Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

A wave of climate-conscious startups are brewing ‘beanless coffee’

News Feed
Wednesday, April 17, 2024

The spotlight It’s no secret that climate change poses a threat to our agricultural systems. Hotter temperatures and shifting rainfall patterns, as well as extreme weather events, are already placing stress on farms and imperiling our ability to grow certain crops in certain places. Some of the first casualties will likely be sensitive, specialty crops, like the tropical berries that make one of the world’s most beloved beverages: coffee. But as long as coffee has been around, alternatives have cropped up around it. And today, a new wave of startups is entering the coffee-imitation game, motivated by the threat climate change poses to the world’s coffee supply. “I was surprised by just how many types of coffee alternatives are out there,” said L.V. Anderson, a senior editor at Grist who explored these alternatives, grouped under the banner of “beanless coffee,” in a feature story last week. “There’s a really strong tradition, in nearly all regions around the world, of making these brewed beverages that have a resemblance to coffee.” That tradition has often been driven by cost — offering cheaper options, like toasted barley and rye, for the masses who couldn’t afford a specialty item like coffee. And that’s part of the calculus for today’s climate-focused startups as well, which are making coffee substitutes from readily available ingredients, including various pits, roots, seeds, grains, and legumes. As climate change threatens coffee production, it is likely to drive up the price of the real deal, which could fuel demand for affordable alternatives. But of course, for those alternatives to begin to gain a foothold today, they have to be good. When Anderson first began reporting the story, “as someone who drinks coffee and is attached to coffee,” she was highly skeptical of what these startups were offering. “I’m not a morning person, and coffee is really important to me to actually, like, wake up and be ready to face the day,” she said. But her editor encouraged her to approach the story with an open mind, which she did — even sampling a couple of the brews. While she enjoyed them, for the most part, she was keenly aware that they were not coffee. The rich, seductive smell was missing, and the taste was “just slightly off in a way that’s hard to put your finger on,” Anderson said. But, she added, she could see herself getting used to them if she had to. A latte that Anderson tried at Gumption Coffee in Manhattan, made with beanless grounds from a company called Atomo. L.V. Anderson / Grist Although coffee is not one of the worst offenders when it comes to the climate impacts of agriculture (like beef and dairy, two other products that have grown their own markets of alternatives), its production does come at an ecological cost. And in many cases, these coffee-less coffee companies are appealing to sustainability-conscious consumers by offering what they claim to be a more eco-friendly option. “I think pretty much all these companies, or most of them at least, are making claims about how their product is deforestation-free,” Anderson said. At least a few startups are also focusing on agricultural waste products to make their brews, helping to keep food waste out of landfills. These companies may be hoping that early adopters will make the switch based on this sustainability argument, but ultimately, Anderson said, they’re also making a bet that these products will be more climate-proof than real coffee — and that coffee lovers, like Anderson herself, may end up being willing to adjust to the dupes. “I can’t make predictions about what’s going to happen in the future,” she added, “but I do find it plausible, this vision that beanless coffee companies are pitching for the future — which is that coffee is just going to get really expensive, and it’s going to be hard for people to access coffee the way that they’re used to accessing it.” In the excerpt below, Anderson explains how beanless coffee is actually brewed, and some of the many many coffee alternatives that are hitting the market. Check out the full piece on the Grist site. — Claire Elise Thompson The best coffee for the planet might not be coffee at all (Excerpt) Coffea arabica — the plant species most commonly cultivated for drinking — has been likened to Goldilocks. It thrives in shady environments with consistent, moderate rainfall and in temperatures between 64 and 70 degrees Fahrenheit, conditions often found in the highlands of tropical countries like Guatemala, Ethiopia, and Indonesia. Although coffee plantations can be sustainably integrated into tropical forests, growing coffee leads to environmental destruction more often than not. Farmers cut down trees both to make room for coffee plants and to fuel wood-burning dryers used to process the beans, making coffee one of the top six agricultural drivers of deforestation. When all of a coffee tree’s finicky needs are met, it can produce harvestable beans after three to five years of growth, and eventually yields 1 to 2 pounds of green coffee beans per year. If arabica is Goldilocks, climate change is an angry bear. For some 200 years, humans have been burning fossil fuels, spewing planet-warming carbon dioxide into the air. The resulting floods, droughts, and heat waves, as well as the climate-driven proliferation of coffee borer beetles and fungal infections, are all predicted to make many of today’s coffee-growing areas inhospitable to the crop, destroy coffee farmers’ razor-thin profit margins, and sow chaos in the world’s coffee markets. That shift is already underway: Extreme weather in Brazil sent commodity coffee prices to an 11-year high of $2.58 per pound in 2022. And as coffee growers venture into new regions, they’ll tear down more trees, threatening biodiversity and transforming even more forests from carbon sinks into carbon sources. At many times in the past, coffee has been out of reach for most people, so they found cheaper, albeit caffeine-free, alternatives. Caro and other quaint instant beverage mixes, like Postum in the U.S. and caffè d’orzo in Italy, were popular during World War II and in the following years, when coffee was rationed or otherwise hard to come by. But the practice of brewing non-caffeinated, ersatz coffee out of other plants is even older than that. In the Middle East, people have used date seeds to brew a hot, dark drink for hundreds or perhaps thousands of years. In pre-Columbian Central America, Mayans drank a similar beverage made from the seeds of ramón trees found in the rainforest. In Europe and Western Asia, drinks have been made out of chicory, chickpeas, dandelion root, figs, grains, lupin beans, and soybeans. These ingredients have historically been more accessible than coffee, and sometimes confer purported health benefits. An illustrated advertisement from 1902 for Postum by the Postum Cereal Company of Battle Creek, Michigan. Jay Paull / Getty Images Today’s beanless-coffee startups are attempting to put a modern spin on these time-honored, low-tech coffee substitutes. Northern Wonder, based in the Netherlands, makes its product primarily out of lupin beans — also known as lupini — along with chickpeas and chicory. Atomo, headquartered in Seattle, infuses date seeds with a proprietary marinade that produces “the same 28 compounds” as coffee, the company boasts. Singapore-based Prefer makes its brew out of a byproduct of soymilk, surplus bread, and spent barley from beer breweries, which are then fermented with microbes. Minus also uses fermentation to bring coffee-like flavors out of “upcycled pits, roots, and seeds.” All these brands add caffeine to at least some of their blends, aiming to offer consumers the same energizing effects they get from the real deal. “We’ve tried all of the coffee alternatives,” said Maricel Saenz, the CEO of Minus. “And what we realize is that they give us some resemblance to coffee, but it ultimately ends up tasting like toasted grains more than it tastes like coffee.” In trying to explain what makes today’s beanless coffees different from the oldfangled kind, David Klingen, Northern Wonder’s CEO, compared the relationship to the one between modern meat substitutes and more traditional soybean products like tofu and tempeh. Many plant-based meats contain soybeans, but they’re highly processed and combined with other ingredients to create a convincing meat-like texture and flavor. So it is with beanless coffee, relative to Caro-style grain beverages. Klingen emphasized that he and his colleagues mapped out the attributes of various ingredients — bitterness, sweetness, smokiness, the ability to form a foam similar to the crema that crowns a shot of espresso — and tried to combine them in a way that produced a well-rounded coffee facsimile, then added caffeine. By contrast, traditional coffee alternatives like chicory and barley brews have nothing to offer a caffeine addict; Atomo, Minus, Northern Wonder, and Prefer are promising a reliable daily fix. “Coffee is a ritual and it’s a result,” said Andy Kleitsch, the CEO of Atomo. “And that’s what we’re replicating.” — L.V. Anderson Read the full piece here to learn more about how researchers and entrepreneurs are thinking about the future of coffee. More exposure Read: about a Nestle pilot program to offer cash incentives to coffee farmers willing to switch over to regenerative farming practices (Reuters) Read: how farmers and researchers in Vietnam are working to rehabilitate the more resilient robusta coffee variety (Al Jazeera) Read: how growers in Uganda are developing an even more resilient variety (The New York Times) Read: about Atomo’s plans to begin offering its beanless espresso in coffee chain Bluestone Lane (Reuters) See for yourself Last week, as we celebrated Looking Forward’s 100th issue, we launched a special opportunity that we are very excited about: a mini drabble writing contest. Thank you to the many folks who have already submitted drabbles! We love reading all of your visions for a clean, green, just future. We’ve included the prompt here again, for those of you who are still percolating. Also, we heard from a couple of y’all that the email address included in last week’s newsletter was bouncing. Thanks for letting us know — it should be fixed now! ***To submit: Send your drabble to lookingforward@grist.org with “Drabble contest” in the subject line, by the end of Friday, April 26. Here’s the prompt: Choose ONE climate solution that excites you, and show us how you hope it will evolve over the next 100 years to contribute to building a clean, green, just future. We’ve covered a boatload of solutions you could draw from (100, in fact!) — so if you need some inspiration, peruse the Looking Forward archive here. Drabbles offer a little glimpse of the future we dream about, so paint us a compelling picture of how you hope the world, and our lives on it, will evolve. Here’s what we’re looking for: Descriptive writing that makes us feel immersed in the scene and setting. A sense of time. You don’t have to put a specific timestamp on your piece, but give us some clue that we are in the future (not an alternate reality), approximately 100 years from now, and that certain things have changed. A sense of feeling. Is this vignette about joy? Frustration? Excitement? Nervousness? The mundane pleasure of living in a world where needs are met? Make us feel something! 100 words on the dot. The winning drabbles will be published in Looking Forward in May, and the winners will receive presents! Some Grist-y swag, and a book of your choice lovingly packaged and mailed to you by Claire. A parting shot Another climate-proof coffee company that Anderson covered is Stem; instead of cooking up a beanless imitation with more readily available ingredients, this company is working on growing coffee bean cells in a lab. Like cell-based meats, the product will have to clear regulatory hurdles before it can reach markets. But unlike root- and pit-based imitations, the resulting brew would be chemically identical to the real thing. These three photos show Stem’s coffee, from petri dish to pot. IMAGE CREDITS Vision: Grist Spotlight: L.V. Anderson / Grist; Jay Paull / Getty Images Parting shot: Courtesy of Jaroslav Monchak / STEM This story was originally published by Grist with the headline A wave of climate-conscious startups are brewing ‘beanless coffee’ on Apr 17, 2024.

