Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

Sugar-Sensing Proteins: A Potential Breakthrough for Sustainable Biofuel

News Feed
Saturday, June 15, 2024

Recent research by the Brookhaven National Laboratory explores how plant proteins respond to sugar levels. The study reveals that the sugar proxy molecule’s binding to the KIN10 protein influences plant growth and oil production. This insight could lead to genetic modifications in plants to enhance oil output for biofuels. Credit: SciTechDailyA new study shows how sugar levels influence plant growth and oil production through the protein KIN10, offering the potential for advancements in biofuel production.Proteins function as molecular machines, equipped with flexible components and moving parts. Gaining insight into these movements is crucial for scientists as it helps them understand the role a protein plays in organisms, and it may also guide them in modifying its effects. A team of biochemists from the U.S. Department of Energy’s Brookhaven National Laboratory and the Pacific Northwest National Laboratory have provided new insights into the mechanisms of these molecular machines within plants.In their recent study, published in Science Advances, the researchers focus on how the movements of a specific sugar-sensing protein determine whether plants grow and produce energy-intensive products, such as oil, or if they engage in conservatory measures. This image shows a plant protein known as KIN10 (yellow) that acts as a sensor and a switch to turn oil production off or on depending on whether it interacts with another protein (green). Credit: Brookhaven National LaboratoryMolecular Mechanisms UnveiledJantana Blanford, a Brookhaven Lab biochemist and the study’s lead author, explains, “This paper reveals the detailed mechanism by which plant cells are informed of high sugar availability, influencing biochemical pathways that facilitate plant growth and oil production.”The research expands upon earlier work from Brookhaven’s team that uncovered molecular links between sugar levels and oil production in plants. One potential goal of this research is to identify specific proteins and their components that scientists can engineer to make plants produce more energy-intensive products, such as oil.“Identifying exactly how these molecules and proteins interact, as this new study does, brings us closer to identifying how we might engineer these proteins to increase plant oil production,” said John Shanklin, lead author and chair of Brookhaven Lab’s Biology Department.VIDEOThis animation shows how a flexible loop (orange) on a plant protein known as KIN10 (yellow) allows it to interact with another protein (green) — but only when sugar levels are low. The interaction of the two proteins triggers a cascade of reactions that break down other proteins involved in oil synthesis so the plant can conserve its resources. When sugar levels are high, meaning the plant has abundant resources, a sugar-proxy molecule blocks the loop’s swinging motion. That prevents the protein interaction, which keeps the oil-production pathway open. Credit: Brookhaven National LaboratoryNew Research on Protein InteractionsThe team used a combination of laboratory experiments and computational modeling to zero in on how the molecule that serves as a sugar proxy binds to a “sensor kinase” known as KIN10. KIN10 is the protein that contains the moving parts that determine which biochemical pathways are on or off.The scientists already knew that KIN10 acts as both a sugar sensor and a switch: When sugar levels are low, KIN10 interacts with another protein to set off a cascade of reactions that ultimately shut down oil production and break down energy-rich molecules like oil and starch to make energy that powers the cell. But when sugar levels are high, KIN10’s shut-down function is shut off — meaning plants can grow and make lots of oil and other products with abundant energy.This diagram shows the two pathways KIN10 and an adjacent protein, GRIK1, follow in the low- and high-sugar conditions. Low sugar allows the addition of a phosphate (P) to KIN10, which triggers a phosphorylation cascade that leads to the breakdown of enzymes involved in oil synthesis. This includes degradation of WRI1, the master-switch for oil synthesis. When sugar is abundant, however, a sugar-proxy molecule (T6P) binds to the KIN10 loop to block its interaction with GRIK1. That keeps the oil synthesis pathway open. Credit: Brookhaven National LaboratoryTo identify how the sugar proxy binding to KIN10 flips the switch, Blanford started with the adage “opposites attract.” She identified three positively charged parts of KIN10 that might be attracted to abundant negative charges on the sugar proxy molecule. A laboratory-based process of elimination that involved making variations of KIN10 with modifications to these sites identified the one true binding site.Then the Brookhaven team turned to computational colleagues at PNNL. Marcel Baer and Simone Raugei at PNNL examined at the atomic level how the sugar proxy and KIN10 fit together. “By using multiscale modeling we observed that the protein can exist in multiple conformations but only one of them can effectively bind the sugar proxy,” Baer said.The PNNL simulations identified key amino acids within the protein that control the binding of the sugar. These computational insights were then confirmed experimentally.The combined body of experimental and computational information helped the scientists understand how interaction with the sugar proxy directly affects the downstream action of KIN10.Brookhaven Lab members of the research team: Jantana Blanford, Zhiyang Zhai, Hui Li, Qun Liu, and John Shanklin (not shown: Gongrui Guo). Credit: Brookhaven National LaboratoryThe Role of Flexibility in Protein Function“Additional analyses showed that the entire KIN10 molecule is rigid except for one long flexible loop,” Shanklin said. The models also showed that the loop’s flexibility is what allows KIN10 to interact with an activator protein to trigger the cascade of reactions that ultimately shut down oil production and plant growth.Pacific Northwest National Laboratory co-authors Marcel Baer and Simone Raugei. Credit: Pacific Northwest National LaboratoryWhen sugar levels are low, and little sugar proxy molecule is present, the loop remains flexible, and the shutdown mechanism can operate to reduce plant growth and oil production. That makes sense to conserve precious resources, Shanklin said. However, when sugar levels are high, the sugar proxy binds tightly to KIN10.“The calculations show how this small molecule blocks the loop from swinging around and prevents it from triggering the shutdown cascade,” Blanford said.“We could potentially use our new knowledge to design KIN10 with altered binding strength for the sugar proxy to change the set point at which plants make things like oil and break things down,” Shanklin said. This knowledge could lead to more efficient production of biofuels and other oil-based products.Reference: “Molecular mechanism of trehalose 6-phosphate inhibition of the plant metabolic sensor kinase SnRK1” by Jantana Blanford, Zhiyang Zhai, Marcel D. Baer, Gongrui Guo, Hui Liu, Qun Liu, Simone Raugei and John Shanklin, 17 May 2024, Science Advances.DOI: 10.1126/sciadv.adn0895This work was supported by the DOE Office of Science (BES). Computer time was provided by the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory and the Molecular Sciences Computing Facility (MSCF) in the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory. NERSC and MSCF are DOE Office of Science user facilities.

