Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

Study finds levels of a dangerous gas “off the scales” in Central Texas oilfield

News Feed
Friday, September 20, 2024

Sign up for The Brief, The Texas Tribune’s daily newsletter that keeps readers up to speed on the most essential Texas news. The first readings Abigail Edgar took of hydrogen sulfide and methane at oilfields in Caldwell County in 2021 were so high that she thought her equipment was malfunctioning. “It was off the scales. Methane was off the scales and hydrogen sulfide was off the scales,” said Edgar, a master’s student in geography at Texas State University. “The monitor would immediately start beeping when I crossed the property line.” Edgar was recording dangerous levels of hydrogen sulfide at wells on private property in Caldwell County, 30 miles southeast of Austin. Hydrogen sulfide is a toxic and highly flammable gas often found in oil and gas formations. During the course of her research, the gas was so potent at three separate wells that Edgar’s respirator did not provide enough protection and she had to leave for her safety. Edgar teamed up with University of Cincinnati environmental scientist Amy Townsend-Small, an expert on methane, to take another round of measurements in 2023. They found the wells were directly releasing gas — including hydrogen sulfide and methane — into the atmosphere in a process called venting. Some of the wells venting gas were alongside public roads. Others were next to backyards and driveways. In a paper published in Environmental Research Communications last week, Edgar, Townsend-Small and other authors at Texas State University and the University of Maryland report hydrogen sulfide readings at 46 wells around Caldwell County. Hydrogen sulfide concentrations at 13 of the wells were at least 300 parts per million (ppm) — the maximum reading on the measuring device. Eight other sites had readings over 100 ppm. Exposure to 100 ppm of hydrogen sulfide is immediately dangerous to life or health, according to the National Institute for Occupational Safety and Health. The study warns these hydrogen sulfide levels are a hazard for people living and working in the area. “Here in Texas we rely heavily on the oil industry and protect the oil industry. And I think rightfully so,” Edgar said. “But there has to be something done for these neighbors. We’re slowly poisoning these communities.” Abigail Edgar, left, and Amy Townsend-Small observe a bubbling gas leak at a well that state records list as inactive in May 2023. Credit: Courtesy of Abigail Edgar Oilfield companies are required to adopt protocols to protect workers from hydrogen sulfide. But the general public is often exposed to low-level concentrations. The gas can disperse for miles downwind, especially during cold weather. Symptoms of low to mid-level hydrogen sulfide exposure include headaches, nausea, coughing and nose and eye irritation. The gas is also present at landfills, wastewater treatment facilities and large animal feedlots. State rules prohibit the waste of natural gas through venting and flaring except under certain circumstances. But researchers found that venting was commonplace in Caldwell County after the gas processing plant there closed down in 2017. Inside Climate News found that the Railroad Commission of Texas, which regulates oil and gas extraction, has not issued any recent exceptions for venting or flaring gas in the county. The most important Texas news,sent weekday mornings. The agency did not respond to questions about gas venting or hydrogen sulfide exposure in the area. Spokesperson Patty Ramon said, “Our rules, permitting and inspection systems are designed to protect public safety and the environment.” The Texas Commission on Environmental Quality (TCEQ) regulates ambient concentrations of hydrogen sulfide. Agency spokesperson Richard Richter said that the measurements in the study cannot be used to evaluate the exposure to the general public. He said that in an unspecified number of TCEQ investigations in Caldwell County since 2017 the H2S concentrations in ambient air did not exceed state standards. Production flatlined in the Luling oilfield The railroad town of Luling in Caldwell County, about 50 miles south of Austin, boomed after Edgar B. Davis struck oil in 1922. Wells in the Luling oilfield cut diagonally across the county, dotting unincorporated areas like Stairtown and within the Luling city limits. The oil patch was largely tapped out by the 1980s, but low-production wells keep pumping to this day. In June 2024, the most recent month with available data, operators in Caldwell County reported producing less than 71,000 barrels of oil. That places Caldwell at 63 out of 199 oil-producing counties in Texas that month. Amid production declines, the Luling Oil Museum still invites visitors to learn about the town’s drilling heritage. The other main attraction in Luling, population 5,500, is the annual Watermelon Thump festival. The Luling oilfield is one of many across Texas characterized by gas high in hydrogen sulfide. An aging oil well in Caldwell County. Seen on the ground at the left side of the well head is an open vent releasing hydrogen sulfide. Researchers measured over 300 ppm of the dangerous gas at the well head. Credit: Courtesy of Abigail Edgar The pungent “rotten egg” smell emanating from the Luling oil fields is so ubiquitous that local media outlets have dubbed it the “Luling effect.” People as far as Austin have called 911 to report the smell, which comes from hydrogen sulfide and other chemicals. The Railroad Commission implements State Rule 36, requiring operators to report the hydrogen sulfide concentration at wells, determine the radius of exposure and report any accidental releases of hydrogen sulfide. Operators are required to install signs and restrict public access to sites with a risk of exposure. Groundlevel hydrogen sulfide concentrations over 0.08 ppm, averaged over a 30-minute period, are prohibited by state law if the emissions affect residential or commercial property. In an investigation earlier this year, the Houston Chronicle and The Examination found that residents in the Permian Basin often report symptoms of hydrogen sulfide exposure, but state regulators rarely issue meaningful penalties to the companies responsible for the pollution. When the TCEQ records elevated H2S levels in ambient air, the agency’s goal is to identify the source and ensure the emissions are stopped, its spokesperson said. He reiterated that because the study’s measurements were taken at the wellhead, the readings were not in violation of TCEQ standards. Low producing oil wells, but high hydrogen sulfide emissions Texas State University’s Edgar contacted landowners in Caldwell County to find sites to measure hydrogen sulfide and methane emissions. Edgar said that the landowners were unaware that gas was being directly vented on their property. She said one resident had been asked by his doctor if he could be suffering hydrogen sulfide poisoning. “They were happy to have somebody take notice of it,” she said. The researchers selected 46 wells to study. The oldest had been drilled in the 1930s, but most were drilled in the 1960s through 1980s. All the wells are considered marginal, with less than 15 barrels of oil production a day. (In contrast, fracked wells in Texas can produce thousands of barrels a day.) The team took direct measurements from the wellhead using a Bascom-Turner Gas Rover and an Indaco Hi-Flow Sampler. Hydrogen sulfide was measured over a five-minute period. The methane emissions measured at the wells were similar to previous studies of marginal oil wells. Hydrogen sulfide concentrations ranged from zero parts per million to at least 300 parts per million, the maximum reading on the Gas Rover. Hydrogen sulfide can be immediately lethal at concentrations over 700 ppm. Exposure to more than 500 ppm will cause people to collapse within five minutes. An oilfield worker and his wife were killed by hydrogen sulfide exposure in Odessa in 2019. Hydrogen sulfide dissipates and would be found in lower concentrations in public areas near the wells. While not as well understood as acute, high-level exposure, research shows that chronic, low-level hydrogen sulfide exposure also has health effects. One 2023 literature review of over 100 previous studies found that chronic community hydrogen sulfide exposure at average concentrations below 0.01 ppm has been associated with health effects including eye, nose, respiratory and neurological symptoms. The authors write that individuals with underlying health conditions such as asthma could be particularly at risk. The University of Cincinnati’s Townsend-Small said the Caldwell County wells are deserving of study because of the anecdotal evidence of strong hydrogen sulfide smells and their proximity to large urban areas. “These wells are so close to so many people,” she said. “And they are emitting a hazardous substance that could be affecting so many people.” Townsend-Small said plugging the Caldwell County wells or capturing the gas is “low-hanging fruit” to reduce methane emissions and health effects of hydrogen sulfide without significant impacts to oil production. Edgar said it is unclear whether the Railroad Commission or the TCEQ is responsible for regulating venting at oil wells when it contributes to air pollution. She said one simple step would be for Railroad Commission staff to record hydrogen sulfide levels when they make field visits in Caldwell County. “I was not able to come up with any good answers to whose fault is this, who should fix it, and how it should be fixed,” she said. She said her greatest concern is for oilfield workers and neighbors who live next door to wells. “Part of being in the oilfields” Luling city manager Mark Mayo said people coming through town often comment on the smell. But Mayo, who grew up in the Permian Basin, is no stranger to the odor of sour gas. He said he didn’t think Luling residents are at risk from hydrogen sulfide. “Just because it has a smell doesn’t mean it’s always bad,” he said. “That’s part of being in the oilfield.” Credit: Martha Pskowski/Inside Climate News But he took note of discrepancies documented in the study. Researchers found that some wells listed as “active” with the Railroad Commission were no longer producing. Others listed as “inactive” or “plugged” were still producing. Mayo said the city relies on the agency to ensure oil companies are following state rules, including those for hydrogen sulfide. “That’s the Railroad Commission’s place,” he said. “As far as the city, we don’t have the ability or the equipment to stay up on that.” Air quality experts have long known that Caldwell County is a locus of hydrogen sulfide emissions. But there are no stationary hydrogen sulfide monitors to track community levels of exposure. Neil Carman, the Lone Star Sierra Club’s clean air director, previously worked as an air pollution control inspector for the TCEQ. Carman said to prove that emissions exceed the TCEQ standards would require 30-minute readings, subtracting any contributions of hydrogen sulfide from upwind, instead of the five-minute measurements of the study. But he did not doubt that excess hydrogen sulfide is being released. “Luling, Texas, there is a huge mess out there,” he said. “I’ve been through many times. I’d say almost every time I’d get a headache.” Carman said that memory loss and insomnia are other frequent symptoms of exposure. “It's really unacceptable and outrageous to the people in these communities,” Carman said. Sharon Wilson of the nonprofit Oilfield Witness has researched compliance with the Railroad Commission’s hydrogen sulfide rules. In a previous report, she found that many companies fail to submit the H9 form reporting the hydrogen sulfide level at wells. “Texas has a gas problem. We have a hydrogen sulfide problem and it's putting people at risk,” Wilson said. “We see the high levels of hydrogen sulfide from the few air monitors there are in the Permian Basin.” Wilson travels the Texas oil fields measuring methane emissions with a thermal camera. She said often the hydrogen sulfide fumes are so overwhelming she can’t leave her vehicle. “Texans are not receiving equal protection from oil and gas pollution,” she said. “We need more monitors in all areas of oil and gas activity.”

