Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

We might be closer to changing course on climate change than we realized

News Feed
Thursday, April 25, 2024

The world might soon see a sustained decline in greenhouse gas emissions. | Eric Yang/Getty Images Greenhouse gas emissions might have already peaked. Now they need to fall — fast. Earth is coming out of the hottest year on record, amplifying the destruction from hurricanes, wildfires, heat waves, and drought. The oceans remain alarmingly warm, triggering the fourth global coral bleaching event in history. Concentrations of heat-trapping gases in the atmosphere have reached levels not seen on this planet for millions of years, while humanity’s demand for the fossil fuels that produce this pollution is the highest it has ever been. Yet at the same time, the world may be closer than ever to turning a corner in the effort to corral climate change. Last year, more solar panels were installed in China — the world’s largest carbon emitter — than the US has installed in its entire history. More electric vehicles were sold worldwide than ever. Energy efficiency is improving. Dozens of countries are widening the gap between their economic growth and their greenhouse gas emissions. And governments stepped up their ambitions to curb their impact on the climate, particularly when it comes to potent greenhouse gases like methane. If these trends continue, global emissions may actually start to decline. Climate Analytics, a think tank, published a report last November that raised the intriguing possibility that the worst of our impact on the climate might be behind us. “We find there is a 70% chance that emissions start falling in 2024 if current clean technology growth trends continue and some progress is made to cut non-CO2 emissions,” authors wrote. “This would make 2023 the year of peak emissions.” “It was actually a result that surprised us as well,” said Neil Grant, a climate and energy analyst at Climate Analytics and a co-author of the report. “It’s rare in the climate space that you get good news like this.” The inertia behind this trend toward lower emissions is so immense that even politics can only slow it down, not stop it. Many of the worst-case climate scenarios imagined in past decades are now much less likely. The United States, the world’s second largest greenhouse gas emitter, has already climbed down from its peak in 2005 and is descending further. In March, Carbon Brief conducted an analysis of how US greenhouse gas emissions would fare under a second Trump or a second Biden administration. They found that Trump’s stated goals of boosting fossil fuel development and scrapping climate policies would increase US emissions by 4 billion metric tons by 2030. But even under Trump, US emissions are likely to slide downward. This is a clear sign that efforts to limit climate change are having a durable impact. Carbon Brief US emissions are on track to decline regardless of who wins the White House in November, but current policies are not yet in line with US climate goals. However, four months into 2024, it seems unlikely that the world has reached the top of the mountain just yet. Fossil fuel demand is still poised to rise further in part because of more economic growth in developing countries. Technologies like artificial intelligence and cryptocurrencies are raising overall energy demand as well. Still, that it’s possible at all to conceive of bending the curve in the near term after more than a century of relentless growth shows that there’s a radical change underway in the relationship between energy, prosperity, and pollution — that standards of living can go up even as emissions from coal, oil, and gas go down. Greenhouse gases are not a runaway rocket, but a massive, slow-turning cargo ship. It took decades of technology development, years of global bickering, and billions of dollars to wrench its rudder in the right direction, and it’s unlikely to change course fast enough to meet the most ambitious climate change targets. But once underway, it will be hard to stop. We might be close to an inflection point on greenhouse gas emissions Since the dawn of the Industrial Revolution, greenhouse gas emissions have risen in tandem with wealth and an expanding population. Since the 1990s and the 2000s, that direct link has been separated in at least 30 countries, including the US, Singapore, Japan, and the United Kingdom. Their economies have grown while their impact on the climate has shrunk per person. In the past decade, the rate of global carbon dioxide pollution has held fairly level or risen slowly even as the global economy and population has grown by wider margins. Worldwide per capita emissions have also held steady over the past decade. “We can be fairly confident that we’ve flattened the curve,” said Michael Lazarus, a senior scientist at SEI US, an environmental think tank, who was not involved in the Climate Analytics study. Still, this means that humanity is adding to the total amount of carbon dioxide in the atmosphere — and doing so at close to its fastest pace ever. It’s good that this pace is at least not accelerating, but the plateau implies a world that will continue to get warmer. To halt rising temperatures, humans will have to stop emitting greenhouse gases, zeroing their net output, and even start withdrawing the carbon previously emitted. The world thus needs another drastic downward turn in its emissions trajectory to limit climate change. “I wouldn’t get out any balloons or fireworks over flattening emissions,” Lazarus said. Then there’s the clock. In order to meet the Paris climate agreement target of limiting warming this century to less than 2.7 degrees Fahrenheit (1.5 degrees Celsius) on average above pre-industrial temperatures, the world must slash carbon dioxide emissions in half by 2030 and reach net-zero emissions by 2050. That means power generators, trucks, aircraft, farms, construction sites, home appliances, and manufacturing plants all over the world will have to rapidly clean up. The current round of international climate commitments puts the planet on track to warm by 5.4°F (3°C) by the end of the century. That’s a world in which the likelihood of a major heat wave in a given year would more than double compared to 2.7°F of warming, where extreme rainfall events would almost double, and more than one in 10 people would face threats from sea level rise. “That puts us in this race between the really limited time left to bend the emissions curve and start that project towards zero, but we are also seeing this sort of huge growth, an acceleration in clean technology deployment,” Grant said. “And so we wanted to see which of these factors is winning the race at the moment and where we are at.” Grant and his team mapped out three scenarios. The first is a baseline based on forecasts from the International Energy Agency on how current climate policies and commitments would play out. It shows that fossil fuel-related carbon dioxide emissions would reach a peak this year, but emissions of other heat-trapping gases like methane and hydrofluorocarbons would keep rising, so overall greenhouse gas emissions would level off. The second scenario, dubbed “low effort,” builds on the first, but also assumes that countries will begin to fulfill their promises under agreements like the Global Methane Pledge to cut methane pollution 30 percent from 2020 levels by 2030 and the Kigali Amendment to phase out HFCs. Under this pathway, total global emissions