Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

Study Finds ‘Forever Chemicals’ Are Increasingly Common in Pesticides

News Feed
Wednesday, July 24, 2024

More and more pesticides approved for use on U.S. farm fields qualify as “forever chemicals,” new research shows, raising questions around their long-term environmental and public health consequences. “Forever chemicals,” officially called per- and polyfluoroalkyl substances, or PFAS, are incredibly persistent, widely used chemicals that are now present in soil, water, and human bodies. Some PFAS are now linked to cancers, reproductive issues, and developmental delays in children. Concerns about those health risks are compounded by the fact that authorities have not identified all sources of PFAS contamination in the environment. The U.S. Environmental Protection Agency (EPA) and other regulators have been trying to understand the scope and impacts of contamination from a wide range of sources, including firefighting foam, sewage sludge, and food packaging. Last year, the EPA proposed the first drinking water limits for four of the chemicals. The new analysis, published today in Environmental Health Perspectives, represents the latest effort to understand how common PFAS are in pesticides, which are widely used around the country and directly affect food, water, and soil. The researchers, associated with environmental advocacy groups including the Center for Biological Diversity, Public Employees for Environmental Responsibility (PEER), and the Environmental Working Group, found that 66 active ingredients currently approved for use in pesticides qualify as PFAS, and eight approved “inert” ingredients—added to pesticides to help the chemical disperse, for example—also qualify as PFAS. Most of the chemicals identified are referred to as “short chain” PFAS, which means they are likely less persistent and less toxic than the more common forever chemicals—like PFOA and PFOS—that the EPA has begun to regulate. But more research is needed on their impacts, the researchers say. “What our research showed is that this issue is a lot bigger than many people have thought, and the trend is really worrisome.” Plus, overall, they found that fluorination (a process that can create PFAS) is increasingly used by chemical companies in the manufacture of pesticides, to make them stick around for longer. While 14 percent of the overall active ingredients currently used in pesticides qualify as PFAS, 30 percent of the ingredients approved in the last decade qualify. “What’s clear is that some of the most widely dispersed pollutants across the world are becoming increasingly fluorinated, which means that they’re becoming increasingly persistent, and we don’t really have a grasp yet on what the consequences are going to be,” said Nathan Donley, one of the paper’s authors and the environmental health science director at the Center for Biological Diversity. “What our research showed is that this issue is a lot bigger than many people have thought, and the trend is really worrisome.” Of course, fluorination is not unique to the pesticide industry, said A. Daniel Jones, a professor of biochemistry and molecular biology and the associate director of Michigan State University’s Center for PFAS Research. Common medicines like Prozac and Lipitor, for example, meet some definitions of PFAS. “We could get rid of lots of really important drugs if we got rid of all of the organic fluorine,” he said. “At the same time, we do want to start moving away from non-essential uses of persistent organic chemicals. Any chemical that outlives me is probably not good to have moving around the environment.” The study contributes to the still-developing picture of how significant of an issue PFAS in pesticides might be. In 2022, testing done by environmental groups found the chemicals in common pesticide products, which has since been partially attributed to leaching from plastic containers. The EPA took steps to address that contamination. However, an independent researcher also found alarming levels of the most dangerous PFAS in multiple pesticides that wasn’t attributable to plastic containers. EPA then did its own tests and announced no pesticides were found, but the agency is now facing allegations of misconduct related to that testing. The EPA did not respond to requests for comment by press time. Short-Chain PFAS Are More Common in Pesticides Complicating the issue is that thousands of PFAS exist, and there are multiple ways to define them. Some fluorinated chemicals are PFAS, some are not. The EPA uses a narrow definition, and therefore does not consider many of the chemicals the researchers identified in the new study as PFAS. However, they do qualify using a broad definition adopted by the Organisation for Economic Co-operation and Development (OECD). One of the aspects at issue is the length of the carbon chain. All PFAS contain a chain of carbon atoms connected to fluorine atoms, and it’s widely understood that the longer the carbon chain, the more problematic the chemical, in terms of both environmental persistence and health impacts. “We do want to start moving away from non-essential uses of persistent organic chemicals. Any chemical that outlives me is probably not good to have moving around the environment.” Most of the active and inert ingredients now being used in pesticides are short chain and are not from the class of PFAS that have been the focus of regulatory efforts so far, so a looming question is: Are they of serious concern? “From my perspective, ultimately, it doesn’t matter whether you think these are PFAS or not,” Donley said. “They are forever chemicals, and the fluorinated parts of these pesticides will be around for the birth of your grandchildren’s grandchildren.” While these chemicals are “certainly persistent,” Jones agreed, their impact across the board is unknown. In terms of health, one of the reasons PFOS and PFOA are so dangerous is that they can stay in the human body for up to a decade, wreaking havoc all the while. “The longer they’re in us, the more opportunity they have to do harm,” Jones said. “Generally, we do know that shorter chain compounds don’t stay in your body as long as the