The smell of oil wells has long permeated Caldwell County, near Austin and San Antonio. Now researchers have documented wells releasing dangerous amounts of hydrogen sulfide gas.

Sign up for The Brief, The Texas Tribune’s daily newsletter that keeps readers up to speed on the most essential Texas news.


The first readings Abigail Edgar took of hydrogen sulfide and methane at oilfields in Caldwell County in 2021 were so high that she thought her equipment was malfunctioning.

“It was off the scales. Methane was off the scales and hydrogen sulfide was off the scales,” said Edgar, a master’s student in geography at Texas State University. “The monitor would immediately start beeping when I crossed the property line.”

Edgar was recording dangerous levels of hydrogen sulfide at wells on private property in Caldwell County, 30 miles southeast of Austin. Hydrogen sulfide is a toxic and highly flammable gas often found in oil and gas formations. During the course of her research, the gas was so potent at three separate wells that Edgar’s respirator did not provide enough protection and she had to leave for her safety.

Edgar teamed up with University of Cincinnati environmental scientist Amy Townsend-Small, an expert on methane, to take another round of measurements in 2023. They found the wells were directly releasing gas — including hydrogen sulfide and methane — into the atmosphere in a process called venting. Some of the wells venting gas were alongside public roads. Others were next to backyards and driveways.

In a paper published in Environmental Research Communications last week, Edgar, Townsend-Small and other authors at Texas State University and the University of Maryland report hydrogen sulfide readings at 46 wells around Caldwell County. Hydrogen sulfide concentrations at 13 of the wells were at least 300 parts per million (ppm) — the maximum reading on the measuring device. Eight other sites had readings over 100 ppm. Exposure to 100 ppm of hydrogen sulfide is immediately dangerous to life or health, according to the National Institute for Occupational Safety and Health. The study warns these hydrogen sulfide levels are a hazard for people living and working in the area.

“Here in Texas we rely heavily on the oil industry and protect the oil industry. And I think rightfully so,” Edgar said. “But there has to be something done for these neighbors. We’re slowly poisoning these communities.”