A new study shows how sugar levels influence plant growth and oil production through the protein KIN10, offering the potential for advancements in biofuel production....

Biofuel Research Concept

Recent research by the Brookhaven National Laboratory explores how plant proteins respond to sugar levels. The study reveals that the sugar proxy molecule’s binding to the KIN10 protein influences plant growth and oil production. This insight could lead to genetic modifications in plants to enhance oil output for biofuels. Credit: SciTechDaily

A new study shows how sugar levels influence plant growth and oil production through the protein KIN10, offering the potential for advancements in biofuel production.

Proteins function as molecular machines, equipped with flexible components and moving parts. Gaining insight into these movements is crucial for scientists as it helps them understand the role a protein plays in organisms, and it may also guide them in modifying its effects. A team of biochemists from the U.S. Department of Energy’s Brookhaven National Laboratory and the Pacific Northwest National Laboratory have provided new insights into the mechanisms of these molecular machines within plants.

In their recent study, published in Science Advances, the researchers focus on how the movements of a specific sugar-sensing protein determine whether plants grow and produce energy-intensive products, such as oil, or if they engage in conservatory measures.

KIN10 Protein Interaction

This image shows a plant protein known as KIN10 (yellow) that acts as a sensor and a switch to turn oil production off or on depending on whether it interacts with another protein (green). Credit: Brookhaven National Laboratory

Molecular Mechanisms Unveiled

Jantana Blanford, a Brookhaven Lab biochemist and the study’s lead author, explains, “This paper reveals the detailed mechanism by which plant cells are informed of high sugar availability, influencing biochemical pathways that facilitate plant growth and oil production.”

The research expands upon earlier work from Brookhaven’s team that uncovered molecular links between sugar levels and oil production in plants. One potential goal of this research is to identify specific proteins and their components that scientists can engineer to make plants produce more energy-intensive products, such as oil.

“Identifying exactly how these molecules and proteins interact, as this new study does, brings us closer to identifying how we might engineer these proteins to increase plant oil production,” said John Shanklin, lead author and chair of Brookhaven Lab’s Biology Department.


This animation shows how a flexible loop (orange) on a plant protein known as KIN10 (yellow) allows it to interact with another protein (green) — but only when sugar levels are low. The interaction of the two proteins triggers a cascade of reactions that break down other proteins involved in oil synthesis so the plant can conserve its resources. When sugar levels are high, meaning the plant has abundant resources, a sugar-proxy molecule blocks the loop’s swinging motion. That prevents the protein interaction, which keeps the oil-production pathway open. Credit: Brookhaven National Laboratory

New Research on Protein Interactions

The team used a combination of laboratory experiments and computational modeling to zero in on how the molecule that serves as a sugar proxy binds to a “sensor kinase” known as KIN10. KIN10 is the protein that contains the moving parts that determine which biochemical pathways are on or off.