In this excerpt, Grist senior editor L.V. Anderson explores the growing market of climate-proof coffee alternatives.

Illustration of red mug with dotted, wavy aroma lines wafting from the coffee inside. Dotted outlines of missing coffee beans float around the mug.

The spotlight

It’s no secret that climate change poses a threat to our agricultural systems. Hotter temperatures and shifting rainfall patterns, as well as extreme weather events, are already placing stress on farms and imperiling our ability to grow certain crops in certain places. Some of the first casualties will likely be sensitive, specialty crops, like the tropical berries that make one of the world’s most beloved beverages: coffee.

But as long as coffee has been around, alternatives have cropped up around it. And today, a new wave of startups is entering the coffee-imitation game, motivated by the threat climate change poses to the world’s coffee supply.

“I was surprised by just how many types of coffee alternatives are out there,” said L.V. Anderson, a senior editor at Grist who explored these alternatives, grouped under the banner of “beanless coffee,” in a feature story last week. “There’s a really strong tradition, in nearly all regions around the world, of making these brewed beverages that have a resemblance to coffee.”

That tradition has often been driven by cost — offering cheaper options, like toasted barley and rye, for the masses who couldn’t afford a specialty item like coffee. And that’s part of the calculus for today’s climate-focused startups as well, which are making coffee substitutes from readily available ingredients, including various pits, roots, seeds, grains, and legumes. As climate change threatens coffee production, it is likely to drive up the price of the real deal, which could fuel demand for affordable alternatives.

But of course, for those alternatives to begin to gain a foothold today, they have to be good.

When Anderson first began reporting the story, “as someone who drinks coffee and is attached to coffee,” she was highly skeptical of what these startups were offering. “I’m not a morning person, and coffee is really important to me to actually, like, wake up and be ready to face the day,” she said. But her editor encouraged her to approach the story with an open mind, which she did — even sampling a couple of the brews.

While she enjoyed them, for the most part, she was keenly aware that they were not coffee. The rich, seductive smell was missing, and the taste was “just slightly off in a way that’s hard to put your finger on,” Anderson said. But, she added, she could see herself getting used to them if she had to.

A half-drunk latte in a teal paper cup sits on a blue table

A latte that Anderson tried at Gumption Coffee in Manhattan, made with beanless grounds from a company called Atomo. L.V. Anderson / Grist

Although coffee is not one of the worst offenders when it comes to the climate impacts of agriculture (like beef and dairy, two other products that have grown their own markets of alternatives), its production does come at an ecological cost. And in many cases, these coffee-less coffee companies are appealing to sustainability-conscious consumers by offering what they claim to be a more eco-friendly option. “I think pretty much all these companies, or most of them at least, are making claims about how their product is deforestation-free,” Anderson said. At least a few startups are also focusing on agricultural waste products to make their brews, helping to keep food waste out of landfills.

These companies may be hoping that early adopters will make the switch based on this sustainability argument, but ultimately, Anderson said, they’re also making a bet that these products will be more climate-proof than real coffee — and that coffee lovers, like Anderson herself, may end up being willing to adjust to the dupes.

“I can’t make predictions about what’s going to happen in the future,” she added, “but I do find it plausible, this vision that beanless coffee companies are pitching for the future — which is that coffee is just going to get really expensive, and it’s going to be hard for people to access coffee the way that they’re used to accessing it.”

In the excerpt below, Anderson explains how beanless coffee is actually brewed, and some of the many many coffee alternatives that are hitting the market. Check out the full piece on the Grist site.

— Claire Elise Thompson

-----

The best coffee for the planet might not be coffee at all (Excerpt)

Coffea arabica — the plant species most commonly cultivated for drinking — has been likened to Goldilocks. It thrives in shady environments with consistent, moderate rainfall and in temperatures between 64 and 70 degrees Fahrenheit, conditions often found in the highlands of tropical countries like Guatemala, Ethiopia, and Indonesia. Although coffee plantations can be sustainably integrated into tropical forests, growing coffee leads to environmental destruction more often than not. Farmers cut down trees both to make room for coffee plants and to fuel wood-burning dryers used to process the beans, making coffee one of the top six agricultural drivers of deforestation. When all of a coffee tree’s finicky needs are met, it can produce harvestable beans after three to five years of growth, and eventually yields 1 to 2 pounds of green coffee beans per year.

