Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

See How Scientists Track Polar Bears With Groundbreaking “Burr on Fur” Tags

News Feed
Monday, July 15, 2024

Innovative “burr on fur” trackers now allow for the effective monitoring of male and subadult polar bears, bypassing the limitations of collar-based systems and improving wildlife research and management.New “burr on fur” tracking devices provide enhanced monitoring of subadult and adult male polar bears, presenting a less invasive alternative to traditional collars and expanding research capabilities into previously difficult-to-track demographics.A research team led by York University and a project involving 3M and Polar Bears International present field research deploying the first-ever fur tracking tags on polar bears, a less invasive method; the report was published today, on Arctic Sea Ice Day.New Tracking Technology for Polar BearsStudying polar bears just became a lot easier with new “burr on fur” trackers which confirmed scientists’ belief that subadult and adult males spend most of their time on land lazing around, conserving energy until the ice returns. A multi-institutional research team led by York University and including the University of Alberta, Environment and Climate Change Canada, Manitoba Sustainable Development, Ontario Ministry of Natural Resources and Forestry, and Polar Bears International, used three different “burr on fur” prototypes to study their effectiveness.The paper, “Telemetry without collars: performance of fur- and ear-mounted satellite tags for evaluating the movement and behavior of polar bears,” published in the journal Animal Biotelemetry, details the first peer-reviewed examination of these new tracking devices that adhere to the fur of polar bears.New tracking technology offers a breakthrough in studying male and subadult polar bears, enhancing conservation efforts and data accuracy. Credit: Kt-Miller, Polar Bear InternationalAdvancements in Polar Bear Tracking MethodsStudying polar bears is a difficult feat with current radio collars only suitable to be used on female bears leaving out a swath of the population, but new technology is providing researchers with a new tool that has confirmed the behavior of adult male polar bears while on land waiting for the ice to form again.Efforts to develop less-invasive tracking options and tools that could work on polar bears of both sexes and nearly all ages have been ongoing for years with varying success. Collars have been and remain the primary means of studying polar bear movements. More recently, ear tag transmitters have been used as a lighter-weight alternative. While both technologies serve an important role in helping study and conserve polar bears, researchers continually strive to develop methods that are both minimally invasive and provide quality data.This led to a new tracking initiative known as “Burr on Fur,” which began as a challenge from Polar Bears International to 3M scientists, the global science and manufacturing company behind Post-It notes, to create a temporary, simple method for affixing small tracking units to polar bear fur. Three “Burr on Fur” prototypes were recently tested on wild polar bears along the coast of Hudson Bay, Canada, alongside traditional ear tag transmitters.York University Professor Greg Thiemann tagging a polar bear. Credit: York University researcher Tyler Ross, Polar Bear InternationalComparison of New and Traditional Tracking DevicesThe ear tag and “Burr on Fur” devices fill an important niche for scientists and wildlife managers. The new tags allow researchers to follow the movements of adult male and subadult polar bears, two groups that can’t be studied using traditional satellite collars. Adult males can’t wear collars because they slip off their cone-shaped necks and heads, and subadult bears grow too rapidly for safe collar use. Traditional ear tags are an alternative to collars. However, they currently require recapture to remove and, although rare, can pose a risk of injury to the ear. The new Burr on Fur tags are designed to be temporary, minimally invasive, and can be applied to both sexes and nearly all ages of polar bears.“Successfully attaching telemetry tags to polar bear fur has never been done before, and we’re excited to share the results of this innovative work,” said Tyler Ross, lead author of the paper and researcher at York University, “The fur tags showed great promise, and give researchers the ability to study the behaviors and movements of polar bears that we have very little data on, like subadult and adult male bears.”The three fur tag designs. Credit: York University researcher Tyler Ross, Polar Bear InternationalField Testing of Innovative Tracking TechnologiesFifty-eight wild bears were tagged using ear tags and three distinct fur tag designs to compare both the duration of time the tags remained active while attached to the bears and the accuracy of the trackers. Applied alongside a traditional ear tag, which relied on an Argos Transmitter, the three fur tags were:The Pentagon Tag: this five-sided device included five holes punched into its corners, allowing tufts of fur to be pulled through. It utilized an Argos Eartag Satellite Transmitter.The SeaTrkr Tag: an oval-shaped tag that had 10 holes punched to allow 10 fur-tuft attachments. This design used an Iridium-linked Telonics GPS SeaTrkr-4370 transmitter.The Tribrush Tag: a triangle tag outfitted with tubes along its borders, through which pipe brushes ensnared the fur, twisting it inside the tubes. This tag used the same Argos transmitter as the Pentagon tags.The research took place from autumn 2016 to 2021 with bears handled near Churchill, Canada, by the Polar Bear Alert Program and researchers at the University of Alberta, supplemented with operations by researchers at Environment and Climate Change Canada, Ontario Ministry of Natural Resources and Forestry, York University, and Manitoba Sustainable Development in 2021-22 near the Manitoba-Ontario border.Results and Performance Analysis of New Tags“Our results are an important step in better understanding the movements and behavior of polar bears, especially adult male bears, which are difficult to track because they can’t be fitted with satellite collars. Temporary, fur-mounted tags could also help track the movements of bears relocated after potentially coming into conflict with people, making these tags an important tool for conserving polar bears and keeping northern communities safe,” says York University Associate Professor and Sustainable Environmental Management Coordinator Gregory Thiemann, the report’s co-author.The top-performing fur tag was the SeaTrkr Tag, which remained attached to the bears for an average of 58 days and had superior accuracy due to its use of GPS/Iridium technology. In second place, the Trishbrush Tags remained attached for an average of 47 days. However, for the Tribrush Tag, the times varied widely, with one falling off after only two days while another lasted 114 days – the longest of all the tags.Because they are permanently attached to the bears’ ears, the traditional ear tags remained in place for 137 days on average, while the shorter-term fur-based trackers proved to be reliable for shorter periods. The fur tags proved useful for monitoring bear behavior, and show great promise for future use in tracking polar bears, especially those that must be relocated after approaching too close to communities. Further testing and refinement are also being conducted on bears in zoos and aquariums through Polar Bears International’s Arctic Ambassador Center zoo and aquarium partners, allowing researchers to further refine the designs and see how they perform throughout different seasons. In the most recent round of zoo testing, a refined tag stayed on a bear for 75 days.Important Data about Male and Subadult Polar BearsThe new data adds to our growing understanding of subadult and adult male polar bear movements and behaviors, which have been historically understudied because they cannot be safely collared for long periods. Findings confirm that adult and subadult male bears reduce their activity while on land, consistent with prior studies that showed bears spent approximately 70 to 90 percent of their time resting during the ice-free period in Hudson Bay.Implications for Wildlife ManagementWhile the ear tags remained attached to the bears longer, the temporary and easily affixed fur tags give scientists a new tool for enhanced tracking of bears for purposes of both applied research and managing human-bear interactions. The tracking tech could be applied to other types of bears, supporting efforts to reduce human-bear conflict, and future applications could include testing on other species with fur. While traditional tracking methods, such as collars, will remain critical for longer-term studies, the fur tags will prove a valuable tool, particularly for understanding and managing increasing wildlife-human interactions as the climate warms.“The collaboration between Polar Bears International, 3M, academic institutions, and governmental partners is a testament to our commitment to improving Arctic wildlife research and conservation technology,” says Geoff York, Senior Director of Research and Policy at Polar Bears International, adding, “These advancements will have tangible implications for wildlife management, aiding in tracking polar bears and promoting improved human-bear coexistence. We’re eager to further refine and deploy this pivotal technology.”About Arctic Sea Ice DayThese findings were published on July 15, which is Arctic Sea Ice Day, an annual event created by Polar Bears International to spark actions and conversations about the rapidly melting Arctic ecosystem, including its global significance and how people can help slow this warming trend. The Arctic is now warming nearly four times faster than the rest of the planet, causing the sea ice to melt, which causes polar bears to spend longer periods fasting on land.Polar Bears International invites people to access the full report and urges the scientific community to consider the implications of these findings for further research and application in conservation and coexistence efforts.Reference: “Telemetry without collars: performance of fur- and ear-mounted satellite tags for evaluating the movement and behavior of polar bears” 15 July 2024, Animal Biotelemetry.