longer chain compounds. So the short-chain compounds are probably not nearly as bad for us as the long-chain compounds, but that doesn’t mean they’re completely innocuous either.” In the environment, their persistence is complicated, since even those that do degrade in a reasonable amount of time can break down into other compounds that don’t, Donley said. Of course, that doesn’t mean those other compounds are necessarily toxic. For example, Jones has extensively studied one of the compounds identified in the paper, trifluoroacetic acid (TFA), as a substance into which PFAS can break down. He pointed to a recent assessment of toxicity in mammals that found TFA doesn’t pose significant health risks. In addition, because these chemicals are so widespread in other products, it’s hard to pinpoint how significant pesticides may be as a source of contamination. For example, research shows refrigerants and other non-pesticide chemicals are a much more significant source of TFA pollution. While most of the chemicals identified in the paper are not the most common pesticides used, some have been used in high volumes in the past, and others are seeing increased use. In the 1990s, for example, farmers annually sprayed about 25 million pounds of an insecticide called trifluralin, which the researchers identified as PFAS. While its use has since plummeted, in 2018, farmers still used 5 million pounds on crops including cotton, alfalfa, and fruits and vegetables. Use of the herbicide fomesafen—also identified as PFAS in the new study—has gone in the other direction, increasing from just 1 million pounds in the 1990s to nearly 6 million pounds in 2018, primarily on soybeans. And some of the 66 chemicals identified in the study are used as the active ingredient in a much larger number of products. For example, Bifenthrin, a major water contaminant in the U.S., was an ingredient in 247 different pesticide products registered in Maine in 2022. Regulatory Implications for PFAS in Pesticides Regardless of how the chemicals are categorized or how widely they’re used, one of Donley’s primary concerns is that the EPA’s process for evaluating pesticide safety may not be set up to properly examine what the impacts might be when short-chain PFAS break down in the environment. “When you start getting into breakdown products, the system falls apart pretty quickly, and they’re not getting a whole lot of information on what these breakdown products are doing in the environment,” Donley said. “There are just a lot of question marks there.” He also questions whether the EPA is effectively evaluating and regulating the additive ingredients called “inerts.” Due to the way the nation’s pesticide law was written, those chemicals are considered confidential business secrets, so companies don’t have to list them on pesticide labels. So while the paper’s authors were able to identify eight approved inerts that qualify as PFAS, four of which are currently used in products in the U.S, there’s no way to know which products contain them. One such chemical, for instance, is approved for use on food crops and is present in 37 products, according to the EPA. Since the agency doesn’t share the names of those products, we don’t know if they are in wide use—or hardly used at all. In regulatory recommendations at the end of the new paper, Donley and his co-authors say the U.S. should require all pesticide ingredients, including inerts, to be disclosed on labels. They also recommend the agency evaluate all PFAS pesticides and the compounds they break down into for environmental persistence, expand environmental and biomonitoring programs for PFAS pesticides, and assess the cumulative impacts of all the pesticides and the compounds they break down into based on the “total organic fluorine load in the environment and food.” Michigan State’s Jones called the goals lofty and said they’d require an enormous amount of resources—which the agency currently does not have. “A more circumspect approach might begin by prioritizing items that present the greatest risk to human health, but should also evaluate the health effects of any proposed alternatives,” he said. Even before the study, in the absence of more aggressive EPA action on the issue, states have been stepping in. Maine, Minnesota, Maryland, and Massachusetts have all passed laws that specifically tackle PFAS in pesticides in some way. Maine and Minnesota have already begun the process of identifying PFAS in pesticides, with a goal of understanding their impact and eventually ending their use. “We’re only regulating the tip of the iceberg in terms of the federal EPA drinking water standard. The more we find out about PFAS, the more concerning they are.” Pesticide companies now submit PFAS affidavits when they register their products in Maine. The Minnesota Department of Agriculture, which uses a broader definition of PFAS than even the OECD, issued an interim report earlier this year that identified 95 pesticides that qualified as PFAS. The agency also began looking at contamination in groundwater, rivers, and streams. “There’s a lot coming out that’s going to make it easier to piece together, state by state, what’s happening,” said Sharon Anglin Treat, an environmental policy expert who has been working on PFAS contamination in Maine. “We’re only regulating the tip of the iceberg in terms of the federal EPA drinking water standard. The more we find out about PFAS, the more concerning they are.” That’s why, Donley said, the overall trend of fluorinating pesticides to make them more persistent is something regulators should be paying attention to. “In the ’70s, we were dealing with things like DDT and aldrin and chlordane, really persistent chemicals,” he said. “The EPA kicked that to the curb. Now, we’ve almost come full circle. Whereas the 1970s was the age of the organochlorine [like DDT], now we’re living in the age of the organofluorine, and the persistence is really nerve-wracking, because it wasn’t until decades later that we figured out the long-term consequences of using DDT. . . and we’re still dealing with the ramifications.” The post Study Finds ‘Forever Chemicals’ Are Increasingly Common in Pesticides appeared first on Civil Eats.