If arabica is Goldilocks, climate change is an angry bear. For some 200 years, humans have been burning fossil fuels, spewing planet-warming carbon dioxide into the air. The resulting floods, droughts, and heat waves, as well as the climate-driven proliferation of coffee borer beetles and fungal infections, are all predicted to make many of today’s coffee-growing areas inhospitable to the crop, destroy coffee farmers’ razor-thin profit margins, and sow chaos in the world’s coffee markets. That shift is already underway: Extreme weather in Brazil sent commodity coffee prices to an 11-year high of $2.58 per pound in 2022. And as coffee growers venture into new regions, they’ll tear down more trees, threatening biodiversity and transforming even more forests from carbon sinks into carbon sources.

At many times in the past, coffee has been out of reach for most people, so they found cheaper, albeit caffeine-free, alternatives. Caro and other quaint instant beverage mixes, like Postum in the U.S. and caffè d’orzo in Italy, were popular during World War II and in the following years, when coffee was rationed or otherwise hard to come by. But the practice of brewing non-caffeinated, ersatz coffee out of other plants is even older than that. In the Middle East, people have used date seeds to brew a hot, dark drink for hundreds or perhaps thousands of years. In pre-Columbian Central America, Mayans drank a similar beverage made from the seeds of ramón trees found in the rainforest. In Europe and Western Asia, drinks have been made out of chicory, chickpeas, dandelion root, figs, grains, lupin beans, and soybeans. These ingredients have historically been more accessible than coffee, and sometimes confer purported health benefits.

A black and white ad for Postum, a coffee alternative

An illustrated advertisement from 1902 for Postum by the Postum Cereal Company of Battle Creek, Michigan. Jay Paull / Getty Images

Today’s beanless-coffee startups are attempting to put a modern spin on these time-honored, low-tech coffee substitutes. Northern Wonder, based in the Netherlands, makes its product primarily out of lupin beans — also known as lupini — along with chickpeas and chicory. Atomo, headquartered in Seattle, infuses date seeds with a proprietary marinade that produces “the same 28 compounds” as coffee, the company boasts. Singapore-based Prefer makes its brew out of a byproduct of soymilk, surplus bread, and spent barley from beer breweries, which are then fermented with microbes. Minus also uses fermentation to bring coffee-like flavors out of “upcycled pits, roots, and seeds.” All these brands add caffeine to at least some of their blends, aiming to offer consumers the same energizing effects they get from the real deal.

“We’ve tried all of the coffee alternatives,” said Maricel Saenz, the CEO of Minus. “And what we realize is that they give us some resemblance to coffee, but it ultimately ends up tasting like toasted grains more than it tastes like coffee.”

In trying to explain what makes today’s beanless coffees different from the oldfangled kind, David Klingen, Northern Wonder’s CEO, compared the relationship to the one between modern meat substitutes and more traditional soybean products like tofu and tempeh. Many plant-based meats contain soybeans, but they’re highly processed and combined with other ingredients to create a convincing meat-like texture and flavor. So it is with beanless coffee, relative to Caro-style grain beverages. Klingen emphasized that he and his colleagues mapped out the attributes of various ingredients — bitterness, sweetness, smokiness, the ability to form a foam similar to the crema that crowns a shot of espresso — and tried to combine them in a way that produced a well-rounded coffee facsimile, then added caffeine.

By contrast, traditional coffee alternatives like chicory and barley brews have nothing to offer a caffeine addict; Atomo, Minus, Northern Wonder, and Prefer are promising a reliable daily fix.

“Coffee is a ritual and it’s a result,” said Andy Kleitsch, the CEO of Atomo. “And that’s what we’re replicating.”

— L.V. Anderson

Read the full piece here to learn more about how researchers and entrepreneurs are thinking about the future of coffee.

More exposure

See for yourself

Last week, as we celebrated Looking Forward’s 100th issue, we launched a special opportunity that we are very excited about: a mini drabble writing contest.

Thank you to the many folks who have already submitted drabbles! We love reading all of your visions for a clean, green, just future. We’ve included the prompt here again, for those of you who are still percolating.

Also, we heard from a couple of y’all that the email address included in last week’s newsletter was bouncing. Thanks for letting us know — it should be fixed now!

***To submit: Send your drabble to lookingforward@grist.org with “Drabble contest” in the subject line, by the end of Friday, April 26.

Here’s the prompt: Choose ONE climate solution that excites you, and show us how you hope it will evolve over the next 100 years to contribute to building a clean, green, just future. We’ve covered a boatload of solutions you could draw from (100, in fact!) — so if you need some inspiration, peruse the Looking Forward archive here.

Drabbles offer a little glimpse of the future we dream about, so paint us a compelling picture of how you hope the world, and our lives on it, will evolve.

Here’s what we’re looking for:

  • Descriptive writing that makes us feel immersed in the scene and setting.
  • A sense of time. You don’t have to put a specific timestamp on your piece, but give us some clue that we are in the future (not an alternate reality), approximately 100 years from now, and that certain things have changed.
  • A sense of feeling. Is this vignette about joy? Frustration? Excitement? Nervousness? The mundane pleasure of living in a world where needs are met? Make us feel something!
  • 100 words on the dot.

The winning drabbles will be published in Looking Forward in May, and the winners will receive presents! Some Grist-y swag, and a book of your choice lovingly packaged and mailed to you by Claire.

A parting shot

Another climate-proof coffee company that Anderson covered is Stem; instead of cooking up a beanless imitation with more readily available ingredients, this company is working on growing coffee bean cells in a lab. Like cell-based meats, the product will have to clear regulatory hurdles before it can reach markets. But unlike root- and pit-based imitations, the resulting brew would be chemically identical to the real thing. These three photos show Stem’s coffee, from petri dish to pot.

Three side-by-side photos showing coffee granules in a petri dish, being poured into a lab instrument, and then being brewed in a pour-over.

IMAGE CREDITS

Vision: Grist

Spotlight: L.V. Anderson / Grist; Jay Paull / Getty Images

Parting shot: Courtesy of Jaroslav Monchak / STEM

This story was originally published by Grist with the headline A wave of climate-conscious startups are brewing ‘beanless coffee’ on Apr 17, 2024.

Read the full story here.
Photos courtesy of

Bumblebee nests are overheating to fatal levels, study finds

More frequent heatwaves mean bees are unable to thermoregulate their hives – further endangering a species already in declineBumblebee nests may be overheating, killing off broods and placing one of the Earth’s critical pollinators in decline as temperatures rise, new research has found.Around the world, many species of Bombus, or bumblebee, have suffered population declines due to global heating, the research said. Bumblebee colonies are known for their ability to thermoregulate: in hot conditions, worker bees gather to beat their wings and fan the hive, cooling it down. But as the climate crisis pushes average temperatures up and generates heatwaves, bumblebees will struggle to keep their homes habitable. Continue reading...