The scientists already knew that KIN10 acts as both a sugar sensor and a switch: When sugar levels are low, KIN10 interacts with another protein to set off a cascade of reactions that ultimately shut down oil production and break down energy-rich molecules like oil and starch to make energy that powers the cell. But when sugar levels are high, KIN10’s shut-down function is shut off — meaning plants can grow and make lots of oil and other products with abundant energy.

Protein Interaction Pathways Schematic

This diagram shows the two pathways KIN10 and an adjacent protein, GRIK1, follow in the low- and high-sugar conditions. Low sugar allows the addition of a phosphate (P) to KIN10, which triggers a phosphorylation cascade that leads to the breakdown of enzymes involved in oil synthesis. This includes degradation of WRI1, the master-switch for oil synthesis. When sugar is abundant, however, a sugar-proxy molecule (T6P) binds to the KIN10 loop to block its interaction with GRIK1. That keeps the oil synthesis pathway open. Credit: Brookhaven National Laboratory

To identify how the sugar proxy binding to KIN10 flips the switch, Blanford started with the adage “opposites attract.” She identified three positively charged parts of KIN10 that might be attracted to abundant negative charges on the sugar proxy molecule. A laboratory-based process of elimination that involved making variations of KIN10 with modifications to these sites identified the one true binding site.

Then the Brookhaven team turned to computational colleagues at PNNL. Marcel Baer and Simone Raugei at PNNL examined at the atomic level how the sugar proxy and KIN10 fit together. “By using multiscale modeling we observed that the protein can exist in multiple conformations but only one of them can effectively bind the sugar proxy,” Baer said.

The PNNL simulations identified key amino acids within the protein that control the binding of the sugar. These computational insights were then confirmed experimentally.

The combined body of experimental and computational information helped the scientists understand how interaction with the sugar proxy directly affects the downstream action of KIN10.

Jantana Blanford, Zhiyang Zhai, Hui Li, Qun Liu, and John Shanklin

Brookhaven Lab members of the research team: Jantana Blanford, Zhiyang Zhai, Hui Li, Qun Liu, and John Shanklin (not shown: Gongrui Guo). Credit: Brookhaven National Laboratory

The Role of Flexibility in Protein Function

“Additional analyses showed that the entire KIN10 molecule is rigid except for one long flexible loop,” Shanklin said. The models also showed that the loop’s flexibility is what allows KIN10 to interact with an activator protein to trigger the cascade of reactions that ultimately shut down oil production and plant growth.

Marcel Baer and Simone Raugei

Pacific Northwest National Laboratory co-authors Marcel Baer and Simone Raugei. Credit: Pacific Northwest National Laboratory

When sugar levels are low, and little sugar proxy molecule is present, the loop remains flexible, and the shutdown mechanism can operate to reduce plant growth and oil production. That makes sense to conserve precious resources, Shanklin said. However, when sugar levels are high, the sugar proxy binds tightly to KIN10.

“The calculations show how this small molecule blocks the loop from swinging around and prevents it from triggering the shutdown cascade,” Blanford said.

“We could potentially use our new knowledge to design KIN10 with altered binding strength for the sugar proxy to change the set point at which plants make things like oil and break things down,” Shanklin said. This knowledge could lead to more efficient production of biofuels and other oil-based products.

Reference: “Molecular mechanism of trehalose 6-phosphate inhibition of the plant metabolic sensor kinase SnRK1” by Jantana Blanford, Zhiyang Zhai, Marcel D. Baer, Gongrui Guo, Hui Liu, Qun Liu, Simone Raugei and John Shanklin, 17 May 2024, Science Advances.
DOI: 10.1126/sciadv.adn0895

This work was supported by the DOE Office of Science (BES). Computer time was provided by the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory and the Molecular Sciences Computing Facility (MSCF) in the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory. NERSC and MSCF are DOE Office of Science user facilities.

