireflies. In the meantime, there’s a lot that ordinary folks can do to help them thrive. In western North Carolina, Brannen Basham and Jill Jacobs have built their lives around native landscapes. Their small business, Spriggly’s Beescaping, teaches people about pollinators — and increasingly, fireflies. The pair have a seemingly endless knowledge of fun facts about lightning bugs.  “One random interesting fact is that these animals never stop glowing,” Jacobs said. “They’re glowing as little eggs, even.” And one of the most common front yard genus, Photuris, use their glow to lure nearby males — then eat them. They take firefly conservation seriously, running regular workshops to teach people how to make their yards more welcoming to fireflies and pollinators, particularly as climate change disrupts growing seasons. “Fireflies might enter into their adult form and find themselves emerging into a world in which their favorite plants have either already bloomed or they haven’t bloomed yet,” Basham said. “By increasing the diversity of native plants in your space, you can help ensure that there’s something in bloom at all times of the growing season.” Basham and Jacobs have a few other tips for helping fireflies thrive. You don’t need to be a scientist to help protect fireflies. In fact, the biggest difference comes from how we care for our own backyards. Here are a few things Basham and Jacobs recommend: Turn off your porch lights. Fireflies are incredibly sensitive to artificial light and it can confuse them. Ditch the manicured lawn and embrace native plants. In addition to being easier to care for, they suit the local environment and conserve water. Leave some leaves behind when you rake in the fall. They’re a great place for fireflies to find food, stay cool, and lay eggs. Plant shrubs, tufting grasses, and other, large plants. These can shelter fireflies during rainstorms and other severe weather.  If you spot fireflies, jot down when and where you saw them and add your observations to citizen science databases like iNaturalist, Firefly Watch or Firefly Atlas to help scientists collect data. Even among those who study fireflies, the thrill of spotting them remains magical. Lower has made many excursions to the southern Appalachian mountains to find the famous, ethereal “blue ghosts.” Rather than flicker, the insects emit a continuous bluish-green glow. “You walk into the pitch black woods and at first you can’t really see anything right because your eyes are getting used to the darkness,” Lower said. “But eventually you start to see all these dim glows.” On other nights, Lower has seen so many fireflies it felt like she was walking among he stars. She’s been lucky enough to witness a phenomenon called spotlighting, in which lightning bugs hover in a circle of light. She’s even used pheromones as a tactic to lure them out of their hiding spots in the dead of winter, feeling elated as the creatures drifted toward her: “You can imagine me dancing and yelling and screaming in the forest.” This story was originally published by Grist with the headline Seeing fewer fireflies this year? Here’s why, and how you can help. on Jul 11, 2025.

Drought is draining water supplies and driving up food costs where you’d least expect

From Mexico City to the Mekong Delta, increasingly severe droughts caused by climate change are laying waste to ecosystems and economies everywhere.

Taking shovels and buckets to a dried-up sandy belt of the Vhombozi River in Zimbabwe last August, groups of Mudzi district villagers gathered to dig with the hope of somehow finding water. The southern African region had entered into a state of severe drought, which had shriveled the Vhombozi, a primary water supply for more than 100,000 people. Before long, a maze of makeshift holes revealed shallow puddles along the otherwise arid riverbed. The frantic digging had worked — there was water. There was just one big problem: It wasn’t blue. It was a muddy brown color, and villagers worried that consuming it would make them ill. But as there were scarcely other options, many took their chances with drinking it and bathing with it.  