“Forever chemicals,” officially called per- and polyfluoroalkyl substances, or PFAS, are incredibly persistent, widely used chemicals that are now present in soil, water, and human bodies. Some PFAS are now linked to cancers, reproductive issues, and developmental delays in children. Concerns about those health risks are compounded by the fact that authorities have not identified […] The post Study Finds ‘Forever Chemicals’ Are Increasingly Common in Pesticides appeared first on Civil Eats.

More and more pesticides approved for use on U.S. farm fields qualify as “forever chemicals,” new research shows, raising questions around their long-term environmental and public health consequences.

“Forever chemicals,” officially called per- and polyfluoroalkyl substances, or PFAS, are incredibly persistent, widely used chemicals that are now present in soil, water, and human bodies. Some PFAS are now linked to cancers, reproductive issues, and developmental delays in children.

Concerns about those health risks are compounded by the fact that authorities have not identified all sources of PFAS contamination in the environment. The U.S. Environmental Protection Agency (EPA) and other regulators have been trying to understand the scope and impacts of contamination from a wide range of sources, including firefighting foam, sewage sludge, and food packaging. Last year, the EPA proposed the first drinking water limits for four of the chemicals.

The new analysis, published today in Environmental Health Perspectives, represents the latest effort to understand how common PFAS are in pesticides, which are widely used around the country and directly affect food, water, and soil. The researchers, associated with environmental advocacy groups including the Center for Biological Diversity, Public Employees for Environmental Responsibility (PEER), and the Environmental Working Group, found that 66 active ingredients currently approved for use in pesticides qualify as PFAS, and eight approved “inert” ingredients—added to pesticides to help the chemical disperse, for example—also qualify as PFAS.

Most of the chemicals identified are referred to as “short chain” PFAS, which means they are likely less persistent and less toxic than the more common forever chemicals—like PFOA and PFOS—that the EPA has begun to regulate. But more research is needed on their impacts, the researchers say.

“What our research showed is that this issue is a lot bigger than many people have thought, and the trend is really worrisome.”

Plus, overall, they found that fluorination (a process that can create PFAS) is increasingly used by chemical companies in the manufacture of pesticides, to make them stick around for longer. While 14 percent of the overall active ingredients currently used in pesticides qualify as PFAS, 30 percent of the ingredients approved in the last decade qualify.

“What’s clear is that some of the most widely dispersed pollutants across the world are becoming increasingly fluorinated, which means that they’re becoming increasingly persistent, and we don’t really have a grasp yet on what the consequences are going to be,” said Nathan Donley, one of the paper’s authors and the environmental health science director at the Center for Biological Diversity. “What our research showed is that this issue is a lot bigger than many people have thought, and the trend is really worrisome.”

Of course, fluorination is not unique to the pesticide industry, said A. Daniel Jones, a professor of biochemistry and molecular biology and the associate director of Michigan State University’s Center for PFAS Research. Common medicines like Prozac and Lipitor, for example, meet some definitions of PFAS. “We could get rid of lots of really important drugs if we got rid of all of the organic fluorine,” he said. “At the same time, we do want to start moving away from non-essential uses of persistent organic chemicals. Any chemical that outlives me is probably not good to have moving around the environment.”