Abigail Edgar, left, and Amy Townsend-Small observe a bubbling gas leak at a well that state records list as inactive in May 2023. Credit: Courtesy of Abigail Edgar

Oilfield companies are required to adopt protocols to protect workers from hydrogen sulfide. But the general public is often exposed to low-level concentrations. The gas can disperse for miles downwind, especially during cold weather. Symptoms of low to mid-level hydrogen sulfide exposure include headaches, nausea, coughing and nose and eye irritation. The gas is also present at landfills, wastewater treatment facilities and large animal feedlots.

State rules prohibit the waste of natural gas through venting and flaring except under certain circumstances. But researchers found that venting was commonplace in Caldwell County after the gas processing plant there closed down in 2017. Inside Climate News found that the Railroad Commission of Texas, which regulates oil and gas extraction, has not issued any recent exceptions for venting or flaring gas in the county.

Logo for The Brief newsletter.

The most important Texas news,
sent weekday mornings.

The agency did not respond to questions about gas venting or hydrogen sulfide exposure in the area. Spokesperson Patty Ramon said, “Our rules, permitting and inspection systems are designed to protect public safety and the environment.”

The Texas Commission on Environmental Quality (TCEQ) regulates ambient concentrations of hydrogen sulfide. Agency spokesperson Richard Richter said that the measurements in the study cannot be used to evaluate the exposure to the general public. He said that in an unspecified number of TCEQ investigations in Caldwell County since 2017 the H2S concentrations in ambient air did not exceed state standards.

Production flatlined in the Luling oilfield

The railroad town of Luling in Caldwell County, about 50 miles south of Austin, boomed after Edgar B. Davis struck oil in 1922. Wells in the Luling oilfield cut diagonally across the county, dotting unincorporated areas like Stairtown and within the Luling city limits.

The oil patch was largely tapped out by the 1980s, but low-production wells keep pumping to this day. In June 2024, the most recent month with available data, operators in Caldwell County reported producing less than 71,000 barrels of oil. That places Caldwell at 63 out of 199 oil-producing counties in Texas that month.

Amid production declines, the Luling Oil Museum still invites visitors to learn about the town’s drilling heritage. The other main attraction in Luling, population 5,500, is the annual Watermelon Thump festival.

The Luling oilfield is one of many across Texas characterized by gas high in hydrogen sulfide.

An aging oil well in Caldwell County. Seen on the ground at the left side of the well head is an open vent releasing hydrogen sulfide. Researchers measured over 300 ppm of the dangerous gas at the well head. Credit: Courtesy of Abigail Edgar

The pungent “rotten egg” smell emanating from the Luling oil fields is so ubiquitous that local media outlets have dubbed it the “Luling effect.” People as far as Austin have called 911 to report the smell, which comes from hydrogen sulfide and other chemicals.

The Railroad Commission implements State Rule 36, requiring operators to report the hydrogen sulfide concentration at wells, determine the radius of exposure and report any accidental releases of hydrogen sulfide. Operators are required to install signs and restrict public access to sites with a risk of exposure.

Groundlevel hydrogen sulfide concentrations over 0.08 ppm, averaged over a 30-minute period, are prohibited by state law if the emissions affect residential or commercial property. In an investigation earlier this year, the Houston Chronicle and The Examination found that residents in the Permian Basin often report symptoms of hydrogen sulfide exposure, but state regulators rarely issue meaningful penalties to the companies responsible for the pollution.

When the TCEQ records elevated H2S levels in ambient air, the agency’s goal is to identify the source and ensure the emissions are stopped, its spokesperson said. He reiterated that because the study’s measurements were taken at the wellhead, the readings were not in violation of TCEQ standards.

Low producing oil wells, but high hydrogen sulfide emissions

Texas State University’s Edgar contacted landowners in Caldwell County to find sites to measure hydrogen sulfide and methane emissions.

Edgar said that the landowners were unaware that gas was being directly vented on their property. She said one resident had been asked by his doctor if he could be suffering hydrogen sulfide poisoning.

“They were happy to have somebody take notice of it,” she said.

The researchers selected 46 wells to study. The oldest had been drilled in the 1930s, but most were drilled in the 1960s through 1980s. All the wells are considered marginal, with less than 15 barrels of oil production a day. (In contrast, fracked wells in Texas can produce thousands of barrels a day.) The team took direct measurements from the wellhead using a Bascom-Turner Gas Rover and an Indaco Hi-Flow Sampler. Hydrogen sulfide was measured over a five-minute period.

The methane emissions measured at the wells were similar to previous studies of marginal oil wells. Hydrogen sulfide concentrations ranged from zero parts per million to at least 300 parts per million, the maximum reading on the Gas Rover.

Hydrogen sulfide can be immediately lethal at concentrations over 700 ppm. Exposure to more than 500 ppm will cause people to collapse within five minutes. An oilfield worker and his wife were killed by hydrogen sulfide exposure in Odessa in 2019.

Hydrogen sulfide dissipates and would be found in lower concentrations in public areas near the wells. While not as well understood as acute, high-level exposure, research shows that chronic, low-level hydrogen sulfide exposure also has health effects. One 2023 literature review of over 100 previous studies found that chronic community hydrogen sulfide exposure at average concentrations below 0.01 ppm has been associated with health effects including eye, nose, respiratory and neurological symptoms. The authors write that individuals with underlying health conditions such as asthma could be particularly at risk.

The University of Cincinnati’s Townsend-Small said the Caldwell County wells are deserving of study because of the anecdotal evidence of strong hydrogen sulfide smells and their proximity to large urban areas.

“These wells are so close to so many people,” she said. “And they are emitting a hazardous substance that could be affecting so many people.”

Townsend-Small said plugging the Caldwell County wells or capturing the gas is “low-hanging fruit” to reduce methane emissions and health effects of hydrogen sulfide without significant impacts to oil production.

Edgar said it is unclear whether the Railroad Commission or the TCEQ is responsible for regulating venting at oil wells when it contributes to air pollution. She said one simple step would be for Railroad Commission staff to record hydrogen sulfide levels when they make field visits in Caldwell County.

“I was not able to come up with any good answers to whose fault is this, who should fix it, and how it should be fixed,” she said.

She said her greatest concern is for oilfield workers and neighbors who live next door to wells.

“Part of being in the oilfields”

Luling city manager Mark Mayo said people coming through town often comment on the smell.