Almost a year later, the persistent drought has led to a deluge of devastation on the region’s food system. Corn yields dropped 70 percent across the country, causing consumer prices to double. Thousands of cattle were lost to thirst and starvation. A local UNICEF emergency food distribution lost all of the food crops it harvested, which forced the NGO to reduce charitable food provisions from three meals a week to one. Child malnutrition levels in Mudzi doubled, driving up the demand for health care, and causing a quarter of health care clinics to run out of water reserves. Between January and March, about 6 million people in Zimbabwe faced food insecurity. According to a new report by the U.S. National Drought Mitigation Center, or NDMC, and the U.N. Convention to Combat Desertification, or UNCCD, the combined effects of global warming, drought, and El Niño have triggered similar crises all over the world, from Mexico City to the Mekong Delta. Using impact reports alongside government data, scientific and technical research, and media coverage of major drought events, the authors examined case-by-case how droughts compound poverty, hunger, energy insecurity, and ecosystem collapse in climate hot spots around the world. They measured impacts in 2023 and 2024, when the planet saw some of the most widespread and damaging drought events in recorded history. What they found is a lesson and a warning sign: Increasingly severe droughts caused by climate change are laying waste to ecosystems and economies everywhere.  “This report is a blistering reminder that climate change and punishing drought are already devastating lives, livelihoods, and food access,” said Million Belay of the International Panel of Experts on Sustainable Food Systems, and general coordinator of the Alliance for Food Sovereignty in Africa, who wasn’t involved in the research. “We need to get serious about resilience and real adaptation.” A local farmer carries vegetables near a partially dry canal of a Chinampa, or floating garden, in San Gregorio Atlapulco, on the outskirts of Mexico City, Mexico, on May 23, 2024. Daniel Cardenas / Anadolu via Getty Images Mexico City A focal point in the analysis is Mexico, where prolonged drought conditions provoked a water crisis that has had repercussions for food affordability and access.  The situation began to intensify in 2023, when the country entered into a period of historically low rainfall. By June, the bulk of Mexico’s reservoirs dropped below 50 percent capacity. The rainy winter of 2023 brought some relief, but not enough.  By the next summer, 90 percent of the country was experiencing some level of drought, and Mexico City’s water supply system reached a record low of 39 percent capacity. Abnormally low rainfall and high temperatures, made worse by inefficient water infrastructure and overextraction of the city’s aquifer, would persist into early 2025. These struggles to obtain water have been further exacerbated by distribution needs as mandated by a water-sharing treaty Mexico has long shared with the United States.  A severe lack of water has been found to be closely linked with food insecurity, as water scarcity impacts food access through reductions in agricultural production that can fuel food shortages and higher grocery prices. Roughly 42 percent of Mexico’s population was food-insecure in 2021, according to national statistics, with consumer food inflation rates steadily climbing since then. Price hikes were eventually reflected in grocery stores, causing the costs of produce like cilantro to soar by 400 percent, alongside other climbing price tags for goods like onions, broccoli, and avocados.  “Ripple effects can turn regional droughts into global economic shocks,” said NDMC’s Cody Knutson, who co-authored the report. “No country is immune when critical water-dependent systems start to collapse.”  Locals carry banana produce over the dry Solimoes riverbed in the Pesqueiro community in Northern Brazil, on September 30, 2024. Michael Dantas / AFP via Getty Images Amazon Basin During those same years, the Amazon River Basin became another drought and hunger hot spot. According to the new report, climate change caused waterways to drop to historically low levels in September of 2023. Drinking water became contaminated by mass die-offs of marine life, and local communities weren’t able to eat the fish they rely on.  Supply chain transportation was also greatly affected, as the low water levels made it impossible for boats to travel in and out of certain regions. Brazil’s AirForce would be deployed to distribute food and water to several states where river supply routes were impassable.  Residents in some towns dug wells on their own properties to replace river water they would normally depend on for drinking, cooking, and cleaning, according to the U.N.-backed report. Others were stuck waiting on government aid. Disruptions to drinking water and food supplies due to low river levels continued through late 2024 as the drought persisted. By September, waterways that had previously been navigable were bone-dry.  A 2025 report released by the nonprofit ACAPS found that many communities in the Amazon region were already believed to be suffering malnutrition, making them more vulnerable to the emerging health and food insecurity effects of the drought.  Climate change plays “a critical role in food security,” said FAO economist Jung-eun Sohn, who is unaffiliated with the UNCCD report. He noted that warming not only can impact both availability of and access to food, but that natural hazards are “one of three main risks of food insecurity,” along with conflict and economic risks, in hunger hot spots.  