reach their apex in 2025. The third scenario imagines a world where clean technology — renewable energy, electric vehicles, energy efficiency — continues gaining ground at current rates, outstripping energy demand growth and displacing coal, oil, and natural gas. That would mean greenhouse gases would have already peaked in 2023 and are now on a long, sustained decline. Climate Analytics Global greenhouse gas emissions are likely to fall in the coming years, but the rate of decline depends on policies and technology development. The stories look different when you zoom in to individual countries, however. While overall emissions are poised to decline, some developing countries will continue to see their output grow while wealthier countries make bigger cuts. As noted, the US has already climbed down from its peak. China expects to see its emissions curve change directions by 2025. India, the world’s third largest greenhouse gas emitter, may see its emissions grow until 2045. All three of these pathways anticipate some sort of peak in global emissions before the end of the decade, illustrating that the world has many of the tools it needs to address climate change and that a lot of work in deploying clean energy and cleaning up the biggest polluters is already in progress. There will still be year-to-year variations from phenomena like El Niño that can raise electricity demand during heat waves or shocks like pandemics that reduce travel or conflicts that force countries to change their energy priorities. But according to the report, the overall trend over decades is still downward. To be clear, the Carbon Analytics study is one of the more optimistic projections out there, but it’s not that far off from what other groups have found. In its own analysis, the International Energy Agency reports that global carbon dioxide emissions “are set to peak this decade.” The consulting firm McKinsey anticipates that greenhouse gases will begin to decline before 2030, also finding that 2023 may have been the apogee. Global emissions could just as easily shoot back up if governments and companies give up on their goals Within the energy sector, Ember, a think tank, found that emissions might have peaked in 2022. Research firm Rystad Energy expects that fossil fuel emissions will reach their pinnacle in 2025. Bending the curve still requires even more deliberate, thoughtful efforts to address climate change — policies to limit emissions, deploying clean energy, doing more with less, and innovation. Conversely, global emissions could just as easily shoot back up if governments and companies give up on their goals. “Peaking is absolutely not a guarantee,” Grant said. And if greenhouse gas emissions continue to rise, even at a slower rate, Earth will continue heating up. It means more polar ice will melt, lifting sea levels along every ocean, increasing storm surges and floods during cyclones. It means more dangerous heat waves. It means more parts of the world will be unlivable. We’re close to bending the curve — but that doesn’t mean the rest will be easy There are some other caveats to consider. One is that it’s tricky to simply get a full tally of humanity’s total impact on the climate. Scientists can measure carbon dioxide concentrations in the sky, but it’s tougher to trace where those molecules came from. Burning fossil fuels is the dominant way humans add carbon dioxide to the atmosphere. Since they’re closely tracked commercial commodities, there are robust estimates for their contributions to climate change and how they change over time. But humans are also degrading natural carbon-absorbing ecosystems like mangrove forests. Losing carbon sinks increases the net amount of carbon dioxide in the air. Altering how we use land, like clearing forests for farms, also shifts the balance of carbon. These changes can have further knock-on effects for the environment, and ecosystems like tropical rainforests could reach tipping points where they undergo irreversible, self-propagating shifts that limit how much carbon they can absorb. All this makes it hard to nail down a specific time frame for when emissions will peak and what the consequences will be. There’s also the thorny business of figuring out who is accountable for which emissions. Fossil fuels are traded across borders, and it’s not always clear whose ledger high-polluting sectors like international aviation and shipping should fall on. Depending on the methodology, these gray areas can lead to double-counting or under-counting. “It’s very difficult to get a complete picture, and even if we get the little bits and pieces, there’s a lot of uncertainty,” said Luca Lo Re, climate and energy analyst at the IEA. Even with these uncertainties, it’s clear that the scale of the course correction needed to meet climate goals is immense. According to the Climate Analytics report, to meet the 2030 targets for cutting emissions, the world will need to stop deforestation, stop any new fossil fuel development, double energy efficiency, and triple renewable energy. Another way to illustrate the enormity of this task is the Covid-19 pandemic. The world experienced a sudden drop in global emissions as travel shut down, businesses closed, people stayed home, and economies shrank. Carbon dioxide output has now rebounded to an even higher level. Reducing emissions on an even larger scale without increasing suffering — in fact, improving welfare for more people — will require not just clean technology but careful policy. Seeing emissions level off or decline in many parts of the world as economies have grown in recent decades outside of the pandemic is an important validation that the efforts to limit climate change are having their intended effect. “Emissions need to decrease for the right reasons,” Lo Re said. “It is reasonable to believe our efforts are working.” The mounting challenge is that energy demand is poised to grow. Even though many countries have decoupled their emissions from their GDPs, those emissions are still growing. Many governments are also contending with higher interest rates, making it harder to finance new clean energy development just as the world needs a massive buildout of solar panels, wind turbines, and transmission lines. And peaking emissions isn’t enough: They have to fall. Fast. The longer it takes to reach the apex, the steeper the drop-off needed on the other side in order to meet climate goals. Right now, the world is poised to walk down a gentle sloping hill of greenhouse gas emissions instead of the plummeting roller coaster required to limit warming this century to less than 2.7°F/1.5°C. It’s increasingly unlikely that this goal is achievable. Intergovernmental Panel on Climate Change To meet global climate targets, greenhouse gas emissions need to fall precipitously. Finally, the ultimate validation of peak greenhouse emissions and a sustained decline can only be determined with hindsight. “We can’t know if we peaked in 2023 until we get to 2030,” said Lazarus. The world may be closer than ever to bending the curve on greenhouse gas emissions downward, but those final few degrees of inflection may be the hardest. The next few years will shape the warming trajectory for much of the rest of the century, but obstacles ranging from political turmoil to international conflict to higher interest rates could slow progress against climate change just as decarbonization needs to accelerate. “We should be humble,” Grant said. “The future is yet unwritten and is in our hands.”