Bumblebee nests may be overheating, killing off broods and placing one of the Earth’s critical pollinators in decline as temperatures rise, new research has found.Around the world, many species of Bombus, or bumblebee, have suffered population declines due to global heating, the research said. Bumblebee colonies are known for their ability to thermoregulate: in hot conditions, worker bees gather to beat their wings and fan the hive, cooling it down. But as the climate crisis pushes average temperatures up and generates heatwaves, bumblebees will struggle to keep their homes habitable.Most bumblebee broods would not survive at temperatures above 36C, the paper, published in Frontiers in Bee Science, concluded. The research team reviewed 180 years of literature, and found that for all bumblebee species studied the optimum temperature range for incubating nests was between 28C and 32C.Peter Kevan, the lead author of the study, told the Guardian: “If [bumblebees] can’t keep temperatures below what is probably a lethal limit of about 35C, when the brood may die, that could explain why we are losing so many bumblebees around the world, especially in North America and Europe.”Bumblebees have suffered population declines around the world due to global heating. Photograph: Rebecca Cole/AlamyKevan, who is a professor emeritus at the University of Guelph’s School of Environmental Sciences in Canada, added that the research examined the often-overlooked role of the nest as a “superorganism”.“Researchers have been looking at foraging behaviour and fanning to keep the brood cool, but there are very few studies that look at the whole nest,” he said. The study argued that nests should be seen as a whole: while some individual bees may be able to cope with heat, if the nest becomes too hot to raise healthy larvae the whole colony will decline.Dave Goulson, a professor of biology at the University of Sussex, who was not involved in the research, said: “We have known for a long time that bumblebees are cool-climate specialists. Most insects are more abundant in the tropics, but bumblebees are weird in that they are at their most abundant in places like the Alps and Britain.”They are big and furry as an adaptation to living in cooler places, he said. “There are even some that live in the Arctic, the Bombus polaris. That means an obvious problem with climate change – they are vulnerable to warming.”When nests overheat, he added, bumblebees work to cool them by flapping their wings, “but if the air outside is too hot, that’s not going to help”.Goulson said there is already evidence that bumblebees have started to disappear from the warmer edges of their range. “There have been publications showing mountain bumblebees are moving higher as a way to combat warming, but obviously there is a limit to that.”The paper’s findings, said Goulson, who has spent 30 years studying bumblebees, are “really depressing”. “It is kind of heartbreaking to think that many may disappear.”Other studies, he said, suggest that the UK “might lose about half our bumblebee species in coming years, depending on the pace of climate change”. Their populations had been declining due to habitat loss, Goulson said. “Now, [with rising temperatures] we have a double whammy.”Bumblebees are important pollinators of wildflowers and crops. Photograph: Rebecca Cole/AlamyRichard Comont, the science manager at Britain’s Bumblebee Conservation Trust, also not part of the study, said he was glad to see the new research. “It’s something that there has been speculation about for a while,” he said.Bumblebees are important pollinators of wild flowers and crops including tomatoes, runner beans, apples, blueberries, blackcurrants and raspberries. For other pollinators, Goulson said, the outlook under a hotter climate is less clear. Some bee species can cope with warmer temperatures, and some species that now live farther south may move north as temperatures rise, making a new home in the UK. With other pollinators, he said, such as flies, wasps, butterflies, birds and bats, “it’s hard to generalise”.To stem declines, increasing habitats and decreasing pesticide use could help, Goulson said – but really, “we need to knuckle down” and make sure global temperatures “do not go past 2C” of heating.Find more age of extinction coverage here, and follow biodiversity reporters Phoebe Weston and Patrick Greenfield on X for all the latest news and features

Klamath River Reservoirs Drained for World’s Largest Dam Removal Project

The Klamath River dam removal, spanning from 2023 to 2024, marks the largest project of its kind aimed at restoring riparian habitats by dismantling four...

Satellite image of Klamath River reservoirs captured on December 23, 2023, by the Operational Land Imager-2 on Landsat 9.Satellite image of Klamath River reservoirs captured on February 25, 2024, by the Operational Land Imager-2 on Landsat 9.The Klamath River dam removal, spanning from 2023 to 2024, marks the largest project of its kind aimed at restoring riparian habitats by dismantling four major dams.The Klamath River in southern Oregon and northern California is now running freer. In late 2023 and early 2024, four of the six dams along the river were breached and reservoirs drained. These actions were part of an effort to restore hundreds of miles of riparian habitat. It is thought to be the largest dam removal project in history.Historical Background and Project RationaleThe four dams—Iron Gate, Copco No. 1, Copco No. 2, and J.C. Boyle—were built between 1918 and 1962 to generate electricity. Facing steep costs to modernize them in the early 2000s, the utility that owned the dams opted for deconstruction instead. In addition to removing aging infrastructure, the project is expected to eliminate the ecosystem and human health risks posed by toxic algae, which has regularly reached harmful levels in the reservoirs since 2005. Restoration efforts will focus on revegetating hundreds of acres and reinvigorating fish populations in what was once the third most productive river for salmon on the West Coast. Early Stages of Dam RemovalThe first dam to be removed, Copco No. 2, was also the smallest; that project wrapped up in September 2023. Copco No. 2 did not impound a reservoir but rather diverted the river’s flow through a tunnel system to a powerhouse downstream.More-visible changes would come later, after the upper image was acquired with the OLI-2 (Operational Land Imager-2) on Landsat 9 on December 23, 2023. At that time, the Iron Gate, Copco No. 1, and J.C. Boyle (upstream and not in view) dams were still holding back water. Drawdown of the Iron Gate Reservoir began on January 11, 2024, followed by the controlled release of water from Copco Lake and J.C. Boyle Reservoir.Visible Changes and Environmental ImpactBy February 15, the initial phase of drawdown was complete, according to a news release from the Klamath River Renewal Corporation (KRRC), the organization managing the project. The result is evident in the second image (lower), acquired with the OLI-2 on Landsat 9 on February 25. A river channel meanders through the beds of the drained reservoirs.The KRRC estimated that 5 million cubic yards of sediment previously held behind dams would travel downstream during this drawdown phase. Scientists expect the release of sediment early in the project to degrade water quality in the near term, increasing turbidity and lowering dissolved oxygen content. “The river is undoing a century of being impacted by these dams, and that may look messy right now,” said NOAA fisheries biologist Shari Witmore in a statement.Long-Term Ecological BenefitsA steady supply of river sediment will help build up habitat for organisms downstream, transport nutrients, and replenish coastlines over the long term. The Klamath is one of many river systems, especially in the Northern Hemisphere, to have gone without many of these benefits for decades. A recent analysis of Landsat and hydrological data found that 20th-century dam building in North America, Europe, and Asia has halved the global delivery of suspended sediment from rivers to the oceans relative to pre-dam conditions.Researchers have documented rapid and long-lasting ecological gains following other dam removal and river restoration projects, such as the one on the Elwha River in Washington state in the 2010s. To jumpstart restoration on the Klamath, NOAA Fisheries, the Bureau of Reclamation, tribes, and other partners are conducting controlled water releases from dams farther upstream to maximize the movement of sediment and minimize impacts to fish.Ongoing Restoration and Future PlansIn the coming months, the three remaining dam structures will be completely disassembled. The removal of Copco No. 1, a concrete arch dam, began in March; Iron Gate and J.C. Boyle, both earthen dams, will be deconstructed after the spring runoff period. The removal of all three is slated to be complete before the fall Chinook salmon run. Restoration of the approximately 1,300 acres that were previously underwater has already begun with the dispersal of climate-adapted seeds collected throughout the watershed.NASA Earth Observatory images by Michala Garrison, using Landsat data from the U.S. Geological Survey.