But Mayo, who grew up in the Permian Basin, is no stranger to the odor of sour gas. He said he didn’t think Luling residents are at risk from hydrogen sulfide.

“Just because it has a smell doesn’t mean it’s always bad,” he said. “That’s part of being in the oilfield.”

Credit: Martha Pskowski/Inside Climate News

But he took note of discrepancies documented in the study. Researchers found that some wells listed as “active” with the Railroad Commission were no longer producing. Others listed as “inactive” or “plugged” were still producing. Mayo said the city relies on the agency to ensure oil companies are following state rules, including those for hydrogen sulfide.

“That’s the Railroad Commission’s place,” he said. “As far as the city, we don’t have the ability or the equipment to stay up on that.”

Air quality experts have long known that Caldwell County is a locus of hydrogen sulfide emissions. But there are no stationary hydrogen sulfide monitors to track community levels of exposure.

Neil Carman, the Lone Star Sierra Club’s clean air director, previously worked as an air pollution control inspector for the TCEQ. Carman said to prove that emissions exceed the TCEQ standards would require 30-minute readings, subtracting any contributions of hydrogen sulfide from upwind, instead of the five-minute measurements of the study. But he did not doubt that excess hydrogen sulfide is being released.

“Luling, Texas, there is a huge mess out there,” he said. “I’ve been through many times. I’d say almost every time I’d get a headache.”

Carman said that memory loss and insomnia are other frequent symptoms of exposure.

“It's really unacceptable and outrageous to the people in these communities,” Carman said.

Sharon Wilson of the nonprofit Oilfield Witness has researched compliance with the Railroad Commission’s hydrogen sulfide rules. In a previous report, she found that many companies fail to submit the H9 form reporting the hydrogen sulfide level at wells.

“Texas has a gas problem. We have a hydrogen sulfide problem and it's putting people at risk,” Wilson said. “We see the high levels of hydrogen sulfide from the few air monitors there are in the Permian Basin.”

Wilson travels the Texas oil fields measuring methane emissions with a thermal camera. She said often the hydrogen sulfide fumes are so overwhelming she can’t leave her vehicle.

“Texans are not receiving equal protection from oil and gas pollution,” she said. “We need more monitors in all areas of oil and gas activity.”

Read the full story here.
Photos courtesy of

‘Forever chemicals’ contaminate more dolphins and whales than we thought – new research

The sex and age of an animal turn out to be stronger predictors than habitat for higher PFAS levels, suggesting they accumulate over a lifetime.

Getty ImagesNowhere in the ocean is now left untouched by a type of “forever chemicals” called “per- and polyfluoroalkyl substances”, known simply as PFAS. Our new research shows PFAS contaminate a far wider range of whales and dolphins than previously thought, including deep-diving species that live well beyond areas of human activity. But most surprising of all, where an animal lives does not predict its exposure. Instead, sex and age are stronger predictors of how much of these pollutants a whale or dolphin accumulates in its body. This means chemical pollution is more persistent and entrenched in ocean food webs than we realised, affecting everything from endangered coastal Māui dolphins to deep-diving beaked and sperm whales. This graphic shows that PFAS contamination affects a range of marine mammals, from nearshore dolphins to deep-diving predators. Science of the Total Environment, CC BY-ND PFAS were originally designed to make everyday products more convenient, but they have ultimately become a widespread environmental and public health concern. Our work provides stark evidence that no part of the ocean is now beyond the reach of human pollution. What are PFAS, and why are they a problem? PFAS are a group of more than 14,000 synthetic chemicals that have been used since the 1950s in a wide range of everyday products. This includes non-stick cookware, food packaging, cleaning products, waterproof clothing, firefighting foams and even cosmetics. Many everyday products contain PFAS. Author provided, CC BY-SA They’re known as forever chemicals because they don’t break down naturally. Instead, they travel through air and water, eventually reaching their final destination: the ocean. There, PFAS percolate through seawater and sediments and enter the food web, taken up by animals through their diet. Once inside an animal, PFAS can attach to proteins and accumulate in the blood and organs such as the liver, where they can disrupt hormones, immune function and reproduction. Like humans, whales and dolphins sit high in the food web, which makes them especially vulnerable to building up these pollutants over their lifetime. Whales and dolphins are the ocean’s canaries Marine mammals are an early warning system of the ocean. Because they are large predators with long lifespans, their health reflects what’s happening in the wider ecosystem, including risks that can affect people, too. This idea is at the heart of the OneHealth concept, which links environmental, animal and human health. New Zealand is one of the best places in the world to study human impacts in a OneHealth framework. More than half of the world’s toothed whales and dolphins (odontocetes) occur here, making Aotearoa a rare hotspot for marine mammals and an ideal place to assess how deeply PFAS have entered ocean food webs. We analysed liver samples from 127 stranded whales and dolphins, covering 16 species across four families, from coastal bottlenose dolphins to deep-diving beaked whales. For eight of these species, including Hector’s dolphins and three beaked whale species, this was the first time PFAS had ever been measured globally. PFAS contamination is an additional stress factor for Hector’s dolphins, which are endemic to New Zealand and already threatened. Getty Images We expected coastal species living closer to pollution sources to show the highest contamination, with deep-ocean species being much less exposed. However, our results told a different story. Habitat played only a minor role in predicting PFAS levels. Some deep-diving species had PFAS concentrations comparable to (or even higher than) coastal animals. It turns out biology matters more than habitat. Older, larger animals had higher PFAS levels, indicating they accumulate these chemicals over time. Males also tended to have higher burdens than females, consistent with mothers transferring PFAS to their calves during pregnancy and lactation. These patterns were consistent across all major types of PFAS chemicals. Why this matters Our findings show PFAS contamination has now entered every layer of the marine food web, affecting everything from nearshore dolphins to deep-diving predators. While diet is a major exposure pathway, animals could also be absorbing PFAS through other mechanisms, including potentially their skin. PFAS may further interact with other stressors, including climate change, shifting prey availability and disease, adding further pressure to species already under threat. Knowing that PFAS are present across different habitats and species raises urgent questions about their health impacts. Are these chemicals already affecting populations? Could PFAS contamination weaken immunity and increase disease risk in vulnerable species, such as Māui dolphins? Understanding how PFAS exposure affects reproduction, immunity and resilience to environmental pressures is now central to predicting whether species already under threat can withstand accelerating environmental change. Even the most remote whales carry high PFAS loads and we know humans are not isolated from these contaminations either. Answering these questions is not optional but essential if we want to protect both marine wildlife and the oceans we all depend on. The research was a trans-Tasman collaboration which also included Gabriel Machovsky at Massey University, Louis Tremblay at the Bioeconomy Science Institute and Shan Yi at the University of Auckland. Frédérik Saltré receives funding from the Australian Research Council.Emma Betty, Karen A Stockin, and Katharina J. Peters do not work for, consult, own shares in or receive funding from any company or organisation that would benefit from this article, and have disclosed no relevant affiliations beyond their academic appointment.