New “burr on fur” tracking devices provide enhanced monitoring of subadult and adult male polar bears, presenting a less invasive alternative to traditional collars and...

Polar Bear Melting Ice Climate Change

Innovative “burr on fur” trackers now allow for the effective monitoring of male and subadult polar bears, bypassing the limitations of collar-based systems and improving wildlife research and management.

New “burr on fur” tracking devices provide enhanced monitoring of subadult and adult male polar bears, presenting a less invasive alternative to traditional collars and expanding research capabilities into previously difficult-to-track demographics.

A research team led by York University and a project involving 3M and Polar Bears International present field research deploying the first-ever fur tracking tags on polar bears, a less invasive method; the report was published today, on Arctic Sea Ice Day.

New Tracking Technology for Polar Bears

Studying polar bears just became a lot easier with new “burr on fur” trackers which confirmed scientists’ belief that subadult and adult males spend most of their time on land lazing around, conserving energy until the ice returns.

A multi-institutional research team led by York University and including the University of Alberta, Environment and Climate Change Canada, Manitoba Sustainable Development, Ontario Ministry of Natural Resources and Forestry, and Polar Bears International, used three different “burr on fur” prototypes to study their effectiveness.

The paper, “Telemetry without collars: performance of fur- and ear-mounted satellite tags for evaluating the movement and behavior of polar bears,” published in the journal Animal Biotelemetry, details the first peer-reviewed examination of these new tracking devices that adhere to the fur of polar bears.

Polar Bear Melting Ice

New tracking technology offers a breakthrough in studying male and subadult polar bears, enhancing conservation efforts and data accuracy. Credit: Kt-Miller, Polar Bear International

Advancements in Polar Bear Tracking Methods

Studying polar bears is a difficult feat with current radio collars only suitable to be used on female bears leaving out a swath of the population, but new technology is providing researchers with a new tool that has confirmed the behavior of adult male polar bears while on land waiting for the ice to form again.