A woman stands in a dried-out banana plantation in Ben Tre Province, Vietnam, in 2016. At the time, Vietnam’s Mekong Delta was experiencing its worst drought in 90 years. Christian Berg / Getty Images Mekong Delta  Though a central contributor to the interconnected water-and-food crisis, climate change isn’t the only factor in many hunger hot spots — failing infrastructure and inefficiencies in water delivery systems have also been flagged as critical contributors to widespread water shortages. The compounding effect of El Niño, or a naturally-occurring weather phenomena that drives above-average global heat and more intense natural disasters in parts of the planet, is another culprit.  “It’s now abundantly clear that industrial, chemical-intensive agriculture, with its high water demands and uniform crops, is deeply vulnerable to drought and intensifying the crisis,” said Belay, the IPES expert.  One study found that saltwater intrusion, much like what persistently plagues the Mekong River Delta in Vietnam, also causes a significant reduction in food production. The watershed flows through six Asian countries, and over 20 million people depend on the rice grown in the region, which is Vietnam’s most productive agricultural area. It is also the region of Vietnam that is most vulnerable to hunger, with up to half of its rural households struggling to afford enough food.  A woman looks over her spoiled watermelon field in Ben Tre Province, Vietnam, in 2016. At the time, Vietnam’s Mekong Delta was experiencing its worst drought in 90 years. Christian Berg / Getty Images So when an early heat wave struck the Mekong Delta in 2024, and an abnormally long dry spell followed suit, causing canals to dry up, excessive salinity, heat, and water scarcity killed farmers’ catch in droves, reducing what communities were able to supply and sell, which led to shortages that prompted the local government to intervene and help producers quickly sell their wares. As the drought persisted, communities undertook other desperate measures to mitigate losses; renovating ditches, constructing temporary reservoirs, digging wells, and storing fresh water. Even so, according to the report, up to 110,000 hectares of agricultural resources, including fruit crops, rice fields, and aquaculture, have been impacted in the last year by the drought and excess salinity. The situation contributed to rice shortages, prompting a widespread inflationary effect on market prices. “These instances highlight how interconnected our global economies and food supplies are,” Paula Guastello, NDMC drought impacts researcher and lead author of the report, told Grist. “Drought has widespread implications, especially when it occurs on such a large, intense scale as during the past few years. In today’s global society, it is impossible to ignore the effects of drought occurring in far-off lands.”  All told, the authors argue that without major reductions in greenhouse gas emissions, rising temperatures will lead to more frequent and severe droughts by continuing to inflate heat, evaporation, and volatile precipitation patterns. All the while, urbanization, land use changes, and population growth are expected to continue to strain water resources and influence which assets and areas are most vulnerable to drought impacts. The world’s resilience to those impacts, the report denotes, ultimately depends on the fortification of ecosystems, the adoption of changes to water management, and the pursuit of equitable resource access.  “Proactive drought management is a matter of climate justice, equitable development, and good governance,” said UNCCD Deputy Executive Secretary Andrea Meza in a statement about the report. Stronger early warning systems and real-time drought impact monitoring, for example, those that assess conditions known to fuel food and water insecurity, are some of the ways countries can better fortify their systems in preparedness for the next big drought event. Others include watershed restoration, the broad revival of traditional cultivation practices, and the implementation of alternative water supply technologies to help make infrastructure more climate-resilient. Adaptation methods, however, must also account for the most vulnerable populations, the authors say, and require global cooperation, particularly along critical food trade routes.  “Drought is not just a weather event,” said report co-author and NDMC assistant director Kelly Helm Smith. “It can be a social, economic, and environmental emergency. The question is not whether this will happen again, but whether we will be better prepared next time.” This story was originally published by Grist with the headline Drought is draining water supplies and driving up food costs where you’d least expect on Jul 9, 2025.