Watch a Wolf Cleverly Raid a Crab Trap for a Snack. It Might Be the First Evidence of a Wild Canid Using a Tool

Footage from British Columbia shows just how intelligent wild wolves can be, but scientists are divided as to whether the behavior constitutes tool use

Watch a Wolf Cleverly Raid a Crab Trap for a Snack. It Might Be the First Evidence of a Wild Canid Using a Tool Footage from British Columbia shows just how intelligent wild wolves can be, but scientists are divided as to whether the behavior constitutes tool use Sarah Kuta - Daily Correspondent November 19, 2025 11:53 a.m. Members of the Haíɫzaqv (Heiltsuk) Nation caught the crafty female wolf on camera. Artelle et al. / Ecology and Evolution, 2025 Key takeaways: A dispute over tool use A female wolf figured out how to pull a crab trap from the ocean onto shore to fetch a tasty treat. Scientists debate whether the behavior represents tool use, or if the animal needed to have modified the object for it to count. Something strange began happening on the coast of British Columbia, Canada, in 2023. Traps set by members of the Haíɫzaqv (Heiltsuk) Nation to control invasive European green crabs kept getting damaged. Some had mangled bait cups or torn netting, but others were totally destroyed. But who—or what—was the culprit? Initially, the Indigenous community’s environmental wardens, called Guardians, suspected sea lions, seals or otters were to blame. But only after setting up several remote cameras in the area did they catch a glimpse of the true perpetrators: gray wolves. On May 29, 2024, one of the cameras recorded a female wolf emerging from the water with a buoy attached to a crab trap line in her mouth. Slowly but confidently, she tugged the line onto the beach until she’d managed to haul in the trap. Then, she tore open the bottom netting, removed the bait cup, had a snack and trotted off. Now, scientists say the incident—and another involving a different wolf in 2025—could represent the first evidence of tool use by wild wolves. They describe the behavior and lay out their conclusions in a new paper published November 17 in the journal Ecology and Evolution. This wolf has a unique way of finding food | Science News “You normally picture a human being with two hands pulling a crab trap,” says William Housty, a Haíɫzaqv hereditary chief and the director of the Heiltsuk Integrated Resource Management Department, to Global News’ Amy Judd and Aaron McArthur. “But we couldn’t figure out exactly what had the ability to be able to do that until we put a camera up and saw, well, there’s other intelligent beings out there that are able to do this, which is very remarkable.” Members of the Haíɫzaqv Nation weren’t surprised by the wolves’ cleverness, as they have long considered the animals to be smart. That view has largely been shaped by the community’s oral history, which tells of a woman named C̓úṃqḷaqs who birthed four individuals who could shape-shift between humans and wolves, reports Science News’ Elie Dolgin. Scientists weren’t shocked, either, as they have long understood that wolves are intelligent, social creatures that often cooperate to take down their prey. People aren’t sure how the wolves figured out the crafty crab trap trick. The animals may have learned by watching Haíɫzaqv Guardians pull up the traps, or their keen sense of smell may have helped them sniff out the herring and sea lion bait inside. Or perhaps they started with traps that were more easily accessible, before moving on to more challenging targets submerged in deep water. Wolves are also largely protected in Haíɫzaqv territory, which may have given them the time and energy they needed to learn a new, complex behavior, reports the Washington Post’s Dino Grandoni. Whatever the explanation, experts are divided as to whether the behavior technically constitutes nonhuman tool use, which has been previously documented in crows, elephants, dolphins and several other species. The debate stems mostly from varying definitions of tool use. Under one definition, animals can’t simply use an external object to achieve a specific goal—the creature must also manipulate the object in some way, like a crow transforming a tree branch into a hooked tool for grabbing hidden insects. Against this backdrop, some researchers say the wolves’ behavior represents object use, not tool use. However, some of the disagreement may also be rooted in bias. “For better or for worse, as humans, we tend to afford more care and compassion to other people or other species that we see most like us,” says study co-author Kyle Artelle, an ecologist with the State University of New York College of Environmental Science and Forestry, to the Washington Post. Marc Bekoff, a biologist at the University of Colorado Boulder who was not involved with the research, echoes that sentiment, telling Science’s Phie Jacobs that “if this had been a chimpanzee or other nonhuman primate, I’m sure no one would have blinked about whether this was tool use.” Regardless, scientists say the footage suggests wild wolves are even smarter than initially thought. In less than three minutes, the female efficiently and purposefully executed a complicated sequence of events to achieve a specific goal. She appeared to know that the trap contained food, even though it was hidden underwater, and she seemed to understand exactly which steps she needed to take to access that food. Tool use or not, the findings point to “another species with complex sociality [that] is capable of innovation and problem solving,” says Susana Carvalho, a primatologist and paleoanthropologist at Gorongosa National Park in Mozambique who was not involved with the research, to the New York Times’ Lesley Evans Ogden. Get the latest stories in your inbox every weekday.

What Catastrophes Get Our Attention, and Why It Matters

When catastrophe becomes celebrity, we stop witnessing and start scrolling, turning suffering into spectacle. But we can break that cycle. The post What Catastrophes Get Our Attention, and Why It Matters appeared first on The Revelator.