Smothered by Seaweed: Sargassum Wreaks Havoc on Caribbean Ecosystems

Its growth driven to epic levels by climate change and fertilizer runoff, sargassum puts dozens of species — and people — at risk. The post Smothered by Seaweed: Sargassum Wreaks Havoc on Caribbean Ecosystems appeared first on The Revelator.

Originally published by Centro de Periodismo Investigativo with The BVI Beacon, The Virgin Islands Daily News, America Futura – El País América, Jamaica and the RCI Guadeloupe. For more than 20 years, Mexican biologist María del Carmen García Rivas has led a crusade to protect the coral lining the Yucatan Peninsula in the Caribbean Sea. As director of the Puerto Morelos Reefs National Park in México, she has advocated for reforms to reduce runoff and other pollution from coastal development. She has spearheaded efforts to control lionfish, an introduced species that has put at risk the nearly 670 species of marine fauna that inhabit the park. And since 2018, she has organized brigades to restore reefs damaged by tissue-destroying coral diseases known as white syndromes. But now, yet another threat has been keeping her awake at night: massive blooms of sargassum seaweed reaching the coast of the park. “When the sargassum, a macroalgae that usually floats, reaches the coasts, it begins to decompose, generating an environment without oxygen that kills different organisms,” she said. “It mainly affects species that cannot move or move very little, such as some starfish, sea urchins, the sea grasses themselves, and of course corals.” Along the coast of Quintana Roo, the Mexican state where the Puerto Morelos Reefs National Park is based, the local government collected 70 tons of sargassum during 2023 alone, said Huguette Hernández Gómez, the state’s Secretary of Ecology and Environment. Added to what they collected during the last four years, the figure reaches 200 tons. Regional Problem This story is familiar across the Caribbean. Though modest amounts of sargassum benefit marine life in the region, massive influxes arriving since 2011 have upset the ecological balance in some areas in ways that could be irreversible. Scientists blame the explosive growth of the seaweed on global pollution, climate change, and other international problems that Caribbean islands did little to cause and lack the political power to resolve. The seaweed has exacerbated existing stress on the region’s reefs, which last year faced a massive bleaching event linked also to warming waters associated with climate change. Exposure to extreme temperatures for extended periods breaks down the relationship between the corals and the algae living inside of them. Corals are left pale or white, and the lack of food from algae can lead them to die, according to the United States National Oceanic and Atmospheric Administration. Sargassum mats have also blocked sea turtle nesting sites and inundated mangroves, which serve as crucial nurseries for countless aquatic species. Birds feed on small fish caught in seaweed mat along the South-Eastern coast of the Portmore Causeway in St. Catherine, Jamaica on May 2, 2023.Photo by Kirk Wright | Television Jamaica In some areas, beaches have been eroded by the seaweed and by the heavy machinery used to remove it. Many fishers complain that their catch has dwindled sharply. But because of the magnitude of the relatively recent problem — which is affecting coastlines from West Africa to the Americas — the true extent of the environmental damage is poorly understood, according to Dr. Brian LaPointe, a biologist and sargassum expert at Florida Atlantic University. “We haven’t gotten very far in the research to understand the causes or how to deal with it and manage and mitigate the impacts on the environment,” LaPointe said. Second Largest Barrier Reef The effects that García Rivas has seen in Mexico illustrate the implications for the entire region. The park she oversees is part of the Mesoamerican Barrier Reef System, which stretches along more than 600 miles of coastline in Mexico, Belize, Guatemala and Honduras. As the second longest barrier reef in the world — only the Great Barrier Reef in Australia is longer, at about 1,400 miles — the Mesoamerican Barrier Reef is home to some 500 species of fish and 60 species of stony corals, according to the World Wildlife Fund. It also supports the livelihoods of one to two million people in the region, the WWF states. Floating sargassum can provide a healthy habitat, but when it washes against the shore in mass quantities it often suffocates certain organisms, said James Foley, director of oceans for The Nature Conservancy. “In coastal areas like Belize, the problem is further exacerbated by the fact that the sargassum also attracts a lot of marine rubbish: local garbage that runs off from the rivers that come into the Caribbean from Central America. So it ends up being a pretty toxic environment,” he said. The sargassum also creates a barrier that blocks light and prevents organisms below it from photosynthesizing, according to Foley. A 2021 study published in the scientific journal Climate Change Ecology, which analyzed the situation in three bays in Quintana Roo, Mexico, found that under the sargassum mats the light seepage decreased up to 73% and the water temperature could be as much as 5 degrees Celsius warmer. Bacterial Diseases In addition, García Rivas said, bacteria carried by the sargassum may be affecting the corals as well. “Some of the diseases suffered by the corals could be related to all the bacteria brought in by the sargassum or that arise during its decomposition,” she said. “Although it becomes an environment without oxygen, there are bacteria that may be able to survive, affecting not only the corals but also generating fish mortality.” Such effects exacerbate existing threats to the reef, she said, noting that the worst historical damage has come from coastal development and inadequate management of sewage and other waste. “In general, contaminated seawater does not allow corals to live properly,” she said. “It weakens them. And when they present diseases or are stressed by heat, it is easier for them to die.” A similar scenario has played out in Jamaica, according to Dr. Camilo Trench, a marine biologist at the University of the West Indies in Jamaica. “The problem is that the seaweed grows fast and the corals grow slowly,” Trench said. “So if the sargassum is in the area with other macroalgae, it can overgrow the coral reef area quite quickly. So now it will not only reduce the space that the corals will have to grow: It will also reduce the settlement area of the coral nursery.” Sargassum Smothers Other Species Coral might be one of the most visible animals affected by sargassum, but is not the only one. A study published in the Marine Pollution Bulletin analyzed a massive sargassum influx that swamped the shores of the Mexican Caribbean in 2018, decomposing and turning the water cloudy. As a result, the researchers found, organisms from 78 wildlife species died. The worst affected were demersal neritic fish, which live at the bottom of shallow areas of the sea, and crustaceans. Other scientists have raised concerns about sargassum’s effects on turtle nests. In 2017, Briggite Gavio, a professor of marine biology at the National University of Colombia, visited Cayo Serranilla, a tiny 600-by-400-meter island at the northernmost tip of the Colombian Caribbean. The island is only inhabited by military personnel and it’s a perfect place for sea turtles to nest.   View this post on Instagram   A post shared by Sargassum Monitoring® (@sargassum_monitoring) But when Gavio was there as part of a scientific expedition, sargassum had formed a mat up to 40 centimeters (16 inches) high on the beaches. “We were able to observe that some turtle hatchlings had trouble getting past the barrier posed by the sargassum mat, and were vulnerable to predation by ghost crabs, rats and other predators,” she wrote in a 2018 paper about her observations. Similar observations about the effects of sargassum in sea turtles have been made by scientists on other islands such as Antigua and Barbuda. Killing Mangroves, Too Sargassum also appears to have a potentially lethal impact on Caribbean mangroves, an important natural barrier for extreme hurricanes. “These are plants that live on the seashore and are tidal plants, but they depend on their aerial roots and their respiratory roots, which are underground, for oxygen,” said Trench, the biologist in Jamaica. “Now imagine a mat covering those roots and preventing oxygen from flowing through them. It can definitely cause death if it is long-term and similar to the impact of something like oil slicks on the mangrove or litter, such as solid waste.” As with corals, mangroves sometimes end up smothered, sustaining damage themselves and putting at risk other species that depend on them. No ‘Virtuous Circle’ For García Rivas, the biologist in Mexico, one fact is particularly alarming: Unlike many other problems facing the reefs she oversees, the sargassum influx has no clear solution. “We haven’t come up with a virtuous circle as we have, for example, with lionfish,” she said. “Despite being an invasive species, [lionfish] can be fished and eaten, which mitigates the problem.” Local Government Looks for Solutions Faced with this problem, last year the state of Quintana Roo created a committee of 60 experts from different areas that worked for seven months to help create what is now known as the Integral Strategy for the Management and Use of Sargassum in Quintana Roo. The strategy covers eight areas: health; research and monitoring; knowledge management, processes and logistics; utilization; legal framework; economic instruments and cross-cutting axes. Its key advances include designating the state of Quintana Roo as the authority in charge of granting permits to researchers and companies working to turn sargassum into a product. “The state government is the one that gives all the permits for issues ranging from transportation, collection to final destination. With that we avoid that companies are going around in circles between whether to ask the federal or municipal government where to acquire the permits,” said Hernández Gómez, the ecology and environment secretary.   View this post on Instagram   A post shared by Ronald Lusk (@ronaldlusk) The response is costly. Last year, she said, the Secretariat of the Navy was assigned about $3 million to collect sargassum at sea using its ships and anchorage barriers, while the Federal Maritime Terrestrial Zone was assigned about $7 million more to collect it from beaches. In Quintana Roo, through the Secretariat headed by Hernandez Gómez, another $1.7 million is coming in to address the problem. “And this year that investment will be maintained,” she said. This investigation is the result of a fellowship awarded by the Center for Investigative Journalism’s Training Institute and was made possible in part with the support of Open Society Foundations. Read the rest of the stories in this series. Previously in The Revelator: New Hope for Horseshoe Crabs — and the Shorebirds That Depend on Them The post Smothered by Seaweed: Sargassum Wreaks Havoc on Caribbean Ecosystems appeared first on The Revelator.