Provocative new book says we must persuade people to have more babies

The population is set to plummet and we don't know how to stop it, warn Dean Spears and Michael Geruso in their new book, After the Spike

A large population may enable innovation and economies of scalePHILIPPE MONTIGNY/iStockphoto/Get​ty Images After the SpikeDean Spears and Michael Geruso (Bodley Head (UK); Simon & Schuster (US)) Four-Fifths of all the humans who will ever be born may already have been born. The number of children being born worldwide each year peaked at 146 million in 2012 and has been falling overall ever since. This means that the world’s population will peak and start to fall around the 2080s. This fall won’t be gradual. With birth rates already well below replacement levels in many countries including China and India, the world’s population will plummet as fast as it rose. In three centuries, there could be fewer than 2 billion people on Earth, claims a controversial new book. “No future is more likely than that people worldwide choose to have too few children to replace their own generation. Over the long run, this would cause exponential population decline,” write economists Dean Spears and Michael Geruso in After the Spike: The risks of global depopulation and the case for people. This, you might think, could be a good thing. Won’t it help solve many environmental issues facing us today? No, say the authors. Take climate change: their argument isn’t that population size doesn’t matter, but that it changes so slowly that other factors such as how fast the world decarbonises matter far more. The window of opportunity for lowering carbon dioxide emissions by reducing population has largely passed, they write. Spears and Geruso also make the case that there are many benefits to having a large population. For instance, there is more innovation, and economies of scale make the manufacture of things like smartphones feasible. “We get to have nice phones only because we have a lot of neighbors on this planet,” they write. So, in their view, our aim should be to stabilise world population rather than letting it plummet. The problem is we don’t know how, even with the right political will. As we grow richer, we are more reluctant to abandon career and leisure opportuntiies to have children While some government policies have had short-term effects, no country has successfully changed long-term population trends, argue the authors. Take China’s one-child policy. It is widely assumed to have helped reduce population growth – but did it? Spears and Geruso show unlabelled graphs of the populations of China and its neighbours before, during and after the policy was in place, and ask the reader which is China. There is no obvious difference. Attempts to boost falling fertility rates have been no more successful, they say. Birth rates jumped after Romania banned abortion in 1966, but they soon started to fall again. Sweden has tried the carrot rather than the stick by heavily subsidising day care. But the fertility rate there has been falling even further below the replacement rate. All attempts to boost fertility by providing financial incentives are likely to fail, Spears and Geruso argue. While people might say they are having fewer children because they cannot afford larger families, the global pattern is, in fact, that as people become richer they have fewer children. Rather than affordability being the issue, it is more about people deciding that they have better things to do, the authors say. As we grow richer, we are more reluctant to abandon career and leisure opportunities to have children. Even technological advances are unlikely to reverse this, they say. On everything other than the difficulty of stabilising the population, this is a relentlessly optimistic book. For instance, say the authors, dire predictions of mass starvation as the world’s population grew have been shown to be completely wrong. The long-term trend of people living longer and healthier lives can continue, they suggest. “Fears of a depleted, overpopulated future are out of date,” they write. Really? Spears and Geruso also stress that the price of food is key to determining how many go hungry, but fail to point out that food prices are now climbing, with climate change an increasing factor. I’m not so sure things are going to keep getting better for most people. This book is also very much a polemic: with Spears and Geruso labouring their main points, it wasn’t an enjoyable read. That said, if you think that the world’s population isn’t going to fall, or that it will be easy to halt its fall, or that a falling population is a good thing, you really should read it. New Scientist book club Love reading? Come and join our friendly group of fellow book lovers. Every six weeks, we delve into an exciting new title, with members given free access to extracts from our books, articles from our authors and video interviews.

‘This is a fight for life’: climate expert on tipping points, doomerism and using wealth as a shield

Economic assumptions about risks of the climate crisis are no longer relevant, says the communications expert Genevieve GuentherClimate breakdown can be observed across many continuous, incremental changes such as soaring carbon dioxide levels, rising seas and heating oceans. The numbers creep up year after year, fuelled by human-caused greenhouse gas emissions.But scientists have also identified at least 16 “tipping points” – thresholds where a tiny shift could cause fundamental parts of the Earth system to change dramatically, irreversibly and with potentially devastating effects. These shifts can interact with each other and create feedback loops that heat the planet further or disrupt weather patterns, with unknown but potentially catastrophic consequences for life on Earth. It is possible some tipping points may already have been passed. Continue reading...