Read the full story here.
Photos courtesy of

Researchers Solve Decades-Old Color Mystery in Iconic Jackson Pollock Painting

Scientists have identified the origins of the blue color in one of Jackson Pollock’s paintings with a little help from chemistry

NEW YORK (AP) — Scientists have identified the origins of the blue color in one of Jackson Pollock's paintings with a little help from chemistry, confirming for the first time that the abstract expressionist used a vibrant, synthetic pigment known as manganese blue. “Number 1A, 1948,” showcases Pollock's classic style: paint has been dripped and splattered across the canvas, creating a vivid, multicolored work. Pollock even gave the piece a personal touch, adding his handprints near the top. The painting, currently on display at the Museum of Modern Art in New York, is almost 9 feet (2.7 meters) wide. Scientists had previously characterized the reds and yellows splattered across the canvas, but the source of the rich turquoise blue proved elusive.In a new study, researchers took scrapings of the blue paint and used lasers to scatter light and measure how the paint's molecules vibrated. That gave them a unique chemical fingerprint for the color, which they pinpointed as manganese blue. The analysis, published Monday in the journal Proceedings of the National Academy of Sciences, is the first confirmed evidence of Pollock using this specific blue.“It’s really interesting to understand where some striking color comes from on a molecular level,” said study co-author Edward Solomon with Stanford University.The pigment manganese blue was once used by artists, as well as to color the cement for swimming pools. It was phased out by the 1990s because of environmental concerns.Previous research had suggested that the turquoise from the painting could indeed be this color, but the new study confirms it using samples from the canvas, said Rutgers University’s Gene Hall, who has studied Pollock’s paintings and was not involved with the discovery.“I’m pretty convinced that it could be manganese blue,” Hall said.The researchers also went one step further, inspecting the pigment’s chemical structure to understand how it produces such a vibrant shade.Scientists study the chemical makeup of art supplies to conserve old paintings and catch counterfeits. They can take more specific samples from Pollock's paintings since he often poured directly onto the canvas instead of mixing paints on a palette beforehand. To solve this artistic mystery, researchers explored the paint using various scientific tools — similarly to how Pollock would alternate his own methods, dripping paint using a stick or using it straight from the can.While the artist’s work may seem chaotic, Pollock rejected that interpretation. He saw his work as methodical, said study co-author Abed Haddad, an assistant conservation scientist at the Museum of Modern Art.“I actually see a lot of similarities between the way that we worked and the way that Jackson Pollock worked on the painting," Haddad said.The Associated Press Health and Science Department receives support from the Howard Hughes Medical Institute’s Department of Science Education and the Robert Wood Johnson Foundation. The AP is solely responsible for all content.Copyright 2025 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.Photos You Should See – Sept. 2025

California Votes To Ban PFAS ‘Forever Chemicals’ in Cookware, Other Items

By I. Edwards HealthDay ReporterMONDAY, Sept. 15, 2025 (HealthDay News) — Every time you reach for a nonstick pan, you could be using chemicals...

MONDAY, Sept. 15, 2025 (HealthDay News) — Every time you reach for a nonstick pan, you could be using chemicals that are now on the chopping block in the state of California.Lawmakers have approved a bill to phase out PFAS — also called “forever chemicals” — in cookware, cleaning products, dental floss, ski wax, food packaging and certain children’s items.The proposal, Senate Bill 682, passed in a 41-19 vote and quickly cleared the state Senate. It now heads to Gov. Gavin Newsom, who has until Oct. 12 to sign it into law, CBS News reported.PFAS (per- and polyfluoroalkyl substances) have been widely used for decades, because they resist heat and water stains. But the chemicals build up in the body and environment and have been linked to cancers, liver and kidney damage and reproductive problems."Exposure to PFAS poses a significant threat to the environment and public health," the bill says.If signed, the law will roll out in stages: cookware must comply by 2030; cleaning products by 2031; and all other covered items by 2028.The plan has drawn sharp debate. Some chefs, including Rachael Ray, Thomas Keller and David Chang, argue that banning nonstick cookware made with PTFE (a type of PFAS better known as Teflon) could make cooking harder and more expensive for families, CBS News reported. “PTFEs, when manufactured and used responsibly, are proven to be safe and effective,” Ray, who sells a line of cookware bearing her name, wrote in a letter to lawmakers.But environmental groups, including the Natural Resources Defense Council, say nonstick pans can release PFAS particles when scratched or overheated. Actor Mark Ruffalo also urged support for the bill. "Independent science shows that the PFAS in cookware can wind up in our food," he wrote on X.State Sen. Ben Allen proposed the legislation.“PFAS pose a level of serious risks that require us to take a measured approach to reduce their proliferation and unnecessary use,” he said.California has already banned PFAS in items like carpets, firefighting foam and cosmetics. If signed into law, SB 682 would make California one of the first states to phase out PFAS in cookware.The U.S. Environmental Protection Agency has more on PFAS.SOURCES: CBS News, Sept. 13, 2025; California Legislative Information, Sept. 9, 2025Copyright © 2025 HealthDay. All rights reserved.