Another environmental catastrophe season brought destruction and death to North America this summer. Amid extreme heatwaves and weather, fires raged in northern and western Canada. In Manitoba alone more than 28,000 people, largely rural or Indigenous, were evacuated from their homes. At the same time, floods washed out Hill Country in Texas when the Guadalupe River rapidly overflowed its banks, killing at least 135 people. Similar events could go on indefinitely. Chances are you’ve seen news reports about these disasters, or others like them, but this isn’t just the stuff of headlines. Fires and floods make news because they grab attention, unlike the daily realities of the economically depressed rural and Indigenous communities they often hit so hard. This is the strange logic of catastrophe in the digital age: Some crises become “celebrity” catastrophes while others remain “commonplace,” meaning they’re normalized and invisible on an ongoing basis. Who gets our attention — and who doesn’t — isn’t random. It reveals the value systems we’ve internalized and the limits of the stories we tell ourselves about suffering and survival, and in turn those that invite responsibility. The real currency of the 21st century is attention. And most people, if they’re going to pay attention, want something spectacular: an event worth watching. When Tragedy Turns to Spectacle Our engagement with this reality came from a course we taught at the University of British Columbia on the role of language in shaping environmental behaviors. What started as classroom conversations over a few years eventually evolved into our forthcoming book, Becoming Ecological: Navigating Language and Meaning for Our Planet’s Future, as a way to continue this conversation in public. In characterizing different discourses we’ve been exposed to (and been a part of), we noticed trends in global reporting of catastrophic events. That reporting tends to emphasize spectacular events over those that are just as detrimental, if not more, but occur over longer periods of time without affecting highly visible populations — particularly visible in terms of people who attract mainstream media notice. Our aim is not so much to critique the ways certain types of media function, from traditional broadcasters to social news like TikTok, but to look at how meaning is made and conveyed as catastrophe stories. The ways in which meanings are socially constructed shape what people believe, how they act and interact, and create possibilities to nurture more broadly relational understandings of our roles and responsibilities on and for Earth. They can also hinder or inhibit other possibilities. The systems of language and environment are intricately interconnected. We find it useful to speak of catastrophe by using the term polycrisis — the overlaying of multiple crises where a breakdown in one system leads to cascading effects, causing reverberations through climatic, biological, social, economic, political, scientific, temporal (and so on) systems. The problem with catastrophe in contemporary environmental discourse is that the original meaning, the gravity of this word in ancient Greek — katastrophē, or sudden end — is completely lost. Catastrophe now is characterized as being visually spectacular, rooted in the notion of spectacle, making it newsworthy. To put it crudely, tragedy comes with a photo op or not at all. Yet catastrophe originally implied the point at which fate and destiny are sealed. All hope is lost. No Hollywood ending. Greek tragic theatre made the pain of such a loss accessible safely; it had the effect of making audiences appreciate their existence and work to prevent such events from happening. Today we’re saturated with an unending stream of high-profile catastrophes. They’ve gone from occasional newsworthy stories to a regular feature. But the truth is environmental catastrophe discourse at present has very little in common with ancient Greek theatre. Catastrophe isn’t witnessed as a universal condition. It’s more like getting voted out of a reality TV competition, with winners and losers. It signifies a form of virtual entertainment. It’s a money genre in the economy of attention. What Makes a Catastrophe ‘Go Viral’? Celebrity catastrophes, as we’ve come to call them, are disasters that strike at the right time, in the right place, and often to the “right” people — like the Los Angeles wildfires, which literally affected celebrities, among others, or the floods in Spain. They tend to be sudden and extreme, making them photogenic and emotionally gripping. There’s often an implicit narrative arc involving villains, victims, and often a final resolution or judgment; celebrity catastrophes provide an overabundance of social platforms to spread the story. But what about commonplace catastrophes? These are the slow, grinding emergencies — some might even say boring, meaning people won’t pay attention. In other words, they won’t pay for the attention. Such emergencies might include boil water advisories for rural communities off the grid that stretch into decades, the rising tide of the urban unhoused, lack of accessible healthcare for generations, or the multigenerational trauma of environmental injustice in poorer communities. These quotidian catastrophes don’t trend on social media. They rarely get press briefings in broadcast media. They certainly don’t receive attention from political figures. And yet they shape the lives of millions every day. Beyond being a digital communication problem, it’s also a societal pattern. As environmental educators, we see it in our classrooms often, where students feel despair over ecological collapse but struggle to connect that grief to local issues like energy poverty, food shortages, or environmental racism. It’s as though they understand tragedy, but catastrophe means its hopeless. But if they give up hope, then there’s no motivation other than individualistic ones, a competitive endgame everyone winds up losing. Without hope for the next generation, another turn of civilization’s wheel. There’s nothing they can do but watch catastrophes happen, transfixed by impending fate. That’s what’s selling. The problem isn’t apathy or lack of education. It’s attention. There’s simply too much on the celebrity catastrophes and not enough on the commonplace world they inhabit every day. The Ecology of Attention We often talk about ecosystems in scientific terms of carbon, water, species, and so forth. But attention is an ecosystem too. And like all ecosystems, it can be thrown out of balance. In a healthy attention economy, we would recognize and respond to both sudden shocks and slow harms. We could hold space for grief, not just in the wake of a celebrity wildfire in Maui but in response to ongoing loss — such as land, language, or life — in communities displaced by extractive industries. But right now our attention is hyper-curated. We’re all being filtered by algorithms in our social media feeds, Spotify playlists, or Google searches, among many other aspects of our daily lives, and this influences our political and societal conversations. That warped attention is like water on drought-stricken ground, particularly in how it rushes off quickly, collects in rivers, and overflows. This means that some people must fight for a cup of visibility, while others are flooded with it. It also creates