Smoke pouring out of chimneys at a power plant.
The world might soon see a sustained decline in greenhouse gas emissions. | Eric Yang/Getty Images

Greenhouse gas emissions might have already peaked. Now they need to fall — fast.

Earth is coming out of the hottest year on record, amplifying the destruction from hurricanes, wildfires, heat waves, and drought. The oceans remain alarmingly warm, triggering the fourth global coral bleaching event in history. Concentrations of heat-trapping gases in the atmosphere have reached levels not seen on this planet for millions of years, while humanity’s demand for the fossil fuels that produce this pollution is the highest it has ever been.

Yet at the same time, the world may be closer than ever to turning a corner in the effort to corral climate change.

Last year, more solar panels were installed in China — the world’s largest carbon emitter — than the US has installed in its entire history. More electric vehicles were sold worldwide than ever. Energy efficiency is improving. Dozens of countries are widening the gap between their economic growth and their greenhouse gas emissions. And governments stepped up their ambitions to curb their impact on the climate, particularly when it comes to potent greenhouse gases like methane. If these trends continue, global emissions may actually start to decline.

Climate Analytics, a think tank, published a report last November that raised the intriguing possibility that the worst of our impact on the climate might be behind us.

“We find there is a 70% chance that emissions start falling in 2024 if current clean technology growth trends continue and some progress is made to cut non-CO2 emissions,” authors wrote. “This would make 2023 the year of peak emissions.”

“It was actually a result that surprised us as well,” said Neil Grant, a climate and energy analyst at Climate Analytics and a co-author of the report. “It’s rare in the climate space that you get good news like this.”

The inertia behind this trend toward lower emissions is so immense that even politics can only slow it down, not stop it. Many of the worst-case climate scenarios imagined in past decades are now much less likely.

The United States, the world’s second largest greenhouse gas emitter, has already climbed down from its peak in 2005 and is descending further. In March, Carbon Brief conducted an analysis of how US greenhouse gas emissions would fare under a second Trump or a second Biden administration.

They found that Trump’s stated goals of boosting fossil fuel development and scrapping climate policies would increase US emissions by 4 billion metric tons by 2030. But even under Trump, US emissions are likely to slide downward.

This is a clear sign that efforts to limit climate change are having a durable impact.

Graph showing US emissions pathways under Biden and Trump, both of which lead to lower emissions, but Biden markedly more so than Trump. Carbon Brief
US emissions are on track to decline regardless of who wins the White House in November, but current policies are not yet in line with US climate goals.