Climate breakdown can be observed across many continuous, incremental changes such as soaring carbon dioxide levels, rising seas and heating oceans. The numbers creep up year after year, fuelled by human-caused greenhouse gas emissions.But scientists have also identified at least 16 “tipping points” – thresholds where a tiny shift could cause fundamental parts of the Earth system to change dramatically, irreversibly and with potentially devastating effects. These shifts can interact with each other and create feedback loops that heat the planet further or disrupt weather patterns, with unknown but potentially catastrophic consequences for life on Earth. It is possible some tipping points may already have been passed.Dr Genevieve Guenther, an American climate communications specialist, is the founding director of End Climate Silence, which studies the representation of global heating in the media and public discourse. Last year, she published The Language of Climate Politics: Fossil Fuel Propaganda and How to Fight It, which was described by Bill McKibben as “a gift to the world”. In the run-up to the Global Tipping Points conference in July, Guenther talks to the Guardian about the need to discuss catastrophic risks when communicating about the climate crisis.The future of her son and all children motivates Dr Genevieve Guenther to protect the planet from further global heating. Photograph: Laila Annmarie Stevens/The GuardianThe climate crisis is pushing globally important ecosystems – ice sheets, coral reefs, ocean circulation and the Amazon rainforest – towards the point of no return. Why is it important to talk about tipping points? We need to correct a false narrative that the climate threat is under control. These enormous risks are potentially catastrophic. They would undo the connections between human and ecological systems that form the basis of all of our civilisation.How have attitudes changed towards these dangers? There was a constructive wave of global climate alarm in the wake of the Intergovernmental Panel on Climate Change (IPCC) report on 1.5C in 2018. That was the first time scientists made it clear that the difference between 1.5C and 2C would be catastrophic for millions of people and that in order to halt global heating at a relatively safe level, we would need to start zeroing out our emissions almost immediately. Until then, I don’t think policymakers realised the timeline was that short. This prompted a flurry of activism – Greta Thunberg and Indigenous and youth activists – and a surge of media attention. All of this converged to make almost everybody feel that climate change was a terrifying and pressing problem. This prompted new pledges, new corporate sustainability targets, and new policies being passed by government.This led to a backlash by those in the climate movement who prefer to cultivate optimism. Their preferred solution was to drive capitalist investment into renewable technologies so fossil fuels could be beaten out of the marketplace. This group believed climate fear might drive away investors, so they started to argue it was counterproductive to talk about worst-case scenarios. Some commentators even argued we had averted the direst predictions and were now on a more reassuring trajectory of global warming of a little under 3C by 2100.There is a misconception that wealthier places, such as the UK, Europe (including Italy, pictured) and the US will not be affected by the climate crisis but this is wrong, says Guenther. Photograph: Tiziana Fabi/AFP/Getty ImagesBut it is bananas to feel reassured by that because 3C would be a totally catastrophic outcome for humanity. Even at the current level of about 1.5C, the impacts of warming are emerging on the worst side of the range of possible outcomes and there is growing concern of tipping points for the main Atlantic Ocean circulation (Amoc), Antarctic sea ice, corals and rainforests.If the risk of a plane crashing was as high as the risk of the Amoc collapsing, none of us would ever fly because they would not let the plane take off. And the idea that our little spaceship, our planet, is under the risk of essentially crashing and we’re still continuing business as usual is mindblowing. I think part of the problem is that people feel distant from the dangers and don’t realise the children we have in our homes today are threatened with a chaotic, disastrous, unliveable future. Talking about the risks of catastrophe is a very useful way to overcome this kind of false distance.In your book, you write that it’s appropriate to be scared and the more you know, the more likely you are to be worried, as is evident from the statements of scientists and the United Nations secretary general, António Guterres. Why? Some people at the centre of the media, policymaking and even research claim that climate change isn’t going to be that bad for those who live in the wealthy developed world – the UK, Europe and the United States. When you hear these messages, you are lulled into a kind of complacency and it seems reasonable to think that we can continue to live as we do now without putting ourselves, our families, our communities under threat within decades. What my book is designed to do is wake people up and raise the salience and support for phasing out fossil fuels.