The study contributes to the still-developing picture of how significant of an issue PFAS in pesticides might be. In 2022, testing done by environmental groups found the chemicals in common pesticide products, which has since been partially attributed to leaching from plastic containers. The EPA took steps to address that contamination. However, an independent researcher also found alarming levels of the most dangerous PFAS in multiple pesticides that wasn’t attributable to plastic containers. EPA then did its own tests and announced no pesticides were found, but the agency is now facing allegations of misconduct related to that testing.

The EPA did not respond to requests for comment by press time.

Short-Chain PFAS Are More Common in Pesticides

Complicating the issue is that thousands of PFAS exist, and there are multiple ways to define them. Some fluorinated chemicals are PFAS, some are not. The EPA uses a narrow definition, and therefore does not consider many of the chemicals the researchers identified in the new study as PFAS. However, they do qualify using a broad definition adopted by the Organisation for Economic Co-operation and Development (OECD).

One of the aspects at issue is the length of the carbon chain. All PFAS contain a chain of carbon atoms connected to fluorine atoms, and it’s widely understood that the longer the carbon chain, the more problematic the chemical, in terms of both environmental persistence and health impacts.

“We do want to start moving away from non-essential uses of persistent organic chemicals. Any chemical that outlives me is probably not good to have moving around the environment.”

Most of the active and inert ingredients now being used in pesticides are short chain and are not from the class of PFAS that have been the focus of regulatory efforts so far, so a looming question is: Are they of serious concern?

“From my perspective, ultimately, it doesn’t matter whether you think these are PFAS or not,” Donley said. “They are forever chemicals, and the fluorinated parts of these pesticides will be around for the birth of your grandchildren’s grandchildren.”

While these chemicals are “certainly persistent,” Jones agreed, their impact across the board is unknown.

In terms of health, one of the reasons PFOS and PFOA are so dangerous is that they can stay in the human body for up to a decade, wreaking havoc all the while. “The longer they’re in us, the more opportunity they have to do harm,” Jones said. “Generally, we do know that shorter chain compounds don’t stay in your body as long as the longer chain compounds. So the short-chain compounds are probably not nearly as bad for us as the long-chain compounds, but that doesn’t mean they’re completely innocuous either.”

In the environment, their persistence is complicated, since even those that do degrade in a reasonable amount of time can break down into other compounds that don’t, Donley said. Of course, that doesn’t mean those other compounds are necessarily toxic. For example, Jones has extensively studied one of the compounds identified in the paper, trifluoroacetic acid (TFA), as a substance into which PFAS can break down. He pointed to a recent assessment of toxicity in mammals that found TFA doesn’t pose significant health risks.

In addition, because these chemicals are so widespread in other products, it’s hard to pinpoint how significant pesticides may be as a source of contamination. For example, research shows refrigerants and other non-pesticide chemicals are a much more significant source of TFA pollution.

While most of the chemicals identified in the paper are not the most common pesticides used, some have been used in high volumes in the past, and others are seeing increased use.

In the 1990s, for example, farmers annually sprayed about 25 million pounds of an insecticide called trifluralin, which the researchers identified as PFAS. While its use has since plummeted, in 2018, farmers still used 5 million pounds on crops including cotton, alfalfa, and fruits and vegetables. Use of the herbicide fomesafen—also identified as PFAS in the new study—has gone in the other direction, increasing from just 1 million pounds in the 1990s to nearly 6 million pounds in 2018, primarily on soybeans.

And some of the 66 chemicals identified in the study are used as the active ingredient in a much larger number of products. For example, Bifenthrin, a major water contaminant in the U.S., was an ingredient in 247 different pesticide products registered in Maine in 2022.

Regulatory Implications for PFAS in Pesticides

Regardless of how the chemicals are categorized or how widely they’re used, one of Donley’s primary concerns is that the EPA’s process for evaluating pesticide safety may not be set up to properly examine what the impacts might be when short-chain PFAS break down in the environment.

“When you start getting into breakdown products, the system falls apart pretty quickly, and they’re not getting a whole lot of information on what these breakdown products are doing in the environment,” Donley said. “There are just a lot of question marks there.”

He also questions whether the EPA is effectively evaluating and regulating the additive ingredients called “inerts.” Due to the way the nation’s pesticide law was written, those chemicals are considered confidential business secrets, so companies don’t have to list them on pesticide labels.