However, four months into 2024, it seems unlikely that the world has reached the top of the mountain just yet. Fossil fuel demand is still poised to rise further in part because of more economic growth in developing countries. Technologies like artificial intelligence and cryptocurrencies are raising overall energy demand as well.

Still, that it’s possible at all to conceive of bending the curve in the near term after more than a century of relentless growth shows that there’s a radical change underway in the relationship between energy, prosperity, and pollution — that standards of living can go up even as emissions from coal, oil, and gas go down.

Greenhouse gases are not a runaway rocket, but a massive, slow-turning cargo ship. It took decades of technology development, years of global bickering, and billions of dollars to wrench its rudder in the right direction, and it’s unlikely to change course fast enough to meet the most ambitious climate change targets.

But once underway, it will be hard to stop.

We might be close to an inflection point on greenhouse gas emissions

Since the dawn of the Industrial Revolution, greenhouse gas emissions have risen in tandem with wealth and an expanding population. Since the 1990s and the 2000s, that direct link has been separated in at least 30 countries, including the US, Singapore, Japan, and the United Kingdom. Their economies have grown while their impact on the climate has shrunk per person.

In the past decade, the rate of global carbon dioxide pollution has held fairly level or risen slowly even as the global economy and population has grown by wider margins. Worldwide per capita emissions have also held steady over the past decade.

“We can be fairly confident that we’ve flattened the curve,” said Michael Lazarus, a senior scientist at SEI US, an environmental think tank, who was not involved in the Climate Analytics study.

Still, this means that humanity is adding to the total amount of carbon dioxide in the atmosphere — and doing so at close to its fastest pace ever.

It’s good that this pace is at least not accelerating, but the plateau implies a world that will continue to get warmer. To halt rising temperatures, humans will have to stop emitting greenhouse gases, zeroing their net output, and even start withdrawing the carbon previously emitted. The world thus needs another drastic downward turn in its emissions trajectory to limit climate change. “I wouldn’t get out any balloons or fireworks over flattening emissions,” Lazarus said.

Then there’s the clock. In order to meet the Paris climate agreement target of limiting warming this century to less than 2.7 degrees Fahrenheit (1.5 degrees Celsius) on average above pre-industrial temperatures, the world must slash carbon dioxide emissions in half by 2030 and reach net-zero emissions by 2050. That means power generators, trucks, aircraft, farms, construction sites, home appliances, and manufacturing plants all over the world will have to rapidly clean up.

The current round of international climate commitments puts the planet on track to warm by 5.4°F (3°C) by the end of the century. That’s a world in which the likelihood of a major heat wave in a given year would more than double compared to 2.7°F of warming, where extreme rainfall events would almost double, and more than one in 10 people would face threats from sea level rise.

“That puts us in this race between the really limited time left to bend the emissions curve and start that project towards zero, but we are also seeing this sort of huge growth, an acceleration in clean technology deployment,” Grant said. “And so we wanted to see which of these factors is winning the race at the moment and where we are at.”

Grant and his team mapped out three scenarios. The first is a baseline based on forecasts from the International Energy Agency on how current climate policies and commitments would play out. It shows that fossil fuel-related carbon dioxide emissions would reach a peak this year, but emissions of other heat-trapping gases like methane and hydrofluorocarbons would keep rising, so overall greenhouse gas emissions would level off.

The second scenario, dubbed “low effort,” builds on the first, but also assumes that countries will begin to fulfill their promises under agreements like the Global Methane Pledge to cut methane pollution 30 percent from 2020 levels by 2030 and the Kigali Amendment to phase out HFCs. Under this pathway, total global emissions reach their apex in 2025.

The third scenario imagines a world where clean technology — renewable energy, electric vehicles, energy efficiency — continues gaining ground at current rates, outstripping energy demand growth and displacing coal, oil, and natural gas. That would mean greenhouse gases would have already peaked in 2023 and are now on a long, sustained decline.

Graph showing global emissions pathways under different scenarios. Climate Analytics
Global greenhouse gas emissions are likely to fall in the coming years, but the rate of decline depends on policies and technology development.

The stories look different when you zoom in to individual countries, however. While overall emissions are poised to decline, some developing countries will continue to see their output grow while wealthier countries make bigger cuts.

As noted, the US has already climbed down from its peak. China expects to see its emissions curve change directions by 2025. India, the world’s third largest greenhouse gas emitter, may see its emissions grow until 2045.

All three of these pathways anticipate some sort of peak in global emissions before the end of the decade, illustrating that the world has many of the tools it needs to address climate change and that a lot of work in deploying clean energy and cleaning up the biggest polluters is already in progress.

There will still be year-to-year variations from phenomena like El Niño that can raise electricity demand during heat waves or shocks like pandemics that reduce travel or conflicts that force countries to change their energy priorities. But according to the report, the overall trend over decades is still downward.