[It] is written for people who are already concerned about the climate crisis and are willing to entertain a level of anxiety. But the discourse of catastrophe would not be something I would recommend for people who are disengaged from the climate problem. I think that talking about catastrophe with those people can actually backfire because it’ll just either overwhelm them or make them entrench their positions. It can be too threatening.The Donnie Creek wildfire burns in British Columbia, Canada, in 2023. Photograph: Noah Berger/APA recent Yale study found that a degree of climate anxiety was not necessarily bad because it could stir people to collective action. Do you agree? It depends. I talk about three different kinds of doomerism. One is the despair that arises from misunderstanding the science and thinking we’re absolutely on the path to collapse within 20 or 30 years, no matter what we do. That is not true.Second, there’s a kind of nihilistic position taken by people who suggest they are the only ones who can look at the harsh truth. I have disdain for that position.Finally, there’s the doomerism that comes from political frustration, from believing that people who have power are just happy to burn the world down. And that to me is the most reasonable kind of doomerism. To address that kind of doomerism, you need to say: “Yes, this is scary as hell. But we must have courage and turn our fear into action by talking about climate change with others, by calling our elected officials on a regular basis, by demanding our workplaces put their money where their mouth is.”You need to acknowledge people’s feelings, meet them where they are and show how they can assuage their fear by cultivating their bravery and collective action.The most eye-opening part of your book was about the assumptions of the Nobel prize winner William Nordhaus that we’ll probably only face a very low percentage of GDP loss by the end of the century. This surely depends on ignoring tipping points? The only way Nordhaus can get the result that he does is if he fails to price the risk of catastrophe and leaves out a goodly chunk of the costs of global heating. In his models, he does not account for climate damages to labour productivity, buildings, infrastructure, transportation, non-coastal real estate, insurance, communication, government services and other sectors. But the most shocking thing he leaves out of his models is the risk that global heating could set off catastrophes, whether they are physical tipping points or wars from societal responses. That is why the percentage of global damages that he estimates is so ridiculously lowballed.The idea that climate change will just take off only a small margin of economic growth is not founded on anything empirical. It’s just a kind of quasi-religious faith in the power of capitalism to decouple itself from the planet on which it exists. That’s absurd and it’s unscientific.Some economists suggest wealth can provide almost unlimited protection from catastrophe because it is better to be in a steel and concrete building in a storm than it is to be in a wooden shack. How true is that? There’s no evidence that these protections are unlimited, though there are economists who suggest we can always substitute technologies or human-made products for ecosystems or even other planets like Mars for Earth itself. This goes back to an economic growth theorist named Robert Solow, who claims technological innovation can increase human productivity indefinitely. He stressed that it was just a theory, but the economists advising Ronald Reagan and Margaret Thatcher in the 1980s took this as gospel and argued it was possible to ignore environmental externalities – the costs of our economic system, including our greenhouse gas pollution – because you could protect yourself as long as you kept increasing your wealth.Floods due to heavy rains at Porto Alegre airport left a plane stranded on the runway in Rio Grande do Sul, Brazil, last year. Photograph: Diego Vara/ReutersExcept when it comes to the climate crisis? Yes, the whole spectacle of our planet heating up this quickly should call all of those economic assumptions into question. But because climate change is affecting the poor first and worst, this is used as evidence that poverty is the problem. This is a misrepresentation of reality because the poor are not the only ones who are affected by the climate crisis. This is a slow-moving but accelerating crisis that will root and spread. And it could change for the worst quite dramatically as we hit tipping points.The difference between gradual warming and tipping points is similar to the difference between chronic, manageable ailments and acute, life-threatening diseases, isn’t it? Yes. When people downplay the effects of climate change, they often represent the problem as a case of planetary diabetes – as if it were a kind of illness that you can bumble along with, but still have a relatively good quality of life as long as you use your technologies, your insulin, whatever, to sustain your health. But this is not how climate scientists represent climate change. Dr Joelle Gergis, one of the lead authors on the latest IPCC report, prefers to represent climate change as a cancer – a disease that takes hold and grows and metastasises until the day when it is no longer curable and becomes terminal. You could also think of that as a tipping point.This is a fight for life. And like all fights, you need a tremendous amount of bravery to take it on. Before I started working on climate change, I didn’t think of myself as a fighter, but I became one because I felt I have a responsibility to preserve the world for my son and children everywhere. That kind of fierce protectiveness is part of the way that I love. We can draw on that to have more strength than our enemies because I don’t think they’re motivated by love. I believe love is an infinite resource and the power of it is greater than that of greed or hate. If it weren’t, we wouldn’t be here.Tipping points: on the edge? – a series on our future Composite: Getty/Guardian DesignTipping points – in the Amazon, Antarctic, coral reefs and more – could cause fundamental parts of the Earth system to change dramatically, irreversibly and with devastating effects. In this series, we ask the experts about the latest science – and how it makes them feel. Tomorrow, David Obura talks about the collapse of coral reefsRead more

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.