Efforts to develop less-invasive tracking options and tools that could work on polar bears of both sexes and nearly all ages have been ongoing for years with varying success. Collars have been and remain the primary means of studying polar bear movements. More recently, ear tag transmitters have been used as a lighter-weight alternative. While both technologies serve an important role in helping study and conserve polar bears, researchers continually strive to develop methods that are both minimally invasive and provide quality data.

This led to a new tracking initiative known as “Burr on Fur,” which began as a challenge from Polar Bears International to 3M scientists, the global science and manufacturing company behind Post-It notes, to create a temporary, simple method for affixing small tracking units to polar bear fur. Three “Burr on Fur” prototypes were recently tested on wild polar bears along the coast of Hudson Bay, Canada, alongside traditional ear tag transmitters.

Greg Thiemann Tagging a Polar Bear

York University Professor Greg Thiemann tagging a polar bear. Credit: York University researcher Tyler Ross, Polar Bear International

Comparison of New and Traditional Tracking Devices

The ear tag and “Burr on Fur” devices fill an important niche for scientists and wildlife managers. The new tags allow researchers to follow the movements of adult male and subadult polar bears, two groups that can’t be studied using traditional satellite collars. Adult males can’t wear collars because they slip off their cone-shaped necks and heads, and subadult bears grow too rapidly for safe collar use. Traditional ear tags are an alternative to collars. However, they currently require recapture to remove and, although rare, can pose a risk of injury to the ear. The new Burr on Fur tags are designed to be temporary, minimally invasive, and can be applied to both sexes and nearly all ages of polar bears.

“Successfully attaching telemetry tags to polar bear fur has never been done before, and we’re excited to share the results of this innovative work,” said Tyler Ross, lead author of the paper and researcher at York University, “The fur tags showed great promise, and give researchers the ability to study the behaviors and movements of polar bears that we have very little data on, like subadult and adult male bears.”

Three Fur Tag Designs

The three fur tag designs. Credit: York University researcher Tyler Ross, Polar Bear International

Field Testing of Innovative Tracking Technologies

Fifty-eight wild bears were tagged using ear tags and three distinct fur tag designs to compare both the duration of time the tags remained active while attached to the bears and the accuracy of the trackers. Applied alongside a traditional ear tag, which relied on an Argos Transmitter, the three fur tags were:

  • The Pentagon Tag: this five-sided device included five holes punched into its corners, allowing tufts of fur to be pulled through. It utilized an Argos Eartag Satellite Transmitter.
  • The SeaTrkr Tag: an oval-shaped tag that had 10 holes punched to allow 10 fur-tuft attachments. This design used an Iridium-linked Telonics GPS SeaTrkr-4370 transmitter.
  • The Tribrush Tag: a triangle tag outfitted with tubes along its borders, through which pipe brushes ensnared the fur, twisting it inside the tubes. This tag used the same Argos transmitter as the Pentagon tags.

The research took place from autumn 2016 to 2021 with bears handled near Churchill, Canada, by the Polar Bear Alert Program and researchers at the University of Alberta, supplemented with operations by researchers at Environment and Climate Change Canada, Ontario Ministry of Natural Resources and Forestry, York University, and Manitoba Sustainable Development in 2021-22 near the Manitoba-Ontario border.

Results and Performance Analysis of New Tags

“Our results are an important step in better understanding the movements and behavior of polar bears, especially adult male bears, which are difficult to track because they can’t be fitted with satellite collars. Temporary, fur-mounted tags could also help track the movements of bears relocated after potentially coming into conflict with people, making these tags an important tool for conserving polar bears and keeping northern communities safe,” says York University Associate Professor and Sustainable Environmental Management Coordinator Gregory Thiemann, the report’s co-author.

The top-performing fur tag was the SeaTrkr Tag, which remained attached to the bears for an average of 58 days and had superior accuracy due to its use of GPS/Iridium technology. In second place, the Trishbrush Tags remained attached for an average of 47 days. However, for the Tribrush Tag, the times varied widely, with one falling off after only two days while another lasted 114 days – the longest of all the tags.

Because they are permanently attached to the bears’ ears, the traditional ear tags remained in place for 137 days on average, while the shorter-term fur-based trackers proved to be reliable for shorter periods. The fur tags proved useful for monitoring bear behavior, and show great promise for future use in tracking polar bears, especially those that must be relocated after approaching too close to communities. Further testing and refinement are also being conducted on bears in zoos and aquariums through Polar Bears International’s Arctic Ambassador Center zoo and aquarium partners, allowing researchers to further refine the designs and see how they perform throughout different seasons. In the most recent round of zoo testing, a refined tag stayed on a bear for 75 days.

Important Data about Male and Subadult Polar Bears

The new data adds to our growing understanding of subadult and adult male polar bear movements and behaviors, which have been historically understudied because they cannot be safely collared for long periods. Findings confirm that adult and subadult male bears reduce their activity while on land, consistent with prior studies that showed bears spent approximately 70 to 90 percent of their time resting during the ice-free period in Hudson Bay.