To be clear, the Carbon Analytics study is one of the more optimistic projections out there, but it’s not that far off from what other groups have found. In its own analysis, the International Energy Agency reports that global carbon dioxide emissions “are set to peak this decade.” The consulting firm McKinsey anticipates that greenhouse gases will begin to decline before 2030, also finding that 2023 may have been the apogee.

Within the energy sector, Ember, a think tank, found that emissions might have peaked in 2022. Research firm Rystad Energy expects that fossil fuel emissions will reach their pinnacle in 2025.

Bending the curve still requires even more deliberate, thoughtful efforts to address climate change — policies to limit emissions, deploying clean energy, doing more with less, and innovation. Conversely, global emissions could just as easily shoot back up if governments and companies give up on their goals.

“Peaking is absolutely not a guarantee,” Grant said. And if greenhouse gas emissions continue to rise, even at a slower rate, Earth will continue heating up. It means more polar ice will melt, lifting sea levels along every ocean, increasing storm surges and floods during cyclones. It means more dangerous heat waves. It means more parts of the world will be unlivable.

We’re close to bending the curve — but that doesn’t mean the rest will be easy

There are some other caveats to consider. One is that it’s tricky to simply get a full tally of humanity’s total impact on the climate. Scientists can measure carbon dioxide concentrations in the sky, but it’s tougher to trace where those molecules came from.

Burning fossil fuels is the dominant way humans add carbon dioxide to the atmosphere. Since they’re closely tracked commercial commodities, there are robust estimates for their contributions to climate change and how they change over time.

But humans are also degrading natural carbon-absorbing ecosystems like mangrove forests. Losing carbon sinks increases the net amount of carbon dioxide in the air. Altering how we use land, like clearing forests for farms, also shifts the balance of carbon. These changes can have further knock-on effects for the environment, and ecosystems like tropical rainforests could reach tipping points where they undergo irreversible, self-propagating shifts that limit how much carbon they can absorb.

All this makes it hard to nail down a specific time frame for when emissions will peak and what the consequences will be.

There’s also the thorny business of figuring out who is accountable for which emissions. Fossil fuels are traded across borders, and it’s not always clear whose ledger high-polluting sectors like international aviation and shipping should fall on. Depending on the methodology, these gray areas can lead to double-counting or under-counting.

“It’s very difficult to get a complete picture, and even if we get the little bits and pieces, there’s a lot of uncertainty,” said Luca Lo Re, climate and energy analyst at the IEA.

Even with these uncertainties, it’s clear that the scale of the course correction needed to meet climate goals is immense.

According to the Climate Analytics report, to meet the 2030 targets for cutting emissions, the world will need to stop deforestation, stop any new fossil fuel development, double energy efficiency, and triple renewable energy.

Another way to illustrate the enormity of this task is the Covid-19 pandemic. The world experienced a sudden drop in global emissions as travel shut down, businesses closed, people stayed home, and economies shrank. Carbon dioxide output has now rebounded to an even higher level.

Reducing emissions on an even larger scale without increasing suffering — in fact, improving welfare for more people — will require not just clean technology but careful policy. Seeing emissions level off or decline in many parts of the world as economies have grown in recent decades outside of the pandemic is an important validation that the efforts to limit climate change are having their intended effect. “Emissions need to decrease for the right reasons,” Lo Re said. “It is reasonable to believe our efforts are working.”

The mounting challenge is that energy demand is poised to grow. Even though many countries have decoupled their emissions from their GDPs, those emissions are still growing. Many governments are also contending with higher interest rates, making it harder to finance new clean energy development just as the world needs a massive buildout of solar panels, wind turbines, and transmission lines.

And peaking emissions isn’t enough: They have to fall. Fast.

The longer it takes to reach the apex, the steeper the drop-off needed on the other side in order to meet climate goals. Right now, the world is poised to walk down a gentle sloping hill of greenhouse gas emissions instead of the plummeting roller coaster required to limit warming this century to less than 2.7°F/1.5°C. It’s increasingly unlikely that this goal is achievable.

Graph showing how much global emissions need to fall in order to meet Paris agreement targets. Intergovernmental Panel on Climate Change
To meet global climate targets, greenhouse gas emissions need to fall precipitously.

Finally, the ultimate validation of peak greenhouse emissions and a sustained decline can only be determined with hindsight. “We can’t know if we peaked in 2023 until we get to 2030,” said Lazarus.

The world may be closer than ever to bending the curve on greenhouse gas emissions downward, but those final few degrees of inflection may be the hardest.

The next few years will shape the warming trajectory for much of the rest of the century, but obstacles ranging from political turmoil to international conflict to higher interest rates could slow progress against climate change just as decarbonization needs to accelerate.

“We should be humble,” Grant said. “The future is yet unwritten and is in our hands.”