So while the paper’s authors were able to identify eight approved inerts that qualify as PFAS, four of which are currently used in products in the U.S, there’s no way to know which products contain them. One such chemical, for instance, is approved for use on food crops and is present in 37 products, according to the EPA. Since the agency doesn’t share the names of those products, we don’t know if they are in wide use—or hardly used at all.

In regulatory recommendations at the end of the new paper, Donley and his co-authors say the U.S. should require all pesticide ingredients, including inerts, to be disclosed on labels. They also recommend the agency evaluate all PFAS pesticides and the compounds they break down into for environmental persistence, expand environmental and biomonitoring programs for PFAS pesticides, and assess the cumulative impacts of all the pesticides and the compounds they break down into based on the “total organic fluorine load in the environment and food.”

Michigan State’s Jones called the goals lofty and said they’d require an enormous amount of resources—which the agency currently does not have. “A more circumspect approach might begin by prioritizing items that present the greatest risk to human health, but should also evaluate the health effects of any proposed alternatives,” he said.

Even before the study, in the absence of more aggressive EPA action on the issue, states have been stepping in. Maine, Minnesota, Maryland, and Massachusetts have all passed laws that specifically tackle PFAS in pesticides in some way. Maine and Minnesota have already begun the process of identifying PFAS in pesticides, with a goal of understanding their impact and eventually ending their use.

“We’re only regulating the tip of the iceberg in terms of the federal EPA drinking water standard. The more we find out about PFAS, the more concerning they are.”

Pesticide companies now submit PFAS affidavits when they register their products in Maine. The Minnesota Department of Agriculture, which uses a broader definition of PFAS than even the OECD, issued an interim report earlier this year that identified 95 pesticides that qualified as PFAS. The agency also began looking at contamination in groundwater, rivers, and streams.

“There’s a lot coming out that’s going to make it easier to piece together, state by state, what’s happening,” said Sharon Anglin Treat, an environmental policy expert who has been working on PFAS contamination in Maine. “We’re only regulating the tip of the iceberg in terms of the federal EPA drinking water standard. The more we find out about PFAS, the more concerning they are.”

That’s why, Donley said, the overall trend of fluorinating pesticides to make them more persistent is something regulators should be paying attention to.

“In the ’70s, we were dealing with things like DDT and aldrin and chlordane, really persistent chemicals,” he said. “The EPA kicked that to the curb. Now, we’ve almost come full circle. Whereas the 1970s was the age of the organochlorine [like DDT], now we’re living in the age of the organofluorine, and the persistence is really nerve-wracking, because it wasn’t until decades later that we figured out the long-term consequences of using DDT. . . and we’re still dealing with the ramifications.”

The post Study Finds ‘Forever Chemicals’ Are Increasingly Common in Pesticides appeared first on Civil Eats.

Read the full story here.
Photos courtesy of

James Watson, Co-Discoverer of DNA's Double Helix, Dead at 97

(Reuters) -James D. Watson, the brilliant but controversial American biologist whose 1953 discovery of the structure of DNA, the molecule of...