Implications for Wildlife Management

While the ear tags remained attached to the bears longer, the temporary and easily affixed fur tags give scientists a new tool for enhanced tracking of bears for purposes of both applied research and managing human-bear interactions. The tracking tech could be applied to other types of bears, supporting efforts to reduce human-bear conflict, and future applications could include testing on other species with fur. While traditional tracking methods, such as collars, will remain critical for longer-term studies, the fur tags will prove a valuable tool, particularly for understanding and managing increasing wildlife-human interactions as the climate warms.

“The collaboration between Polar Bears International, 3M, academic institutions, and governmental partners is a testament to our commitment to improving Arctic wildlife research and conservation technology,” says Geoff York, Senior Director of Research and Policy at Polar Bears International, adding, “These advancements will have tangible implications for wildlife management, aiding in tracking polar bears and promoting improved human-bear coexistence. We’re eager to further refine and deploy this pivotal technology.”

About Arctic Sea Ice Day

These findings were published on July 15, which is Arctic Sea Ice Day, an annual event created by Polar Bears International to spark actions and conversations about the rapidly melting Arctic ecosystem, including its global significance and how people can help slow this warming trend. The Arctic is now warming nearly four times faster than the rest of the planet, causing the sea ice to melt, which causes polar bears to spend longer periods fasting on land.

Polar Bears International invites people to access the full report and urges the scientific community to consider the implications of these findings for further research and application in conservation and coexistence efforts.

Reference: “Telemetry without collars: performance of fur- and ear-mounted satellite tags for evaluating the movement and behavior of polar bears” 15 July 2024, Animal Biotelemetry.

Read the full story here.
Photos courtesy of

‘Forever chemicals’ contaminate more dolphins and whales than we thought – new research

The sex and age of an animal turn out to be stronger predictors than habitat for higher PFAS levels, suggesting they accumulate over a lifetime.

Getty ImagesNowhere in the ocean is now left untouched by a type of “forever chemicals” called “per- and polyfluoroalkyl substances”, known simply as PFAS. Our new research shows PFAS contaminate a far wider range of whales and dolphins than previously thought, including deep-diving species that live well beyond areas of human activity. But most surprising of all, where an animal lives does not predict its exposure. Instead, sex and age are stronger predictors of how much of these pollutants a whale or dolphin accumulates in its body. This means chemical pollution is more persistent and entrenched in ocean food webs than we realised, affecting everything from endangered coastal Māui dolphins to deep-diving beaked and sperm whales. This graphic shows that PFAS contamination affects a range of marine mammals, from nearshore dolphins to deep-diving predators. Science of the Total Environment, CC BY-ND PFAS were originally designed to make everyday products more convenient, but they have ultimately become a widespread environmental and public health concern. Our work provides stark evidence that no part of the ocean is now beyond the reach of human pollution. What are PFAS, and why are they a problem? PFAS are a group of more than 14,000 synthetic chemicals that have been used since the 1950s in a wide range of everyday products. This includes non-stick cookware, food packaging, cleaning products, waterproof clothing, firefighting foams and even cosmetics. Many everyday products contain PFAS. Author provided, CC BY-SA They’re known as forever chemicals because they don’t break down naturally. Instead, they travel through air and water, eventually reaching their final destination: the ocean. There, PFAS percolate through seawater and sediments and enter the food web, taken up by animals through their diet. Once inside an animal, PFAS can attach to proteins and accumulate in the blood and organs such as the liver, where they can disrupt hormones, immune function and reproduction. Like humans, whales and dolphins sit high in the food web, which makes them especially vulnerable to building up these pollutants over their lifetime. Whales and dolphins are the ocean’s canaries Marine mammals are an early warning system of the ocean. Because they are large predators with long lifespans, their health reflects what’s happening in the wider ecosystem, including risks that can affect people, too. This idea is at the heart of the OneHealth concept, which links environmental, animal and human health. New Zealand is one of the best places in the world to study human impacts in a OneHealth framework. More than half of the world’s toothed whales and dolphins (odontocetes) occur here, making Aotearoa a rare hotspot for marine mammals and an ideal place to assess how deeply PFAS have entered ocean food webs. We analysed liver samples from 127 stranded whales and dolphins, covering 16 species across four families, from coastal bottlenose dolphins to deep-diving beaked whales. For eight of these species, including Hector’s dolphins and three beaked whale species, this was the first time PFAS had ever been measured globally. PFAS contamination is an additional stress factor for Hector’s dolphins, which are endemic to New Zealand and already threatened. Getty Images We expected coastal species living closer to pollution sources to show the highest contamination, with deep-ocean species being much less exposed. However, our results told a different story. Habitat played only a minor role in predicting PFAS levels. Some deep-diving species had PFAS concentrations comparable to (or even higher than) coastal animals. It turns out biology matters more than habitat. Older, larger animals had higher PFAS levels, indicating they accumulate these chemicals over time. Males also tended to have higher burdens than females, consistent with mothers transferring PFAS to their calves during pregnancy and lactation. These patterns were consistent across all major types of PFAS chemicals. Why this matters Our findings show PFAS contamination has now entered every layer of the marine food web, affecting everything from nearshore dolphins to deep-diving predators. While diet is a major exposure pathway, animals could also be absorbing PFAS through other mechanisms, including potentially their skin. PFAS may further interact with other stressors, including climate change, shifting prey availability and disease, adding further pressure to species already under threat. Knowing that PFAS are present across different habitats and species raises urgent questions about their health impacts. Are these chemicals already affecting populations? Could PFAS contamination weaken immunity and increase disease risk in vulnerable species, such as Māui dolphins? Understanding how PFAS exposure affects reproduction, immunity and resilience to environmental pressures is now central to predicting whether species already under threat can withstand accelerating environmental change. Even the most remote whales carry high PFAS loads and we know humans are not isolated from these contaminations either. Answering these questions is not optional but essential if we want to protect both marine wildlife and the oceans we all depend on. The research was a trans-Tasman collaboration which also included Gabriel Machovsky at Massey University, Louis Tremblay at the Bioeconomy Science Institute and Shan Yi at the University of Auckland. Frédérik Saltré receives funding from the Australian Research Council.Emma Betty, Karen A Stockin, and Katharina J. Peters do not work for, consult, own shares in or receive funding from any company or organisation that would benefit from this article, and have disclosed no relevant affiliations beyond their academic appointment.