Why climate change action requires "degrowth" to make our planet sustainable

Salon spoke with Japanese philosophy professor Kohei Saito about his new book, "Slow Down: The Degrowth Manifesto"

Climate change truly is a major existential threat, one we're clearly not addressing fast enough. But as individuals, there's little we can do to stop it on a grand scale — it will require global cooperation to overcome. Nonetheless, the accompanying feelings of helplessness when faced with such a daunting crisis can make many feel paralyzed with despair. So what can be done? "Slow Down: The Degrowth Manifesto," a new book from University of Tokyo philosophy professor Kohei Saito, offers more than a diagnosis of the systemic problems that brought us to this moment; it lays out, in clear and well-researched language, how those problems can be thoroughly addressed. In 2020, when "Slow Down" was originally published in Japan, it went by the far more fitting title "Capital in the Anthropocene" — with "Anthropocene" being the proposed geological era that began when human activity started radically altering natural conditions on the planet. "My idea is really not state socialism, but associated model production." Saito's argument, as translated by Brian Bergstrom, is that climate change exists because humans as a species prioritize economic growth instead of economic sustainability. Capitalism itself, Saito asserts, is unsustainable. Even though well-meaning liberal politicians like to push for Green New Deals in the hope of continuing non-stop economic growth without the consequent ecological harm, Saito argues capitalist societies need to perpetually consume resources to remain prosperous. As a result, capitalism itself inevitably brings about planet-wide problems like climate change, habitat destruction, plastic pollution and other environmental issues. The only solution is for humanity as a whole to slow down our obsession with work, productivity and materialism. Notably, Saito stresses that the bulk of the burden to consume less falls on the wealthiest among us. Saito doesn't take credit for these observations. Philosopher Karl Marx developed a philosophy in the 1860s that Saito describes as "eco-Marxist" (particularly in Saito's previous work, "Karl Marx's Eco-Socialism"). While the German philosopher's early works like "The Communist Manifesto" urged the working class to insist on receiving its fair share of the benefits of industrialism, Marx's later writings praised Indigenous peoples in the Americas, India and Algeria for living in communes that stressed sustainable environmental practices. As such, "Slow Down" is that rare hybrid among ideological manifestos: It opens new insights into an existing ideology while uplifting something distinct of its own. Salon spoke with Saito about "Slow Down" and the relationship climate change has to economics. This interview has been lightly edited for clarity and length. For those who are totally unfamiliar with the works of Karl Marx, can you please explain how one must distinguish between his early works and the later works that you describe as "eco-Marxism"?  Marxism is known for socialism, and socialism is often described as the exploitation of the working class. Capitalism has a tendency to increase technologies and promote innovations because of market competition. But Marx thought that once the workers take over power and kick out the capitalists, they can utilize the development of productive forces for the sake of themselves — more wealth, more well-being. But there is one problem: Sustainability. Because as Marx started to study natural sciences later in the 1850s and 1860s, he came to realize the development of technologies in capitalism actually don't create a condition for emancipation of the working class. Because not only do those technologies control the workers more efficiently, they destabilize the old system of jobs and make more precarious, low skilled jobs. At the same time those technologies exploit from nature more efficiently and create various problems such as exhaustion of the soil, massive deforestation, and the exhaustion of the fuels, and so on. Marx came to realize that this kind of technology undermines material conditions for sustainable development of human beings. And the central concept for Mark at that time in the sixties is metabolism. He thinks that this metabolic interaction between humans and nature is quite essential for any kind of society, but the problem of capitalism is it really transforms and organizes this entire metabolism between humans and nature for the sake of profit-making. Technologies are also used for this purpose. So technologies are not for the purpose of creating better life, free time and sustainable production, but rather it exploits workers and nature at the same time for the sake of more growth, more profit, and so on. My point is basically Marx was quite optimistic when he was young in terms of the development of technologies, but later he came to realize actually technologies have more damaging impact on both humans and nature. So he became more critical of that possibility of solving those problems of poverty and ecological problems using technology. That's how the issue of degrowth and eco-socialist ideas came to be central for his ideas. Want more health and science stories in your inbox? Subscribe to Salon's weekly newsletter Lab Notes. "We used to believe that it's impossible for the state or for the society to intervene in the market and say, 'You know, we shouldn't be making profit because human lives are more important or nature is more important.' But in the middle of the pandemic, we did this." There's another distortion in Marxist thought, what you described as "the monster known as Stalinism." What ideological corrections do you offer to the Marxist model to avoid a repetition of history?  So I advocate for a kind of eco-socialism, that kind of socialism that is more sustainable, that is not based on exploitation of nature. Because in the 20th century, Stalinism and other kinds of socialist experiments was a disaster. It was un-democratic. It was a dictatorship of the Communist Party, but at the same time it was also destruction of the environment. I think their ideas were rather based on the development of progress through technology, and productive force is the condition for the working class emancipation. And the most efficient way of developing these technologies and productive forces is the monopoly of the means of production by the bureaucrats and the party. It just created a kind of the central planning, which is very top-down and authoritarian and anti-democracy. At the same time, they didn't care about the environment, so it basically destroyed nature. In Marx's later works, he quite intensively studied natural sciences. He also studied at the same time other societies, non-Western societies, that were more sustainable. He came to realize that these societies were not driven toward endless growth. They were communally managing land. They were also democratically redistributing wealth. So he came to realize that more of a kind of bottom-up management of the commonwealth is good for people and creates a more equal society. It's also good for the environment. It was more sustainable because that's why those [Indigenous] societies lasted for many, many years. In America, they lasted many, many years before those people coming to conquer the land. Marx came to recognize that not necessarily Western societies are more progressive in creating a better society for the workers, but rather Western society also need to learn from non-Western societies. This is another very radical transformation for Marx in his late years. But then he came to realize not a top-down Soviet style dictatorship is necessary for the sake of establishing socialism, but rather more democratic, horizontal management of commonwealth lands, water, forests and other resources. That is quite essential for creating a better society. And he actually uses the term association — not socialism or communism. He often describes the future society with "association." And so my idea is really not state socialism, but associated model production. This is why I still use the term "communism," because the society based on capital is capitalism and a society based on the commonwealth, the democratic management of commonwealth is actually to be called "communism." Could you elaborate on how the degrowth philosophy that you say has been implemented in locations like Quito, Ecuador or Barcelona, Spain, as well as during the COVID-19 pandemic. My book, originally in Japanese, was published like three years ago, so it was published in the middle of pandemic. Japan is also a captive society and it's a very conservative society. I didn't expect that this call for going back to Marx and reviving the tradition of communism combined with new idea of degrowth would attract so much attention and interest from people. But it was, I think, because of the pandemic, that we came to recognize how destructive our economic activities were. It was obviously deforestation and that kind of thing. Ugly business was a main cause of the pandemic. Now at the same time, the climate crisis was deepening. So it was a moment we saw how our daily life was quite clearly destructive, but at the same time, we had to stop the economy for the sake of protecting our lives. Shutting down departments, shopping malls and restaurants and so on. We used to believe that it's impossible for the state or for the society to intervene in the market and say, "You know, we shouldn't be making profit because human lives are more important or nature is more important." But in the middle of the pandemic, we did this. We came to realize that these things are actually possible. And once we started working from home, once we stopped taking trains and going to hang out with people, buying new clothes all the time and so on, we came to realize, 'Why did we consume so much? Why did we work so hard?' The pandemic created some kind of space for reflection upon our previous life, the massive consumption, massive production, and massive waste. This is really the moment when the degrowth idea appeared more attractive, because people could spend more time with family, friends — not necessarily friends because of the pandemic, but maybe with friends — they could read more books and newspapers, and they enjoyed different ways of life that are not necessarily consumptionist.  "The solution to some kind of environmental damage was simply externalized to somewhere else. It was shifted basically to the global south." At the same time, a new crisis is coming — the climate crisis — and it will accelerate inflation. It will create a bigger economic inequality. And various natural disasters will also create a food shortage, which might lead to various kinds of conflicts. Geopolitical tension will increase, and so on. My claim in my book is basically this crisis cannot be simply overcome by investing in new green technologies. It is like early Marx: We overcome the crisis of capitalism by technologies, the state should intervene, the Green New Deal must be new investments, blah, blah, blah. But I don't think that works. My idea is basically we need to learn from the experience of the pandemic — that capitalist society is driven for the sake of creating more profit, not necessarily able to provide what is necessary. Because what is necessary, like medicine and education and hospital masks and so on — are not necessarily profitable. Capitalism doesn't produce what is necessary unless it is profitable. This gap creates disparities for us to tackle. My idea is basically degrowth is focusing on what is necessary rather than what is profitable. We should share more with the commonwealth like public transportation, the education system, the medical care system. These necessary things, essential goods, must be shared more equally instead of some rich people monopolizing all the wealth of the planet.  Can you explain the "Netherlands Fallacy" — namely, the idea that the Netherlands proves that socialism can be ecologically sustainable and prosperous. Can you elaborate on why that is indeed a fallacy?  I don't know why it's really the Netherlands. It can be the U.S. Fallacy or whatever, but it's traditionally called the Netherlands Fallacy. The Netherlands had some environmental pollution and basically they overcame this issue with new technologies. Everything seems fine, but the problem is this fallacy. The solution to some kind of environmental damage was simply externalized to somewhere else. It was shifted basically to the global south. One contemporary example is electronic vehicles, EVs, which are today very important; Tesla making massive profits, and so on. For the sake of a decarbonized society, I totally agree that we need more electronic vehicles and we need to produce them more, and that gasoline should be abandoned as fast as possible. I totally agree. But the problem is, are electric vehicles totally sustainable?  "This is open to misunderstanding that degrowth denies technology to try to go back to nature or something like that. This is absurd." The answer is obviously no. It is not just that usage of electric vehicles still consumes electricity, which might be produced by using fossil fuels, but the problem is — instead of fossil fuels — we also need a lot of rare metals: Lithium, copper, cobalt. And those rare metals are often located in the global south: Latin America, China, Russia, Africa and so on. And in these places now, the extraction of metals are creating very poor working conditions for even children. Child labor is obviously a problem in Congo, where a lot is massively extracted, but also the problem of environmental pollution, massive deforestation and the lithium use uses a lot of water. Chile is now suffering by wildfires, but they are also suffering from drought. And then mining lithium consumes a lot of water when people actually need water for their lives, and also for producing food, and so on.  People like us and affluent people in the global north can continue a very comfortable life by buying new electric vehicles like Tesla instead of Toyota. And they think that, "Okay, we did something good for the environment. I feel my responsibility for the next generations and so on." They are actually falling into this fallacy of believing their sustainability. No, they're not. Their behavior is not sustainable because the real problem is only hidden: massive extraction of the lithium in the global south. It's still causing quite a damaging impact upon people and the environment. So the metabolism between humans and nature, it's still distorted and disrupted in a quite serious manner. And my idea of degrowth is not a negation of technology. We need electric vehicles. I repeat again because this is open to misunderstanding that degrowth denies technology to try to go back to nature or something like that. This is absurd, but at the same time, I clearly want to say that there are too many cars. We need to shift to a society where we share electric vehicles with neighbors. So sharing cars. And we also need to invest in more green technologies like public transportation and also bicycles. And the bicycles of today are kind of dangerous because all the roads are created for the sake of cars. So the city urban planning is centering around all industries, and that needs to be challenged, that needs to change. And these are idea that degrowth will create a more eco-friendly, pedestrian friendly kind of society. The new kind of fair mobility is a central idea of degrowth. But this is just one example we need. My basic point is that often technologies simply hide the true environmental impacts, and we needed technological development, but at the same time, we need to reduce our excessive consumption. Otherwise we will fall into the Netherlands Fallacy.  I'm reading a book by billionaire philanthropist, Tom Steyer, who argues for more traditional approaches to addressing climate change: Funding green technologies, pushing voter registration drives, supporting a Green New Deal platform. Do you think there is anything fundamentally flawed about approaches for dealing with climate change when they come from billionaires or from others in the elite classes?  Yes. I don't actually deny some kind of Green New Deal, but not a Green New Deal for people like the American people. Because my idea of sustainability is more comprehensive. It includes the people in the global south. So greening or decarbonization in the U.S. can be achieved at the cost of people in the global south, and that doesn't make sense, right? And the same thing can be said within the U.S. The green transformation for the sake of billionaires could be achieved at the cost of many people in the global south. Minority indigenous people could be sacrificed for the sake of sustaining today's capitalism. What do I mean by this? Growth is always good for billionaires. They say, "Okay, we'll invest more in something good — green technologies — and it will grow the economy. And then all the poor people working class people will also benefit from growth." Growth actually hides the necessity of redistribution. When we talk about redistribution and compensation or reparation, billionaires needs to give up some of what they have gained. Not just wealth, but also private jets, massive houses and cruise ships and those luxury items, too. But when we invest in green technologies, flying jets can be sustainable, blah, blah, blah. And they also don't have to redistribute their own wealth because the entire pie of the economy will be bigger, so that the working class can also gain higher salaries and so on. My idea of degrowth is much more challenging because the degrowth doesn't seek after continuous growth of the economic pie.  When the pie doesn't grow, we need to share more. So it really clearly demands the massively distribution of the wealth from the rich people to the poor people. But also we should give up what is actually unnecessary. I claim that, but the most obvious example is private jets. Private jets are unnecessary because people can still fly with business class or whatsoever. So my point is, rich people should give up their wealth, rich people should give up private jets and so on, other unnecessary things. And when people now talk about the Green New Deal, they hide the necessity of such a radical transformation of our lifestyle for the sake of everyone. Read more about climate change