The Trump Team Wants to Boost Birth Rates While Poisoning Children

“I want a baby boom,” Trump has said. His administration is indeed exploring a range of approaches to boost the birth rate, including baby bonuses and classes on natural fertility. Yet his focus is entirely on the production of babies. When it comes to keeping these babies alive, this administration is leaving parents on their own, facing some horrifying and unprecedented challenges. It’s common for right-wing American governments, whether at the state or federal level, to be only half-heartedly natalist: restricting abortion, birth control, and sex education, while also failing to embrace any policy that makes it easier to raise a family, like universal childcare, robust public education, school lunch, cash supports for parents, or paid family leave. But the Trump-Vance government has taken this paradox to a new level, with natalist rhetoric far surpassing that of other recent administrations, while real live children are treated with more depraved, life-threatening indifference than in any American government in at least a century. Due to brutal cuts at the Food and Drug Administration, where 20,000 employees have been fired, the administration has suspended one of its quality-control programs for milk, Reuters reported this week. Milk is iconically associated with child health, and this is not a mere storybook whimsy: Most pediatricians regard it as critical for young children’s developing brains and bones. The American Academy of Pediatrics recommends two cups a day for babies between 1 and 2 years old. While some experts—and of course the administration—are downplaying the change, emphasizing that milk will still be regulated, a bird flu epidemic hardly seems like the right time to be cutting corners. A government so focused on making more babies shouldn’t be so indifferent to risks to our nation’s toddlers.This reckless approach to child safety is not limited to food. Also this week, The New York Times reported that the Environmental Protection Agency was canceling tens of millions of dollars in grants for research on environmental hazards to children in rural America. These hazards include pesticides, wildfire smoke, and forever chemicals, and the grants supported research toward solutions to such problems. Many focused on improving child health in red states like Oklahoma. Children are much more vulnerable than adults to the health problems that can stem from exposure to toxins. That makes Trump’s policies, for all his baby-friendly chatter, seem pathologically misopedic; he is reversing bans on so-called “forever chemicals” and repealing limits set by the Biden administration on lead exposure, all of which will have devastating effects on children’s mental and physical development.And of course there’s RFK Jr.’s crazy campaign against vaccines. This week, the health secretary said he was considering removing the Covid-19 vaccine from the list of vaccines the government recommends for children, even though to win Senate confirmation, he had agreed not to alter the childhood vaccine schedule. Even worse, RFK Jr. has used his office to promote disinformation about extensively debunked links between vaccines and autism, while praising unproven “treatments” for measles as an outbreak that has afflicted more than 600 people and killed at least three continues to spread. Trump’s public health cuts are meanwhile imperiling a program that gives free vaccines to children. So far, I haven’t even mentioned children outside the United States. Trump has not only continued Biden’s policy of mass infanticide in Gaza—at least 100 children there have been killed or injured every week by Israeli forces since the dissolution of the ceasefire in March—he has vastly surpassed that shameful record by dismantling USAID. (The Supreme Court demanded that the government restore some of the funding to the already-contracted programs, but it’s unclear what the results of that ruling will be.) Children across the globe will starve to death due to this policy. The cuts to nutrition funding alone, researchers estimate, will kill some 369,000 children who could otherwise have lived. That’s not even counting all the other children’s lives imperiled by USAID funding cuts to vaccines, health services, and maternal care, or the children who will go unprotected now that Trump has cut 69 programs dedicated to tracking child labor, forced labor, and human trafficking.Natalist or exterminationist? Pro-child or rabidly infanticidal? It’s tempting to dismiss such extreme contradictions within the Trump administration as merely chaotic and incoherent. But the situation is worse than that. Trying to boost births while actively making the world less safe for children is creepy—but not in a new way. The contradiction is baked into the eugenicist tradition that Vance and Trump openly embrace. Vance said at an anti-abortion rally in January that he wanted “more babies in the United States of America.” Vance also said he wanted “more beautiful young men and women” to have children. Notice he doesn’t just say “more babies”: the qualifiers are significant. Vance was implying that he wanted the right people to have babies: American, white, able-bodied, “beautiful” people with robust genetics. Children dying because of USAID cuts aren’t part of this vision, presumably, because those children are not American or white. As for infected milk, environmental toxins, or measles—here too, it’s hard not to hear social Darwinist overtones: In a far-right eugenicist worldview, children killed by those things likely aren’t fit for survival. In a more chaotic and dangerous environment, this extremely outdated logic goes, natural selection will ensure that the strongest survive. It’s also worth noting that this way of thinking originates in—and many of these Trump administration policies aim to return us to—an earlier era, when people of all ages, but especially children, were simply poisoned by industrial pollution, unvaccinated for diseases, and unprotected from industrial accidents. In such an unsafe world for children, people had many more of them; the world was such a dangerous place to raise kids that families expected to lose a few. That all-too-recent period is the unspoken context for natalist and eugenicist visions. That’s the world Trump and Vance seem to be nostalgic for, one in which women were constantly pregnant and in labor, and children were constantly dying horrible deaths. Doesn’t that sound pleasant for everyone?