Watch a Wolf Cleverly Raid a Crab Trap for a Snack. It Might Be the First Evidence of a Wild Canid Using a Tool

Footage from British Columbia shows just how intelligent wild wolves can be, but scientists are divided as to whether the behavior constitutes tool use

Watch a Wolf Cleverly Raid a Crab Trap for a Snack. It Might Be the First Evidence of a Wild Canid Using a Tool Footage from British Columbia shows just how intelligent wild wolves can be, but scientists are divided as to whether the behavior constitutes tool use Sarah Kuta - Daily Correspondent November 19, 2025 11:53 a.m. Members of the Haíɫzaqv (Heiltsuk) Nation caught the crafty female wolf on camera. Artelle et al. / Ecology and Evolution, 2025 Key takeaways: A dispute over tool use A female wolf figured out how to pull a crab trap from the ocean onto shore to fetch a tasty treat. Scientists debate whether the behavior represents tool use, or if the animal needed to have modified the object for it to count. Something strange began happening on the coast of British Columbia, Canada, in 2023. Traps set by members of the Haíɫzaqv (Heiltsuk) Nation to control invasive European green crabs kept getting damaged. Some had mangled bait cups or torn netting, but others were totally destroyed. But who—or what—was the culprit? Initially, the Indigenous community’s environmental wardens, called Guardians, suspected sea lions, seals or otters were to blame. But only after setting up several remote cameras in the area did they catch a glimpse of the true perpetrators: gray wolves. On May 29, 2024, one of the cameras recorded a female wolf emerging from the water with a buoy attached to a crab trap line in her mouth. Slowly but confidently, she tugged the line onto the beach until she’d managed to haul in the trap. Then, she tore open the bottom netting, removed the bait cup, had a snack and trotted off. Now, scientists say the incident—and another involving a different wolf in 2025—could represent the first evidence of tool use by wild wolves. They describe the behavior and lay out their conclusions in a new paper published November 17 in the journal Ecology and Evolution. This wolf has a unique way of finding food | Science News “You normally picture a human being with two hands pulling a crab trap,” says William Housty, a Haíɫzaqv hereditary chief and the director of the Heiltsuk Integrated Resource Management Department, to Global News’ Amy Judd and Aaron McArthur. “But we couldn’t figure out exactly what had the ability to be able to do that until we put a camera up and saw, well, there’s other intelligent beings out there that are able to do this, which is very remarkable.” Members of the Haíɫzaqv Nation weren’t surprised by the wolves’ cleverness, as they have long considered the animals to be smart. That view has largely been shaped by the community’s oral history, which tells of a woman named C̓úṃqḷaqs who birthed four individuals who could shape-shift between humans and wolves, reports Science News’ Elie Dolgin. Scientists weren’t shocked, either, as they have long understood that wolves are intelligent, social creatures that often cooperate to take down their prey. People aren’t sure how the wolves figured out the crafty crab trap trick. The animals may have learned by watching Haíɫzaqv Guardians pull up the traps, or their keen sense of smell may have helped them sniff out the herring and sea lion bait inside. Or perhaps they started with traps that were more easily accessible, before moving on to more challenging targets submerged in deep water. Wolves are also largely protected in Haíɫzaqv territory, which may have given them the time and energy they needed to learn a new, complex behavior, reports the Washington Post’s Dino Grandoni. Whatever the explanation, experts are divided as to whether the behavior technically constitutes nonhuman tool use, which has been previously documented in crows, elephants, dolphins and several other species. The debate stems mostly from varying definitions of tool use. Under one definition, animals can’t simply use an external object to achieve a specific goal—the creature must also manipulate the object in some way, like a crow transforming a tree branch into a hooked tool for grabbing hidden insects. Against this backdrop, some researchers say the wolves’ behavior represents object use, not tool use. However, some of the disagreement may also be rooted in bias. “For better or for worse, as humans, we tend to afford more care and compassion to other people or other species that we see most like us,” says study co-author Kyle Artelle, an ecologist with the State University of New York College of Environmental Science and Forestry, to the Washington Post. Marc Bekoff, a biologist at the University of Colorado Boulder who was not involved with the research, echoes that sentiment, telling Science’s Phie Jacobs that “if this had been a chimpanzee or other nonhuman primate, I’m sure no one would have blinked about whether this was tool use.” Regardless, scientists say the footage suggests wild wolves are even smarter than initially thought. In less than three minutes, the female efficiently and purposefully executed a complicated sequence of events to achieve a specific goal. She appeared to know that the trap contained food, even though it was hidden underwater, and she seemed to understand exactly which steps she needed to take to access that food. Tool use or not, the findings point to “another species with complex sociality [that] is capable of innovation and problem solving,” says Susana Carvalho, a primatologist and paleoanthropologist at Gorongosa National Park in Mozambique who was not involved with the research, to the New York Times’ Lesley Evans Ogden. Get the latest stories in your inbox every weekday.