dissonance. Why do we cry over burning vineyards in California but ignore scorched farmlands in Sudan? Why are floodwaters in Germany more moving than footage from Pakistan’s devastating 2022 monsoon season? Our attention has been hyper-curated to look for the extremes and pay (for) attention to the sensationalized events. Disaster as Event There’s a reason why celebrity catastrophes dominate headlines and grab our attention, whether we want it or not. They fit within a monetized logic that values spectacle and saviorism. Disasters become “events” with start and end dates, with heroes and villains, victims and saviors. They can be marked in time, which makes them easier to be marketed. More specifically, they can be monetized, as author Naomi Klein and others have shown. They can sell headlines, influence policy agendas, or affect branded charity campaigns. But commonplace catastrophes resist this framing. There’s no clear starting point to systemic racism or global warming and the cascading effect of “events” reverberates throughout the world. These slow emergencies demand long-term commitment, not quick PR campaigns. They’re part of larger complex of socioecological systems that are often uncontainable, like weather patterns or world hunger. In contrast, becoming more ecologically focused requires that we understand crises as entangled and complex. The flood is not separate from the housing crisis. The wildfire is not separate from extractive economies. Witnessing through this lens challenges us to see the whole picture and act from that place. We’re not suggesting we turn away from the immediate or the dramatic. But keeping up with the latest catastrophic event, and being affected by it, is not enough. It catches us in a loop of mental doomism or constant anxiety, especially when it becomes expected, like a performance — amplified one moment and forgotten the next. The truth is that our attention reveals what we value and what we make time for. And right now, too many people live and die in the fallout of commonplace catastrophes. But there are ways to make the commonplace more important. Witnessing as a Radical Act So how do we begin to rebalance our attention? Something that affects our responses to climate breakdown? One way is through the practice of witnessing. Not just seeing, but being present with, and responding to, what we encounter. Witnessing insists that we don’t turn away from the slow, uncomfortable, or inconvenient. Witnessing brings with it an ongoing responsibility. To bear witness means a duty to speak to what one has witnessed, requiring a different kind of attention. Calls for critical digital literacy are the typical way of addressing this social need to nurture a healthy information intake. But another way is to consider the language we use and how it gets used when we talk about the environment. What stories are being prioritized? Not every catastrophe fits neatly into a sound-bite narrative or a one-liner headline enticing people to click. There’s no easy resolution to poisoned water in Grassy Narrows, how much roadkill happened last night, or positive spins on colonial displacement. But those stories matter, and they need our attention. Language, the fuel of attention, is a powerful site of witnessing. It’s not just a medium of communication. Language is an adaptive, living system. Communication and dialogue are catalysts for ecological transformation. Words evolve, meanings shift, and sometimes, even a single word can carry the weight of an entire worldview. Consider words like “nature” or “climate.” The latter has become a euphemism for a justice movement as much as a science, on the one hand, and a political weapon of division on the other. When we witness deeply, we begin to understand that these so-called “commonplace” events aren’t background noise. And that insight can spark empathy, as well as awareness and action in more profound ways. A Call to Witness The choice isn’t simply between caring about celebrity catastrophes and caring about commonplace ones. It’s about learning to see how they’re connected and how the imbalance of attention itself causes harm. This is a polycrisis in which all the social, linguistic, and ecological systems we rely on are interconnected. Stories must be told even when they’re revealing what Al Gore famously termed an “inconvenient truth” — through them, we begin to see how all facets of our daily lives are interconnected with the sustainability of the planet. And this gives ground to hopefulness, to the sense that what you do and say does matter in the bigger picture. It is the bigger picture, even if there are no film crews and helicopters there to broadcast it, no smart phones to capture and post it within seconds. These actions and the language that promotes them form a periphery around the visible mainstream news. If we look at what’s just outside the camera frame or press release or keynote speech, we see a surrounding discourse, a complex ecosystem of discussion across languages and initiatives that are hidden from regular sight, the actual “movements” of environmentalism. Let’s take an example not from a celebrity catastrophe but from a celebrity event: the COP30 climate summit. Such events, where people tell stories from all over and come together to mobilize global effort toward planetary care, are invaluable for our hope for the future of the species. And yet, some profound ironies exist: To make this happen, we need to facilitate more harmful disruption of natural systems. We also need such events to have celebrity status in order to compete with attention. Ideally, they are exotic and photogenic. COP30 took place this year in Belém, a history-laden freeport town tucked away in the heart of the Brazilian rainforest. To make it easy for attention-grabbing, celebrity global leaders and digital communication to reach the city, government contractors plowed a 13-kilometer road called Avenida Liberdade through protected rainforest. This is land where people and plants and animals coexist and co-depend. The devastation was all in aid of an environmental event that lasted for 11 days (Nov. 10-21). But those jungle-dwelling lives will be affected forever — a prime example of where celebrity meets commonplace. When we’re called to witness the impact on local environments of the attention economy, we start to become aware of how the celebrity and the commonplace are interwoven. We are no longer just spectators of hopeless collapse. As educators we’ve seen what happens when students begin to witness. Not just from a distance, but with proximity and purpose. They stop asking, “Why don’t people care?” and start asking, “What stories do we need to tell?” They begin to name the socioecological systems that make some lives visible and others disposable. In a time of overlapping catastrophes, witnessing isn’t passive. It’s an act of awareness and engagement. And perhaps more importantly, it’s an act of hope, one that integrates the celebrity and commonplace catastrophe in an increasingly unstable world. And sustained witnessing might just be the most radical act we have left. Republish this article for free! Read our reprint policy. Previously in The Revelator The Last Breath of the Himalayas: Can We Stop the Collapse? The post What Catastrophes Get Our Attention, and Why It Matters appeared first on The Revelator.