“I want a baby boom,” Trump has said. His administration is indeed exploring a range of approaches to boost the birth rate, including baby bonuses and classes on natural fertility. Yet his focus is entirely on the production of babies. When it comes to keeping these babies alive, this administration is leaving parents on their own, facing some horrifying and unprecedented challenges. It’s common for right-wing American governments, whether at the state or federal level, to be only half-heartedly natalist: restricting abortion, birth control, and sex education, while also failing to embrace any policy that makes it easier to raise a family, like universal childcare, robust public education, school lunch, cash supports for parents, or paid family leave. But the Trump-Vance government has taken this paradox to a new level, with natalist rhetoric far surpassing that of other recent administrations, while real live children are treated with more depraved, life-threatening indifference than in any American government in at least a century. Due to brutal cuts at the Food and Drug Administration, where 20,000 employees have been fired, the administration has suspended one of its quality-control programs for milk, Reuters reported this week. Milk is iconically associated with child health, and this is not a mere storybook whimsy: Most pediatricians regard it as critical for young children’s developing brains and bones. The American Academy of Pediatrics recommends two cups a day for babies between 1 and 2 years old. While some experts—and of course the administration—are downplaying the change, emphasizing that milk will still be regulated, a bird flu epidemic hardly seems like the right time to be cutting corners. A government so focused on making more babies shouldn’t be so indifferent to risks to our nation’s toddlers.This reckless approach to child safety is not limited to food. Also this week, The New York Times reported that the Environmental Protection Agency was canceling tens of millions of dollars in grants for research on environmental hazards to children in rural America. These hazards include pesticides, wildfire smoke, and forever chemicals, and the grants supported research toward solutions to such problems. Many focused on improving child health in red states like Oklahoma. Children are much more vulnerable than adults to the health problems that can stem from exposure to toxins. That makes Trump’s policies, for all his baby-friendly chatter, seem pathologically misopedic; he is reversing bans on so-called “forever chemicals” and repealing limits set by the Biden administration on lead exposure, all of which will have devastating effects on children’s mental and physical development.And of course there’s RFK Jr.’s crazy campaign against vaccines. This week, the health secretary said he was considering removing the Covid-19 vaccine from the list of vaccines the government recommends for children, even though to win Senate confirmation, he had agreed not to alter the childhood vaccine schedule. Even worse, RFK Jr. has used his office to promote disinformation about extensively debunked links between vaccines and autism, while praising unproven “treatments” for measles as an outbreak that has afflicted more than 600 people and killed at least three continues to spread. Trump’s public health cuts are meanwhile imperiling a program that gives free vaccines to children. So far, I haven’t even mentioned children outside the United States. Trump has not only continued Biden’s policy of mass infanticide in Gaza—at least 100 children there have been killed or injured every week by Israeli forces since the dissolution of the ceasefire in March—he has vastly surpassed that shameful record by dismantling USAID. (The Supreme Court demanded that the government restore some of the funding to the already-contracted programs, but it’s unclear what the results of that ruling will be.) Children across the globe will starve to death due to this policy. The cuts to nutrition funding alone, researchers estimate, will kill some 369,000 children who could otherwise have lived. That’s not even counting all the other children’s lives imperiled by USAID funding cuts to vaccines, health services, and maternal care, or the children who will go unprotected now that Trump has cut 69 programs dedicated to tracking child labor, forced labor, and human trafficking.Natalist or exterminationist? Pro-child or rabidly infanticidal? It’s tempting to dismiss such extreme contradictions within the Trump administration as merely chaotic and incoherent. But the situation is worse than that. Trying to boost births while actively making the world less safe for children is creepy—but not in a new way. The contradiction is baked into the eugenicist tradition that Vance and Trump openly embrace. Vance said at an anti-abortion rally in January that he wanted “more babies in the United States of America.” Vance also said he wanted “more beautiful young men and women” to have children. Notice he doesn’t just say “more babies”: the qualifiers are significant. Vance was implying that he wanted the right people to have babies: American, white, able-bodied, “beautiful” people with robust genetics. Children dying because of USAID cuts aren’t part of this vision, presumably, because those children are not American or white. As for infected milk, environmental toxins, or measles—here too, it’s hard not to hear social Darwinist overtones: In a far-right eugenicist worldview, children killed by those things likely aren’t fit for survival. In a more chaotic and dangerous environment, this extremely outdated logic goes, natural selection will ensure that the strongest survive. It’s also worth noting that this way of thinking originates in—and many of these Trump administration policies aim to return us to—an earlier era, when people of all ages, but especially children, were simply poisoned by industrial pollution, unvaccinated for diseases, and unprotected from industrial accidents. In such an unsafe world for children, people had many more of them; the world was such a dangerous place to raise kids that families expected to lose a few. That all-too-recent period is the unspoken context for natalist and eugenicist visions. That’s the world Trump and Vance seem to be nostalgic for, one in which women were constantly pregnant and in labor, and children were constantly dying horrible deaths. Doesn’t that sound pleasant for everyone?