What Catastrophes Get Our Attention, and Why It Matters

When catastrophe becomes celebrity, we stop witnessing and start scrolling, turning suffering into spectacle. But we can break that cycle. The post What Catastrophes Get Our Attention, and Why It Matters appeared first on The Revelator.

Another environmental catastrophe season brought destruction and death to North America this summer. Amid extreme heatwaves and weather, fires raged in northern and western Canada. In Manitoba alone more than 28,000 people, largely rural or Indigenous, were evacuated from their homes. At the same time, floods washed out Hill Country in Texas when the Guadalupe River rapidly overflowed its banks, killing at least 135 people. Similar events could go on indefinitely. Chances are you’ve seen news reports about these disasters, or others like them, but this isn’t just the stuff of headlines. Fires and floods make news because they grab attention, unlike the daily realities of the economically depressed rural and Indigenous communities they often hit so hard. This is the strange logic of catastrophe in the digital age: Some crises become “celebrity” catastrophes while others remain “commonplace,” meaning they’re normalized and invisible on an ongoing basis. Who gets our attention — and who doesn’t — isn’t random. It reveals the value systems we’ve internalized and the limits of the stories we tell ourselves about suffering and survival, and in turn those that invite responsibility. The real currency of the 21st century is attention. And most people, if they’re going to pay attention, want something spectacular: an event worth watching. When Tragedy Turns to Spectacle Our engagement with this reality came from a course we taught at the University of British Columbia on the role of language in shaping environmental behaviors. What started as classroom conversations over a few years eventually evolved into our forthcoming book, Becoming Ecological: Navigating Language and Meaning for Our Planet’s Future, as a way to continue this conversation in public. In characterizing different discourses we’ve been exposed to (and been a part of), we noticed trends in global reporting of catastrophic events. That reporting tends to emphasize spectacular events over those that are just as detrimental, if not more, but occur over longer periods of time without affecting highly visible populations — particularly visible in terms of people who attract mainstream media notice. Our aim is not so much to critique the ways certain types of media function, from traditional broadcasters to social news like TikTok, but to look at how meaning is made and conveyed as catastrophe stories. The ways in which meanings are socially constructed shape what people believe, how they act and interact, and create possibilities to nurture more broadly relational understandings of our roles and responsibilities on and for Earth. They can also hinder or inhibit other possibilities. The systems of language and environment are intricately interconnected. We find it useful to speak of catastrophe by using the term polycrisis — the overlaying of multiple crises where a breakdown in one system leads to cascading effects, causing reverberations through climatic, biological, social, economic, political, scientific, temporal (and so on) systems. The problem with catastrophe in contemporary environmental discourse is that the original meaning, the gravity of this word in ancient Greek — katastrophē, or sudden end — is completely lost. Catastrophe now is characterized as being visually spectacular, rooted in the notion of spectacle, making it newsworthy. To put it crudely, tragedy comes with a photo op or not at all. Yet catastrophe originally implied the point at which fate and destiny are sealed. All hope is lost. No Hollywood ending. Greek tragic theatre made the pain of such a loss accessible safely; it had the effect of making audiences appreciate their existence and work to prevent such events from happening. Today we’re saturated with an unending stream of high-profile catastrophes. They’ve gone from occasional newsworthy stories to a regular feature. But the truth is environmental catastrophe discourse at present has very little in common with ancient Greek theatre. Catastrophe isn’t witnessed as a universal condition. It’s more like getting voted out of a reality TV competition, with winners and losers. It signifies a form of virtual entertainment. It’s a money genre in the economy of attention. What Makes a Catastrophe ‘Go Viral’? Celebrity catastrophes, as we’ve come to call them, are disasters that strike at the right time, in the right place, and often to the “right” people — like the Los Angeles wildfires, which literally affected celebrities, among others, or the floods in Spain. They tend to be sudden and extreme, making them photogenic and emotionally gripping. There’s often an implicit narrative arc involving villains, victims, and often a final resolution or judgment; celebrity catastrophes provide an overabundance of social platforms to spread the story. But what about commonplace catastrophes? These are the slow, grinding emergencies — some might even say boring, meaning people won’t pay attention. In other words, they won’t pay for the attention. Such emergencies might include boil water advisories for rural communities off the grid that stretch into decades, the rising tide of the urban unhoused, lack of accessible healthcare for generations, or the multigenerational trauma of environmental injustice in poorer communities. These quotidian catastrophes don’t trend on social media. They rarely get press briefings in broadcast media. They certainly don’t receive attention from political figures. And yet they shape the lives of millions every day. Beyond being a digital communication problem, it’s also a societal pattern. As environmental educators, we see it in our classrooms often, where students feel despair over ecological collapse but struggle to connect that grief to local issues like energy poverty, food shortages, or environmental racism. It’s as though they understand tragedy, but catastrophe means its hopeless. But if they give up hope, then there’s no motivation other than individualistic ones, a competitive endgame everyone winds up losing. Without hope for the next generation, another turn of civilization’s wheel. There’s nothing they can do but watch catastrophes happen, transfixed by impending fate. That’s what’s selling. The problem isn’t apathy or lack of education. It’s attention. There’s simply too much on the celebrity catastrophes and not enough on the commonplace world they inhabit every day. The Ecology of Attention We often talk about ecosystems in scientific terms of carbon, water, species, and so forth. But attention is an ecosystem too. And like all ecosystems, it can be thrown out of balance. In a healthy attention economy, we would recognize and respond to both sudden shocks and slow harms. We could hold space for grief, not just in the wake of a celebrity wildfire in Maui but in response to ongoing loss — such as land, language, or life — in communities displaced by extractive industries. But right now our attention is hyper-curated. We’re all being filtered by algorithms in our social media feeds, Spotify playlists, or Google searches, among many other aspects of our daily lives, and this influences our political and societal conversations. That warped attention is like water on drought-stricken ground, particularly in how it rushes off