(Reuters) -James D. Watson, the brilliant but controversial American biologist whose 1953 discovery of the structure of DNA, the molecule of heredity, ushered in the age of genetics and provided the foundation for the biotechnology revolution of the late 20th century, has died at the age of 97.His death was confirmed by Cold Spring Harbor Laboratory on Long Island, where he worked for many years. The New York Times reported that Watson died this week at a hospice on Long Island.In his later years, Watson's reputation was tarnished by comments on genetics and race that led him to be ostracized by the scientific establishment.Even as a younger man, he was known as much for his writing and for his enfant-terrible persona - including his willingness to use another scientist's data to advance his own career - as for his science.His 1968 memoir, "The Double Helix," was a racy, take-no-prisoners account of how he and British physicist Francis Crick were first to determine the three-dimensional shape of DNA. The achievement won the duo a share of the 1962 Nobel Prize in medicine and eventually would lead to genetic engineering, gene therapy and other DNA-based medicine and technology.Crick complained that the book "grossly invaded my privacy" and another colleague, Maurice Wilkins, objected to what he called a "distorted and unfavorable image of scientists" as ambitious schemers willing to deceive colleagues and competitors in order to make a discovery.In addition, Watson and Crick, who did their research at Cambridge University in England, were widely criticized for using raw data collected by X-ray crystallographer Rosalind Franklin to construct their model of DNA - as two intertwined staircases - without fully acknowledging her contribution. As Watson put it in "Double Helix," scientific research feels "the contradictory pulls of ambition and the sense of fair play."In 2007, Watson again caused widespread anger when he told the Times of London that he believed testing indicated the intelligence of Africans was "not really ... the same as ours."Accused of promoting long-discredited racist theories, he was shortly afterwards forced to retire from his post as chancellor of New York's Cold Spring Harbor Laboratory (CSHL). Although he later apologized, he made similar comments in a 2019 documentary, calling different racial attainment on IQ tests - attributed by most scientists to environmental factors - "genetic."James Dewey Watson was born in Chicago on April 6, 1928, and graduated from the University of Chicago in 1947 with a zoology degree. He received his doctorate from Indiana University, where he focused on genetics. In 1951, he joined Cambridge's Cavendish Lab, where he met Crick and began the quest for the structural chemistry of DNA.Just waiting to be found, the double helix opened the doors to the genetics revolution. In the structure Crick and Watson proposed, the steps of the winding staircase were made of pairs of chemicals called nucleotides or bases. As they noted at the end of their 1953 paper, "It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material."That sentence, often called the greatest understatement in the history of biology, meant that the base-and-helix structure provided the mechanism by which genetic information can be precisely copied from one generation to the next. That understanding led to the discovery of genetic engineering and numerous other DNA techniques.Watson and Crick went their separate ways after their DNA research. Watson was only 25 years old then and while he never made another scientific discovery approaching the significance of the double helix, he remained a scientific force."He had to figure out what to do with his life after achieving what he did at such a young age," biologist Mark Ptashne, who met Watson in the 1960s and remained a friend, told Reuters in a 2012 interview. "He figured out how to do things that played to his strength."That strength was playing "the tough Irishman," as Ptashne put it, to become one of the leaders of the U.S. leap to the forefront of molecular biology. Watson joined the biology department at Harvard University in 1956."The existing biology department felt that molecular biology was just a flash in the pan," Harvard biochemist Guido Guidotti related. But when Watson arrived, Guidotti said he immediately told everyone in the biology department – scientists whose research focused on whole organisms and populations, not cells and molecules – "that they were wasting their time and should retire."That earned Watson the decades-long enmity of some of those traditional biologists, but he also attracted young scientists and graduate students who went on to forge the genetics revolution.In 1968 Watson took his institution-building drive to CSHL on Long Island, splitting his time between CSHL and Harvard for eight years. The lab at the time was "just a mosquito-infested backwater," said Ptashne. As director, "Jim turned it into a vibrant, world-class institution."In 1990, Watson was named to lead the Human Genome Project, whose goal was to determine the order of the 3 billion chemical units that constitute humans' full complement of DNA. When the National Institutes of Health, which funded the project, decided to seek patents on some DNA sequences, Watson attacked the NIH director and resigned, arguing that genome knowledge should remain in the public domain.In 2007 he became the second person in the world to have his full genome sequenced. He made the sequence publicly available, arguing that concerns about "genetic privacy" were overwrought but made an exception by saying he did not want to know if he had a gene associated with an increased risk of Alzheimer's disease. Watson did have a gene associated with novelty-seeking.His proudest accomplishment, Watson told an interviewer for Discover magazine in 2003, was not discovering the double helix - which "was going to be found in the next year or two" anyway - but his books."My heroes were never scientists," he said. "They were Graham Greene and Christopher Isherwood - you know, good writers."Watson cherished the bad-boy image he presented to the world in "Double Helix," friends said, and he emphasized it in his 2007 book, "Avoid Boring People."Married with two sons, he often disparaged women in public statements and boasted of chasing what he called "popsies." But he personally encouraged many female scientists, including biologist Nancy Hopkins of the Massachusetts Institute of Technology."I certainly couldn't have had a career in science without his support, I believe," said Hopkins, long outspoken about anti-woman bias in science. "Jim was hugely supportive of me and other women. It's an odd thing to understand."(Editing by Bill Trott and Rosalba O'Brien)Copyright 2025 Thomson Reuters.Photos You Should See – Oct. 2025

How dry cleaning might raise the risk of cancer, and what to do about it

A new study found links between a toxic dry cleaning chemical and liver cancer. Trump officials are reconsidering an EPA plan to phase it out.