The greater Pittsburgh region is among the 25 worst metro areas in the country for air quality: Report

PITTSBURGH — The greater Pittsburgh metropolitan area is among the 25 regions in the country with the worst air pollution, according to a new report from the American Lung Association.The nonprofit public health organization’s annual “State of the Air” report uses a report card-style grading system to compare air quality in regions across the U.S. This year’s report found that 46% of Americans — 156.1 million people — are living in places that get failing grades for unhealthy levels of ozone or particulate pollution. Overall, air pollution measured by the report was worse than in previous years, with more Americans living in places with unhealthy air than in the previous 10 years the report has been published.The 13-county region spanning Pittsburgh and southwestern Pennsylvania; Weirton, West Virginia; and Steubenville, Ohio received “fail” grades for both daily and annual average particulate matter exposure for the years 2021–2023.The region ranked 16th worst for 24-hour particle pollution out of 225 metropolitan areas and 12th worst for annual particle pollution out of 208 metropolitan areas. Particulate matter pollution, which comes from things like industrial emissions, vehicle exhaust, wildfires, and wood burning, causes higher rates of asthma, decreased lung function in children, and increased hospital admissions and premature death due to heart attacks and respiratory illness. Long-term exposure to particulate matter pollution also raises the risk of lung cancer, and research suggests that in the Pittsburgh region, air pollution linked to particulate matter and other harmful substances contributes significantly to cancer rates. According to the report, the Pittsburgh metro area is home to around 50,022 children with pediatric asthma, 227,806 adults with asthma, 173,588 people with Chronic Obstructive Pulmonary Disease (COPD), 250,600 people with cardiovascular disease, 1,468 people with lung cancer, and around 25,746 pregnant people, all of whom are especially vulnerable to the harmful impacts of particulate matter pollution exposure."The findings help community members understand the ongoing risks to the health of people in our region," said Matt Mehalik, executive director of the Breathe Project and the Breathe Collaborative, a coalition of more than 30 groups in southwestern Pennsylvania that advocate for cleaner air. "These findings emphasize the need to transition away from fossil fuels — in industry, transportation and residential uses — if we are to improve our health and address climate change." Allegheny County has received a failing grade for particulate matter pollution from the American Lung Association every year since the "State of the Air" report was first issued in 2004. The region is home to numerous polluting industries, with an estimated 80% of toxic air pollutants in Allegheny County (which encompasses Pittsburgh) coming from ten industrial sites, according to an analysis by the nonprofit environmental advocacy group PennEnvironment Research & Policy Center. The Ohio River near Pittsburgh Credit: Kristina Marusic for EHN In the 2024 State of the Air report, which looked at 2020-2022, Pittsburgh was for the first time ever not among the 25 cities most polluted by particulate matte, and showed some improvements in air quality, some of which may have resulted from pollution reductions spurred by the COVID-19 shut-down in 2020.The region earned a grade D for ozone smog this year, but its ranking improved from last year — it went from the 50th worst metro area for ozone smog in 2024’s report to the 90th worst in this year’s. Ozone pollution also comes from sources like vehicle exhaust and industrial emissions, and occurs when certain chemicals mix with sunlight. Exposure to ozone pollution is linked to respiratory issues, worsened asthma symptoms, and long-term lung damage.Each year the State of the Air Report makes recommendations for improving air quality. This year those recommendations include defending funding for the U.S. Environmental Protection Agency (EPA), because sweeping staff cuts and reduction of federal funding under the Trump administration are impairing the agency’s ability to enforce clean air regulations. For example, the report notes that EPA recently lowered annual limits for fine particulate matter pollution from 12 micrograms per cubic meter to 9 micrograms per cubic meter, and that states, including Pennsylvania, have submitted their recommendations for which areas should be cleaned up. Next, the agency must review those recommendations and add its own analyses to make final decisions by February 6, 2026 about which areas need additional pollution controls. If it fails to do so due to lack of funding or staffing, the report suggests, air quality might suffer.“The bottom line is this,” the report states. “EPA staff, working in communities across the country, are doing crucial work to keep your air clean. Staff cuts are already impacting people’s health across the country. Further cuts mean more dirty air.”