quickly, collects in rivers, and overflows. This means that some people must fight for a cup of visibility, while others are flooded with it. It also creates dissonance. Why do we cry over burning vineyards in California but ignore scorched farmlands in Sudan? Why are floodwaters in Germany more moving than footage from Pakistan’s devastating 2022 monsoon season? Our attention has been hyper-curated to look for the extremes and pay (for) attention to the sensationalized events. Disaster as Event There’s a reason why celebrity catastrophes dominate headlines and grab our attention, whether we want it or not. They fit within a monetized logic that values spectacle and saviorism. Disasters become “events” with start and end dates, with heroes and villains, victims and saviors. They can be marked in time, which makes them easier to be marketed. More specifically, they can be monetized, as author Naomi Klein and others have shown. They can sell headlines, influence policy agendas, or affect branded charity campaigns. But commonplace catastrophes resist this framing. There’s no clear starting point to systemic racism or global warming and the cascading effect of “events” reverberates throughout the world. These slow emergencies demand long-term commitment, not quick PR campaigns. They’re part of larger complex of socioecological systems that are often uncontainable, like weather patterns or world hunger. In contrast, becoming more ecologically focused requires that we understand crises as entangled and complex. The flood is not separate from the housing crisis. The wildfire is not separate from extractive economies. Witnessing through this lens challenges us to see the whole picture and act from that place. We’re not suggesting we turn away from the immediate or the dramatic. But keeping up with the latest catastrophic event, and being affected by it, is not enough. It catches us in a loop of mental doomism or constant anxiety, especially when it becomes expected, like a performance — amplified one moment and forgotten the next. The truth is that our attention reveals what we value and what we make time for. And right now, too many people live and die in the fallout of commonplace catastrophes. But there are ways to make the commonplace more important. Witnessing as a Radical Act So how do we begin to rebalance our attention? Something that affects our responses to climate breakdown? One way is through the practice of witnessing. Not just seeing, but being present with, and responding to, what we encounter. Witnessing insists that we don’t turn away from the slow, uncomfortable, or inconvenient. Witnessing brings with it an ongoing responsibility. To bear witness means a duty to speak to what one has witnessed, requiring a different kind of attention. Calls for critical digital literacy are the typical way of addressing this social need to nurture a healthy information intake. But another way is to consider the language we use and how it gets used when we talk about the environment. What stories are being prioritized? Not every catastrophe fits neatly into a sound-bite narrative or a one-liner headline enticing people to click. There’s no easy resolution to poisoned water in Grassy Narrows, how much roadkill happened last night, or positive spins on colonial displacement. But those stories matter, and they need our attention. Language, the fuel of attention, is a powerful site of witnessing. It’s not just a medium of communication. Language is an adaptive, living system. Communication and dialogue are catalysts for ecological transformation. Words evolve, meanings shift, and sometimes, even a single word can carry the weight of an entire worldview. Consider words like “nature” or “climate.” The latter has become a euphemism for a justice movement as much as a science, on the one hand, and a political weapon of division on the other. When we witness deeply, we begin to understand that these so-called “commonplace” events aren’t background noise. And that insight can spark empathy, as well as awareness and action in more profound ways. A Call to Witness The choice isn’t simply between caring about celebrity catastrophes and caring about commonplace ones. It’s about learning to see how they’re connected and how the imbalance of attention itself causes harm. This is a polycrisis in which all the social, linguistic, and ecological systems we rely on are interconnected. Stories must be told even when they’re revealing what Al Gore famously termed an “inconvenient truth” — through them, we begin to see how all facets of our daily lives are interconnected with the sustainability of the planet. And this gives ground to hopefulness, to the sense that what you do and say does matter in the bigger picture. It is the bigger picture, even if there are no film crews and helicopters there to broadcast it, no smart phones to capture and post it within seconds. These actions and the language that promotes them form a periphery around the visible mainstream news. If we look at what’s just outside the camera frame or press release or keynote speech, we see a surrounding discourse, a complex ecosystem of discussion across languages and initiatives that are hidden from regular sight, the actual “movements” of environmentalism. Let’s take an example not from a celebrity catastrophe but from a celebrity event: the COP30 climate summit. Such events, where people tell stories from all over and come together to mobilize global effort toward planetary care, are invaluable for our hope for the future of the species. And yet, some profound ironies exist: To make this happen, we need to facilitate more harmful disruption of natural systems. We also need such events to have celebrity status in order to compete with attention. Ideally, they are exotic and photogenic. COP30 took place this year in Belém, a history-laden freeport town tucked away in the heart of the Brazilian rainforest. To make it easy for attention-grabbing, celebrity global leaders and digital communication to reach the city, government contractors plowed a 13-kilometer road called Avenida Liberdade through protected rainforest. This is land where people and plants and animals coexist and co-depend. The devastation was all in aid of an environmental event that lasted for 11 days (Nov. 10-21). But those jungle-dwelling lives will be affected forever — a prime example of where celebrity meets commonplace. When we’re called to witness the impact on local environments of the attention economy, we start to become aware of how the celebrity and the commonplace are interwoven. We are no longer just spectators of hopeless collapse. As educators we’ve seen what happens when students begin to witness. Not just from a distance, but with proximity and purpose. They stop asking, “Why don’t people care?” and start asking, “What stories do we need to tell?” They begin to name the socioecological systems that make some lives visible and others disposable. In a time of overlapping catastrophes, witnessing isn’t passive. It’s an act of awareness and engagement. And perhaps more importantly, it’s an act of hope, one that integrates the celebrity and commonplace catastrophe in an increasingly unstable world. And sustained witnessing might just be the most radical act we have left. Republish this article for free! Read our reprint policy. Previously in The Revelator The Last Breath of the Himalayas: Can We Stop the Collapse? The post What Catastrophes Get Our Attention, and Why It Matters appeared first on The Revelator.