Read the full story here.
Photos courtesy of

The Climate Impact of Owning a Dog

My dog contributes to climate change. I love him anyway.

This story originally appeared on Grist and is part of the Climate Desk collaboration.I’ve been a vegetarian for over a decade. It’s not because of my health, or because I dislike the taste of chicken or beef: It’s a lifestyle choice I made because I wanted to reduce my impact on the planet. And yet, twice a day, every day, I lovingly scoop a cup of meat-based kibble into a bowl and set it down for my 50-pound rescue dog, a husky mix named Loki.WIRED's Guide to How the Universe WorksYour weekly roundup of the best stories on health care, the climate crisis, new scientific discoveries, and more. Until recently, I hadn’t devoted a huge amount of thought to that paradox. Then I read an article in the Associated Press headlined “People often miscalculate climate choices, a study says. One surprise is owning a dog.”The study, led by environmental psychology researcher Danielle Goldwert and published in the journal PNAS Nexus, examined how people perceive the climate impact of various behaviors—options like “adopt a vegan diet for at least one year,” or “shift from fossil fuel car to renewable public transport.” The team found that participants generally overestimated a number of low-impact actions like recycling and using efficient appliances, and they vastly underestimated the impact of other personal decisions, including the decision to “not purchase or adopt a dog.”The real objective of the study was to see whether certain types of climate information could help people commit to more effective actions. But mere hours after the AP published its article, its aim had been recast as something else entirely: an attack on people’s furry family members. “Climate change is actually your fault because you have a dog,” one Reddit user wrote. Others in the community chimed in with ire, ridiculing the idea that a pet Chihuahua could be driving the climate crisis and calling on researchers and the media to stop pointing fingers at everyday individuals.Goldwert and her fellow researchers watched the reactions unfold with dismay. “If I saw a headline that said, ‘Climate scientists want to take your dogs away,’ I would also feel upset,” she said. “They definitely don’t,” she added. “You can quote me on that.”Loki grinning on a hike in the Pacific Northwest. Photograph: Claire Elise Thompson/Grist

COP30’s biofuel gamble could cost the global food supply — and the planet

What was once considered a climate holy grail comes with serious tradeoffs. The world wants more of it anyway.