PITTSBURGH — The greater Pittsburgh metropolitan area is among the 25 regions in the country with the worst air pollution, according to a new report from the American Lung Association.The nonprofit public health organization’s annual “State of the Air” report uses a report card-style grading system to compare air quality in regions across the U.S. This year’s report found that 46% of Americans — 156.1 million people — are living in places that get failing grades for unhealthy levels of ozone or particulate pollution. Overall, air pollution measured by the report was worse than in previous years, with more Americans living in places with unhealthy air than in the previous 10 years the report has been published.The 13-county region spanning Pittsburgh and southwestern Pennsylvania; Weirton, West Virginia; and Steubenville, Ohio received “fail” grades for both daily and annual average particulate matter exposure for the years 2021–2023.The region ranked 16th worst for 24-hour particle pollution out of 225 metropolitan areas and 12th worst for annual particle pollution out of 208 metropolitan areas. Particulate matter pollution, which comes from things like industrial emissions, vehicle exhaust, wildfires, and wood burning, causes higher rates of asthma, decreased lung function in children, and increased hospital admissions and premature death due to heart attacks and respiratory illness. Long-term exposure to particulate matter pollution also raises the risk of lung cancer, and research suggests that in the Pittsburgh region, air pollution linked to particulate matter and other harmful substances contributes significantly to cancer rates. According to the report, the Pittsburgh metro area is home to around 50,022 children with pediatric asthma, 227,806 adults with asthma, 173,588 people with Chronic Obstructive Pulmonary Disease (COPD), 250,600 people with cardiovascular disease, 1,468 people with lung cancer, and around 25,746 pregnant people, all of whom are especially vulnerable to the harmful impacts of particulate matter pollution exposure."The findings help community members understand the ongoing risks to the health of people in our region," said Matt Mehalik, executive director of the Breathe Project and the Breathe Collaborative, a coalition of more than 30 groups in southwestern Pennsylvania that advocate for cleaner air. "These findings emphasize the need to transition away from fossil fuels — in industry, transportation and residential uses — if we are to improve our health and address climate change." Allegheny County has received a failing grade for particulate matter pollution from the American Lung Association every year since the "State of the Air" report was first issued in 2004. The region is home to numerous polluting industries, with an estimated 80% of toxic air pollutants in Allegheny County (which encompasses Pittsburgh) coming from ten industrial sites, according to an analysis by the nonprofit environmental advocacy group PennEnvironment Research & Policy Center. The Ohio River near Pittsburgh Credit: Kristina Marusic for EHN In the 2024 State of the Air report, which looked at 2020-2022, Pittsburgh was for the first time ever not among the 25 cities most polluted by particulate matte, and showed some improvements in air quality, some of which may have resulted from pollution reductions spurred by the COVID-19 shut-down in 2020.The region earned a grade D for ozone smog this year, but its ranking improved from last year — it went from the 50th worst metro area for ozone smog in 2024’s report to the 90th worst in this year’s. Ozone pollution also comes from sources like vehicle exhaust and industrial emissions, and occurs when certain chemicals mix with sunlight. Exposure to ozone pollution is linked to respiratory issues, worsened asthma symptoms, and long-term lung damage.Each year the State of the Air Report makes recommendations for improving air quality. This year those recommendations include defending funding for the U.S. Environmental Protection Agency (EPA), because sweeping staff cuts and reduction of federal funding under the Trump administration are impairing the agency’s ability to enforce clean air regulations. For example, the report notes that EPA recently lowered annual limits for fine particulate matter pollution from 12 micrograms per cubic meter to 9 micrograms per cubic meter, and that states, including Pennsylvania, have submitted their recommendations for which areas should be cleaned up. Next, the agency must review those recommendations and add its own analyses to make final decisions by February 6, 2026 about which areas need additional pollution controls. If it fails to do so due to lack of funding or staffing, the report suggests, air quality might suffer.“The bottom line is this,” the report states. “EPA staff, working in communities across the country, are doing crucial work to keep your air clean. Staff cuts are already impacting people’s health across the country. Further cuts mean more dirty air.”

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.