Environmental and health advocates have long sought to curb dangerous chemicals used in dry cleaning. Now a new study adds to the evidence of harms, linking a common dry cleaning chemical to liver disease and cancer.Here’s what you need to know about the risks.How dry cleaning worksDespite the name, clothes don’t stay “dry” when dry-cleaned. Instead, garments are loaded into drums and soaked in chemicals that dissolve stains.Before modern cleaning systems were developed, workers would manually move solvent-soaked garments from washer to dryer, creating a direct exposure route and increasing the chances of environmental contamination. Today, cleaners wash and dry everything in the same drum. Clothes are then pressed or steamed.What are the health risks?One of the most widely used dry cleaning chemicals is an industrial solvent called PCE, also known as tetrachloroethylene, perchloroethylene and perc. The Environmental Protection Agency considers PCE a probable human carcinogen, and it has been linked to bladder cancer, multiple myeloma and non-Hodgkin lymphoma.Follow Climate & environmentLast year, the EPA announced a new rule banning PCE for most uses and giving dry cleaners a 10-year phaseout period. The Trump administration is reconsidering this decision, according to an EPA spokesperson.But a recent study found that exposure to PCE tripled the risk of liver fibrosis, excessive scarring that can lead to liver disease and liver cancer. Researchers found that repeated exposure to PCE, which is detectable in an estimated 7 percent of the U.S. population, increased the likelihood of liver damage.“If you’ve been exposed to PCE, talk to your doctor about it,” said Brian P. Lee, associate professor of medicine at the University of Southern California and the study’s lead author.The study found that higher-income households faced the most risk from PCE exposure because they are more likely to use dry cleaning. People who work in cleaning facilities or live nearby also face an elevated risk due to prolonged exposure. Once the chemical gets into a building or the ground, it’s very difficult to remove. The EPA estimates that roughly 6,000 dry cleaners, mostly small businesses, still use PCE in the United States.Lee said the study adds to the growing list of harms associated with the chemical.Studies have also shown that PCE can linger on clothing after dry cleaning and that it builds up over time after repeated cleanings and can contaminate indoor air as it vaporizes.“We now have decades of studies confirming that these widespread dry cleaning chemicals are exposing people to unacceptable risks of cancer and other serious diseases,” said Jonathan Kalmuss-Katz, a senior attorney at the advocacy group Earthjustice. “Those harms are entirely avoidable.”Jon Meijer, director of membership at the Drycleaning & Laundry Institute International, a trade association, said the group supports the original rule passed under the Biden administration and explained that those who still use the chemical do so because of financial challenges.“It’s time for a phaseout of perchloroethylene,” Meijer said. “There are so many alternatives out there.”Safer alternativesExperts say there are plenty of alternatives to using harmful dry cleaning chemicals, but some are safer than others.Go dry-clean free: Try purchasing clothes that don’t need to be dry-cleaned. Selecting cotton blazers and other professional attire, for example, can reduce dry cleaning visits, said Tasha Stoiber, a senior scientist at the Environmental Working Group, an advocacy group. “The easiest thing is to look for professional staples that don’t need to be dry-cleaned,” Stoiber said.Hand-washing: Some “dry-clean only” garments can be delicately hand-washed in cold water with a gentle detergent specific to the particular fabric you’re using. Hanging delicate clothes to dry after a wash can avoid damage from heated air dryers.Steaming: Steam cleaning can freshen up clothes by removing odors, bacteria and small stains without needing a full wash.Commercial wet cleaning: Commercial wet cleaning relies on biodegradable detergents and water instead of toxic solvents.Liquid carbon dioxide: Experts suggest selecting dry cleaners that use liquid carbon dioxide as a solvent to remove dirt and avoid toxic chemicals.Watch out for greenwashingSome businesses advertise eco-friendly or “green” alternatives to dry cleaning. But experts warn that new chemicals can have their own downsides.Diana Ceballos, an assistant professor in the University of Washington’s Department of Environmental and Occupational Health Sciences, said that dry cleaning technology has improved dramatically and that new solvents and machinery can be more effective than PCE.Still, Cebellos said that there can be a lot of “regrettable substitution” when it comes to alternatives to PCE and that some that are billed as “safe” or “organic” could also be toxic.“Most options are far better,” Cebellos said. “But there’s a lot of greenwashing” out there, so people should ask questions and do “a little bit of research.”

Emergency Crews Respond to Ammonia Leak at Mississippi Fertilizer Plant

(Reuters) -Emergency teams responded on Wednesday to a chemical leak, possibly caused by an explosion, at a fertilizer plant in Central Mississippi...