First the plant stalk is harvested, shredded, and crushed. The extracted juice is then combined with bacteria and yeast in large bioreactors, where the sugars are metabolized and converted into ethanol and carbon dioxide. From there, the liquid is typically distilled to maximize ethanol concentration, before it is blended with gasoline.  You know the final products as biofuels — mostly made from food crops like sugarcane and corn, and endorsed by everyone from agricultural lobbyists to activists and billionaires. Biofuels were developed decades ago to be cheaper, greener alternatives to planet-polluting petrol. As adoption has expanded — now to the point of a pro-biofuel agenda being pushed this week at COP30 in Belém, Brazil — their environmental and food accessibility footprint has remained a source of fierce debate.  The governments of Brazil, Italy, Japan, and India are spearheading a new pledge calling for the rapid global expansion of biofuels as a commitment to decarbonizing transportation energy.  Though the text of the pledge itself is vague, as most COP pledges tend to be, the target embedded in an accompanying International Energy Agency report is clear: expand the global use of so-called sustainable fuels from 2024 levels by at least four times, so that by 2035, sustainable fuels cover 10 percent of all global road transport demand, 15 percent of aviation demand, and 35 percent of shipping fuel demand. By Friday, the last official day of COP30, at least 23 countries have joined the pledge — while Brazilian delegates have been working “hand in hand with industry groups” to get language backing biofuels into the final summit deal.  “Latin America, South East Asia, Africa — they need to improve their efficiency, their energy, and Brazil has a model for this [in its rollout of biofuels],” Roberto Rodrigues, Brazil’s special envoy for agriculture at the summit, said on a COP panel last weekend. As of the time of this story’s publication, the pro-biofuel language hadn’t made it into the latest draft text that outlines the main outcome of the summit released Friday — although it appears the summit could end without a deal.  Read Next At COP30 in Brazil, countries plan to armor themselves against a warming world Zoya Teirstein Though scientists continue to experiment with utilizing other raw materials for biofuels — a list which includes agricultural and forestry waste, cooking oils, and algae — the bulk of feedstocks almost exclusively come from the fields. Different types of food crops are used for different types of biofuels; sugary and starchy crops, such as sugar cane, wheat, and corn, are often made into ethanol; while oily crops, like soybeans, rapeseed, and palm oil, are largely used for biodiesel.  The cycle goes a little like this: Farmers, desperate to replace cropland lost to biofuel production, raze more forests and plow up more grasslands, resulting in deforestation that tends to release far more carbon than burning biofuels saves. But as large-scale production continues to expand, there may be insufficient land, water, and energy available for another big biofuel boom — prompting many researchers and climate activists to question whether countries should be aiming to scale these markets at all. (Thomson Reuters reported that global biofuel production has increased ninefold since 2000.) Biofuels account for the vast majority of “sustainable fuels” currently used worldwide. An analysis by a clean transport advocacy organization published last month found that, because of the indirect impacts to farming and land use, biofuels are responsible globally for 16 percent more CO2 emissions than the planet-polluting fossil fuels they replace. In fact, the report surmises that by 2030, biofuel crops could require land equivalent to the size of France. More than 40 million hectares of Earth’s cropland is already devoted to biofuel feedstocks, an area roughly the size of Paraguay. The EU Deforestation-Free Regulation, or EUDR, cites soybeans among the commodities driving deforestation worldwide. “While countries are right to transition away from fossil fuels, they also need to ensure their plans don’t trigger unintended consequences, such as more deforestation either at home or abroad,” said Janet Ranganathan, managing director of strategy, learning, and results at the World Resources Institute in a statement responding to the Belém pledge. She added that rapidly expanding global biofuel production would have “significant implications for the world’s land, especially without guardrails to prevent large-scale expansion of land dedicated to biofuels, which drives ecosystem loss.” Other environmental issues found to be associated with converting food crops into biofuels include water pollution from fertilizers and pesticides, air pollution, and soil erosion. One study, conducted a decade ago, showed that, when accounting for all the inputs needed to produce different varieties of ethanol or biodiesel — machinery, seeds, water, electricity, fertilizers, transportation, and more — producing fuel-grade ethanol or biodiesel requires significantly more energy input than it creates.  Read Next ‘Everyone is exhausted’: First week of COP30 marked by frustration with slow progress Bob Berwyn, Inside Climate News Nonetheless, it’s not a shock to see Brazil betting big on biofuels at COP30. In Brazil, biofuels make up roughly a quarter of transportation fuels — a remarkably high proportion compared to most other countries. And that share, dominated by sugarcane ethanol, is still on an upward climb, with the Belém pledge evidence of the country’s intended trajectory.  A spokesperson from Brazil’s foreign affairs ministry told The Guardian that the “proponents of the pledge (which include Japan, Italy, India, among others) are calling upon countries to support quadrupling production and use of sustainable fuels — a group of gaseous and liquid fuels that include e-fuels, biogases, biofuels, hydrogen and its derivatives.” They added that the goal is based on the new IEA report that underscores the production increase as necessary to aggressively reduce emissions. That report suggests that if current and proposed national and international policies are implemented and fully legislated, global biofuel use and production would double by 2035. “The word ‘sustainable’ is not used lightly, neither in the report nor in the pledge,” the spokesperson said.  The issue, of course, is in how emissions footprints of something like ethanol fuel production are even measured. Much like many other climate sources, scientists argue that tracking greenhouse gas emissions linked to ethanol fuel should account for emissions at every stage — production, processing, distribution, and vehicle use. Yet that isn’t often the case: in fact, a 2024 paper found that Brazil’s national biofuel policy does not account for all direct and indirect emissions in its calculation.  The exclusions are evident of a larger trend, according to University of Minnesota environmental scientist Jason Hill. “Overall, either those studies have not included [direct and indirect emissions], or they found ways to spread those impacts over anticipated production, decades, centuries, or so forth, that tend to dilute those effects. So the accounting methods aren’t really consistent with what the best science shows,” said Hill, who studies the environmental and economic consequences of food, energy, and biofuel production.  In short: More biofuels means either more intensive agriculture on a smaller share of available cropland, which has its own detrimental environmental effects, or expansion of cropland, and the land-use emissions and environmental impacts that can carry. “Biofuel production today is already a bad idea. And doubling [that] is doubling down on an existing problem,” said Hill.  Read Next COP30 has big plans to save the rainforest. Indigenous activists say it’s not enough. Frida Garza & Miacel Spotted Elk Moreover, diverting crops like corn and soybeans from dinner plates to fuel tanks doesn’t just spark brutal competition for land and resources, it can also spike food prices and leave the world’s most vulnerable populations with less to eat.  A 2022 analysis of the U.S. Renewable Fuel Standard, the world’s largest biofuel program, found that it has led to increased food prices for Americans, with corn prices rising by 30 percent and other crops such as soybean and wheat spiking by around 20 percent. This then set off a domino effect: Increasing annual nationwide fertilizer use by up to 8 percent and water quality degradants by up to 5 percent. The carbon intensity of corn ethanol produced under the mandate has ended up at least equaling the planet-polluting effects of gasoline.  “Biofuel mandates essentially create a baseline demand that can leave food crops by the wayside,” says Ginni Braich, a data scientist at the University of Colorado Boulder who has worked as a senior advisor to government clean technology and emission reduction programs. That’s because of the issue with supply and demand of food crops — higher competition for feedstocks hikes up the prices of food, feed, and farming inputs.  When there are biofuel mandates, which the IEA report underlying the Belém pledge recommends, demand remains inelastic — no matter the changes in yields, growing and weather conditions, prices, or markets. Say there is a huge drought that decimates crop yields, as one example, the baseline demand of biofuels still needs to be met despite depleted food stocks. In terms of supply, increasing growing area for biofuels typically means less area available to grow food crops — which can cause prices to surge alongside supply shortages, and spike costs of seed, inputs, and land. Nutritional implications should also be taken into account, according to Braich. Not only do people’s diets tend to shift when food gets more costly, but cropping patterns are already revealing adverse shifts in dietary diversity, which could be exacerbated by a further concentration on fewer crops. The Belém pledge, and Brazil’s intention to lead a global expansion of the biofuels market, does not bode well for people’s food accessibility nor for the future of the planet, warns Braich.  “It seems quite paradoxical for Brazil to promote the large-scale expansion of biofuels and also be seen as a protector of forests,” she said. “Is it better than decarbonization and fossil fuel divestment rhetoric without actual transition pathways? Yes, but in a lot of ways it is also greenwashing.” This story was originally published by Grist with the headline COP30’s biofuel gamble could cost the global food supply — and the planet on Nov 21, 2025.