How little plastic does it take to kill marine animals? Scientists have answers

Ocean plastic kills sea creatures. For the first time, researchers set out to find out how much it takes. The answer: Surprisingly little.

Ocean plastic kills sea creatures. It can obstruct, perforate or twist their airways and gastrointestinal tracts.Now new research shows it takes just 6 pieces of ingested rubber the size of a pencil eraser to kill most sea birds. For marine mammals, 29 pieces of any kind of plastic — hard, soft, rubber or fishing equipment — is often lethal.It’s the first time researchers have quantified how much and what kind of plastic — soft, hard, rubber or fishing debris — is needed to kill a bird, marine mammal or a turtle. “I think the lethal doses that we saw were smaller than I expected,” said Erin Murphy, a researcher with the Ocean Conservancy and the department of ecology and evolution at the University of Toronto.“Seeing the particularly small thresholds for rubber and seabirds, for example, that just six pieces of rubber, each smaller on average than the size of a pea was enough to kill 90% of sea birds that ingested it ... That was particularly surprising to me,” she said.The sea birds were less sensitive to hard plastic: It’d take 25 pieces of the pea-sized hard plastic pieces to ensure a 90% chance of dying. Murphy and her colleagues from the University of Tasmania, in Australia, the Commonwealth Scientific and Industrial Research Organisation, also from Australia, and the Universidade Federal de Alagoas, in Brazil, published their study Monday in the journal Proceedings of the National Academies of Science.For decades, researchers have been documenting death by plastic in marine animals. They have reported it in the gastrointestinal tracts of nearly 1,300 marine species — including every species of sea turtle, and in every family of seabird and marine mammal family.The team analyzed data from 10,412 published necropsies, or animal autopsy reports. Of the animals studied, 1,306 were sea turtles representing all seven species of sea turtles; 1,537 were seabirds representing 57 species; and 7,569 were marine mammals across 31 species. They found that 35% of the dead seabirds, 12% of marine mammals and 47% of sea turtles examined had ingested plastic. Seabirds seemed to be particularly sensitive to rubber. For marine mammals, soft plastics — such as plastic bags — and fishing debris was most harmful. For sea turtles, their kryptonite was hard and soft plastics.“This was severe trauma or damage to the GI tract, or blockage of the stomach or intestines from plastic... and so these were physical harms that you could see, that you could see in the gut of these animals, and that were reported by scientists,” said Murphy describing the reports. The paper did not look at other ways plastic can kill marine animals — strangulation, entanglement and drowning. Nor did it look at malnutrition or toxicity caused by eating plastic.“So, this is likely an underestimate of the impacts of ingestion, and it’s definitely an underestimate of the lethality of plastics more broadly,” said Murphy.Nearly half the animals in their analysis were threatened or endangered species. More than 11 million metric tonnes — or more than 24 billion pounds — of plastic enters the world’s oceans every year, according to several environmental and industry reports. That’s a garbage truck’s worth dumped every minute.According to the United Nations, that number is expected to triple in the next twenty years. “I find this piece a brilliant contribution to the field,” said Greg Merrill, a researcher with the Duke University Marine Lab, who did not participate in the study.“We have thousands of examples of marine animals ingesting plastic debris. But for a number of reasons, eg. lack of data, difficulty of conducting laboratory-based experiments, and ethical considerations, risk assessments are really challenging to conduct,” he said in an email. Such assessments are crucial for actually linking plastic ingestion to mortality, because “once we know some of those thresholds, they can help policy makers make informed decisions,” said Merrill.And that’s what Murphy said she and her co-authors are hoping for: That lawmakers and others can use this information to reduce plastic, by crafting regulations to ban or reduce plastics, such as plastic bag or balloon bans, and encouraging small, local events such as beach clean ups.“The science is clear: We need to reduce the amount of plastic that we’re producing and we need to improve collection and recycling to clean up what’s already out there,” said Murphy. Earlier this year, in internationals talks on limiting plastic pollution, oil and gas producing countries succeeded in preventing language that would reduce the amount of plastics produced.

See how this wolf steals fish, a new discovery of animals using tools

Video from the coast of British Columbia may be the first documented instance of a wild wolf using a tool, according to the researchers who published it on Monday.

The wolf seemed to know exactly what she was doing.She dove into the water, fetched a fishing float and brought it to shore. She then waded back in and tugged on a rope connected to the float. She pulled and backed up, pulled and backed up, until a crab trap emerged. When it was within easy reach, she tore it open and consumed the bait inside.Subscribe for unlimited access to The PostYou can cancel anytime.SubscribeThe scene, caught on camera on the coast of British Columbia in May 2024, may be the first documented instance of a wild wolf using a tool, according to the scientists who published the footage in the journal Ecology and Evolution on Monday.Although the intelligence of wolves is well known, the discovery adds to an expanding list of animals capable of manipulating tools to forage for food, a trait once thought to be unique to humans.“It’s not a surprise they have the capacity to do this,” said Kyle Artelle, an ecologist with the State University of New York College of Environmental Science and Forestry who published the footage. “Yet our jaw dropped when we saw the video.”The discovery also solved a mystery.People of the Heiltsuk Nation in central British Columbia had been puzzled about what was foiling their efforts to capture invasive green crabs along their shores.The crabs are a real problem — they eat through eelgrass that harbors marine life and they devastate the native clam, herring and salmon populations the tribe relies on for food. But the traps people were setting with herring and other bait kept getting damaged. Sometimes, there were just minor tears in the nets. Other times, the entire trap was torn to shreds.Some of the traps were set so deep that, at first, researchers thought the thief must be an otter, seal or other marine mammal. William Housty, director of the Heiltsuk Integrated Resource Management Department, wondered whether tourists were tampering with them. The Heiltsuk Nation worked with Artelle to set up a trail camera to record the perpetrator.A day after the camera was installed, it recorded the female wolf in action.The efficiency with which she snagged the bait — in just three minutes — suggested to Artelle that the animal had done this before.“She’s staring exactly at the trap. Every motion she does is perfectly tailored to getting that trap out as quickly as possible,” said Artelle.In February, the team recorded a second video of a different wolf pulling a line attached to a partially submerged trap. The camera shut off before it could show whether the animal had learned to finish the job and eat the bait. But afterward, two traps were seen on the shore with their bait cups removed.The “weight of evidence,” Artelle said, suggests the female wolf or her full pack are responsible for the pilfering.The tribal territory in British Columbia is a rare place where wolves remain unharassed by hunters, potentially giving them time to learn.“We’ve always maintained a very respectful relationship with the wolves up here in the territory,” Housty said. The oral history of his people, he added, talks of a time when humans and wolves could shape-shift between one another.Researchers have seen tool use in captive canines before. Dingoes, for instance, have been observed opening latches and moving small tables to reach food at a sanctuary in Australia. And pets owners are familiar with the inventiveness of dogs, which can carry hockey pucks in plastic flying discs and move chairs to reach food.Biologists are witnessing more and more animals brandishing tools. Crows maneuver sticks in their beaks to collect grub from crevices. Pandas grab bamboo to scratch their bodies. Octopuses wield the severed tentacles of other animals as makeshift weapons to ward off predators.The wolf video raises a philosophical question: What does it mean to use a tool? Does the animal have to make the tool, as crows do when shortening sticks and peeling off their bark so they fit into crannies? Or can we call an animal a “tool user” if it uses an existing tool, as the wolf did with the rope?“I’m speaking to you on Zoom right now. I did not design this computer. I don’t know how it works, but I’m ‘using’ it, right?” Artelle asked.He said he hopes adding wolves to the list of tool-using animals will prompt some people to see them in a different light — the way public appreciation of chimpanzees grew after Jane Goodall discovered the primates dipping blades of grass into termite mounds to eat the insects.It is “an intelligence that is so familiar to us,” Artelle said. “For better or for worse, as humans, we tend to afford more care and compassion to other people or other species that we see most like us.”

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.