(Reuters) -Emergency teams responded on Wednesday to a chemical leak, possibly caused by an explosion, at a fertilizer plant in Central Mississippi, according to Governor Tate Reeves and media reports. No injuries were immediately reported.A tall cloud of orange vapor could be seen rising over the facility in a photo from the scene of the plant posted online by television station WJTV, a CBS News affiliate in Jackson, Mississippi, the state capital.The governor identified the leaking chemical as anhydrous ammonia, a toxic substance that can cause irritation to the eyes and lungs.Fertilizer manufacturer CF Industries said in statement that "all employees and contractors on site at the time of the incident have been safely accounted for, with no injuries reported."It said it had notified government officials of an "incident" that occurred at its Yazoo City Complex at about 4:25 p.m. CT (2225 GMT).Reeves said in a statement posted on social media that state authorities were "actively responding to the anhydrous ammonia leak" at the plant, located about 50 miles (80.5 km) north of Jackson."Initial reports indicate the leak is due to an explosion. At this time, no deaths or injuries have been reported," the governor said.Personnel from the Mississippi Department of Environmental Quality were among various teams dispatched to the scene, WJTV reported.The governor said residents living along two nearby streets should be evacuated, while other residents in the vicinity were encouraged to shelter in place.(Reporting by Steve Gorman in Los Angeles; Additional reporting by Costas Pita in Los Angeles and Angela Christy in Bengaluru; Editing by Himani Sarkar and Stephen Coates)Copyright 2025 Thomson Reuters.

EPA Proposes Approving Fifth ‘Forever Chemical’ Pesticide

November 5, 2025 – In line with its plan to continue pesticide approvals despite the government shutdown, the Environmental Protection Agency (EPA) announced this week that it will register a new weedkiller for use in corn, soybean, wheat, and canola fields. The herbicide, epyrifenacil, is the fifth pesticide set to be approved by the agency […] The post EPA Proposes Approving Fifth ‘Forever Chemical’ Pesticide appeared first on Civil Eats.

November 5, 2025 – In line with its plan to continue pesticide approvals despite the government shutdown, the Environmental Protection Agency (EPA) announced this week that it will register a new weedkiller for use in corn, soybean, wheat, and canola fields. The herbicide, epyrifenacil, is the fifth pesticide set to be approved by the agency within the last few months that fits into the group of chemicals called PFAS (per- and polyfluoroalkyl substances), based on a commonly used definition. And the agency is moving fast. The first pesticide was proposed for registration in April; that pesticide, called cyclobutrifluram, was finalized today. PFAS are linked to a wide range of health harms and are commonly called “forever chemicals” because they don’t break down easily and they accumulate in soil and water. In 2023, however, the EPA officially adopted a narrower definition. With the proposed approval of epyrifenacil, the agency for the first time has waded into the debate over which pesticides are PFAS and whether concerns voiced over other recent registrations of similar pesticides are warranted. In its announcement, the agency noted that epyrifenacil “contains a fluorinated carbon” and directed the public to a new website where it lays out its position on pesticides that contain fluorinated carbons. Whether those chemicals fit the definition of PFAS doesn’t matter, the agency argues, because under the law, the EPA evaluates the risks of each chemical individually. “Regardless of whether a chemical meets a specific structural definition or is part of a category or class of chemicals, the Agency utilizes a comprehensive assessment process under [the Federal Insecticide, Fungicide, and Rodenticide Act] to evaluate the potential risks of pesticide use,” it said. “This robust, chemical-specific process considers both hazard and exposure in determining whether the pesticide under review may pose risk to human health or the environment.” Epyrifenacil was developed by Japan-based Sumitomo Chemical, which owns Valent U.S.A. in the U.S. It’s one of a new class of herbicides designed to help farmers kill weeds that have developed resistance to popular chemicals like glyphosate. It’s also specifically designed for farmers to spray on cover crops and in no-till systems to prep fields for planting. The pesticide industry has lobbied in recent years to get the EPA to approve new chemicals to address what it calls an “innovation backlog.” Nathan Donley, environmental health science director at the Center for Biological Diversity, said in a statement that an “office run by chemical lobbyists” is whitewashing what is already known about the risks of PFAS. “Not only did the pesticide industry get a proposed approval of its dangerous new product,” he said, “but it also got a shiny new government website parroting its misleading talking points.” (Link to this post.) The post EPA Proposes Approving Fifth ‘Forever Chemical’ Pesticide appeared first on Civil Eats.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.