Iran's Capital Has Run Out of Water, Forcing It to Move

The decision to move Iran’s capital is partly driven by climate change, but experts say decades of human error and action are also to blame

November 21, 20252 min readIran's Capital Is Moving. The Reason Is an Ecological CatastropheThe move is partly driven by climate change, but experts say decades of human error and action are also to blameBy Humberto Basilio edited by Claire CameronA dry water feature in Tehran on November 9, 2025 TTA KENARE/AFP/Getty ImagesTehran can no longer remain the capital of Iran amid a deepening ecological crisis and acute water shortage.The situation in Tehran is the result of “a perfect storm of climate change and corruption,” says Michael Rubin, a political analyst at the American Enterprise Institute.“We no longer have a choice,” Iranian President Masoud Pezeshkian reportedly told officials on Friday.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.Instead, Iranian officials are considering moving the capital to the country’s southern coast. But experts say the proposal does not change the reality for the nearly ten million people who live in Tehran, who are now suffering the consequences of a decades-long decline in water supply.Since at least 2008, scientists have warned that unchecked groundwater pumping for the city and for agriculture was rapidly draining its aquifers. The overuse did not just deplete underground reserves—it destroyed them, as the land compressed and sank irreversibly. One recent study found that Iran’s central plateau, where most of the country’s aquifers are located, is sinking by more than 35 centimeters each year. As a result, the aquifers lose about 1.7 billion cubic meters of water annually as the ground is permanently crushed, leaving no space for underground water storage to recover, says Darío Solano, a geoscientist at the National Autonomous University of Mexico.“We saw this coming,” says Solano.Other major cities like Cape Town, Mexico City, Jakarta and parts of California are also facing day zero scenarios as they sink and run out of water.This is not the first time Iran’s capital has moved. Over the centuries, it has shifted many times, from Isfahan to Tabriz to Shiraz. Some of these former capitals still thrive while others exist only as ruins, says Rubin. But this marks the first time the Iranian government has moved the capital because of an ecological catastrophe.Yet, Rubin says, “it would be a mistake to look at this only through the lens of climate change.” Water, land and wastewater mismanagement and corruption have made the crisis worse, he says. If the capital moves to the remote Makran coast in the south, it could cost more than $100 billion dollars. The region is known for its harsh climate and difficult terrain, and some experts have doubts about its viability as a national center. Relocating a capital is often driven more by politics than by environmental concerns, says Linda Shi, a social scientist and urban planner at Cornell University. “Climate change is not the thing that is causing it, but it is a convenient factor to blame in order to avoid taking responsibility” for poor political decisions, she says.It’s Time to Stand Up for ScienceIf you enjoyed this article, I’d like to ask for your support. Scientific American has served as an advocate for science and industry for 180 years, and right now may be the most critical moment in that two-century history.I’ve been a Scientific American subscriber since I was 12 years old, and it helped shape the way I look at the world. SciAm always educates and delights me, and inspires a sense of awe for our vast, beautiful universe. I hope it does that for you, too.If you subscribe to Scientific American, you help ensure that our coverage is centered on meaningful research and discovery; that we have the resources to report on the decisions that threaten labs across the U.S.; and that we support both budding and working scientists at a time when the value of science itself too often goes unrecognized.In return, you get essential news, captivating podcasts, brilliant infographics, can't-miss newsletters, must-watch videos, challenging games, and the science world's best writing and reporting. You can even gift someone a subscription.There has never been a more important time for us to stand up and show why science matters. I hope you’ll support us in that mission.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.