Quantifying the “Carbon Gap” – Unmasking the Shortfalls in Global Climate Efforts

Insufficient carbon dioxide removal efforts jeopardize meeting the Paris Agreement’s climate goals, highlighting the urgent need for enhanced technologies and strategies. New research suggests that...

Research indicates that existing plans for carbon dioxide removal are inadequate for meeting the Paris Agreement’s 1.5 ºC warming limit. Enhanced awareness and action are required to close the significant gap between projected increases and the needs identified in IPCC focus scenarios.Insufficient carbon dioxide removal efforts jeopardize meeting the Paris Agreement’s climate goals, highlighting the urgent need for enhanced technologies and strategies.New research suggests that countries’ current plans to remove CO2 from the atmosphere will not be enough to comply with the 1.5 ºC warming limit set out under the Paris Agreement.Since 2010, the United Nations environmental organization UNEP has taken an annual measurement of the emissions gap — the difference between countries’ climate protection pledges and what is necessary to limit global heating to 1.5 ºC, or at least below 2 ºC. The UNEP Emissions Gap Reports are clear: climate policy needs more ambition. This new study now explicitly applies this analytical concept to carbon dioxide removal (CDR) — the removal of the most important greenhouse gas, CO2, from the atmosphere.The study, published today (May 3) in the journal Nature Climate Change, was led by the Berlin-based Mercator Research Institute on Global Commons and Climate Change (MCC) and involved an international team of scientists.“In the Emissions Gap Reports, carbon removals are only accounted for indirectly,” said lead author Dr. William Lamb, of the MCC Applied Sustainability Science working group.“After all, the usual benchmark for climate protection pledges is net emissions, ie emissions minus removals. We are now making transparent the specific ambition gap in scaling up removals.“This planetary waste management will soon place completely new requirements on policymakers and may even become a central pillar of climate protection in the second half of the century.”Co-author Dr. Naomi Vaughan, of the Tyndall Centre for Climate Change Research at UEA, added: “Carbon dioxide removal methods have a small but vital role to play in achieving net zero and limiting the impacts of climate change.“Our analysis shows that countries need more awareness, ambition, and action on scaling up CDR methods together with deep emissions reductions to achieve the aspirations of the Paris Agreement.”According to the study, if national targets are fully implemented, annual human-induced carbon removals could increase by a maximum of 0.5 gigatonnes of CO2 (500 million tonnes) by 2030, and by a maximum of 1.9 gigatonnes by 2050.This contrasts with the 5.1 gigatonne increase required in a ‘focus scenario’, which the research team depicts as typical from the latest Intergovernmental Panel on Climate Change (IPCC) assessment report.There, global heating, calculated over the entire course of this century, is limited to 1.5 ºC, and a particularly rapid expansion of renewable energies and reduction of fossil emissions is depicted as the core climate protection strategy.But, the focus scenario still relies on scaling up carbon removals. The gap for the year 2050 is therefore at least 3.2 gigatonnes of CO2 (5.1 minus a maximum of 1.9).An alternative focus scenario, also derived from the IPCC, assumes a significant reduction in global energy demand, due to politically initiated behaviour changes as the core element of climate protection strategy.Here, carbon removals would increase by a more modest amount: 2.5 gigatonnes in 2050. Fully implemented national targets would be close to sufficient when compared to this scenario, with a gap in 2050 of 0.4 gigatonnes.The research team points out the problem of sustainability limits in scaling up carbon removals; for example, the associated land area demand will come to jeopardise biodiversity and food security. Nevertheless, there is still plenty of room for designing fair and sustainable land management policies.In addition, novel carbon removal options, such as air filter systems, or ‘enhanced rock weathering’, have hardly been promoted by politicians to date.They currently only remove 0.002 gigatonnes of CO2 per year from the atmosphere, compared to 3 gigatonnes through conventional options such as afforestation, and they are unlikely to significantly increase by 2030. According to the scenarios, they must become more prevalent than conventional options by 2010.Since only 40 countries have so far quantified their removal plans in their long-term low emissions development strategies, the study also draws on other national documents and best-guess assumptions.“The calculation should certainly be refined,” said Dr. Lamb. “But our proposal using the focus scenarios further opens the discourse on how much carbon removal is necessary to meet the Paris Agreement.“This much is clear: without a rapid reduction in emissions towards zero, across all sectors, the 1.5 ºC limit will not be met under any circumstances.”Reference: “The carbon dioxide removal gap” by Lamb, W, Gasser, T, Roman-Cuesta, R, Grassi, G, Gidden, M, Powis, C, Geden, O, Nemet, G, Pramata, Y, Riahi, K, Smith, S, Steinhauser, J, Vaughan, N, Smith, H, Minx, J, 3 May 2024, Nature Climate Change. DOI: 10.1038/s41558-024-01984-6

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.