How little plastic does it take to kill marine animals? Scientists have answers

Ocean plastic kills sea creatures. For the first time, researchers set out to find out how much it takes. The answer: Surprisingly little.

Ocean plastic kills sea creatures. It can obstruct, perforate or twist their airways and gastrointestinal tracts.Now new research shows it takes just 6 pieces of ingested rubber the size of a pencil eraser to kill most sea birds. For marine mammals, 29 pieces of any kind of plastic — hard, soft, rubber or fishing equipment — is often lethal.It’s the first time researchers have quantified how much and what kind of plastic — soft, hard, rubber or fishing debris — is needed to kill a bird, marine mammal or a turtle. “I think the lethal doses that we saw were smaller than I expected,” said Erin Murphy, a researcher with the Ocean Conservancy and the department of ecology and evolution at the University of Toronto.“Seeing the particularly small thresholds for rubber and seabirds, for example, that just six pieces of rubber, each smaller on average than the size of a pea was enough to kill 90% of sea birds that ingested it ... That was particularly surprising to me,” she said.The sea birds were less sensitive to hard plastic: It’d take 25 pieces of the pea-sized hard plastic pieces to ensure a 90% chance of dying. Murphy and her colleagues from the University of Tasmania, in Australia, the Commonwealth Scientific and Industrial Research Organisation, also from Australia, and the Universidade Federal de Alagoas, in Brazil, published their study Monday in the journal Proceedings of the National Academies of Science.For decades, researchers have been documenting death by plastic in marine animals. They have reported it in the gastrointestinal tracts of nearly 1,300 marine species — including every species of sea turtle, and in every family of seabird and marine mammal family.The team analyzed data from 10,412 published necropsies, or animal autopsy reports. Of the animals studied, 1,306 were sea turtles representing all seven species of sea turtles; 1,537 were seabirds representing 57 species; and 7,569 were marine mammals across 31 species. They found that 35% of the dead seabirds, 12% of marine mammals and 47% of sea turtles examined had ingested plastic. Seabirds seemed to be particularly sensitive to rubber. For marine mammals, soft plastics — such as plastic bags — and fishing debris was most harmful. For sea turtles, their kryptonite was hard and soft plastics.“This was severe trauma or damage to the GI tract, or blockage of the stomach or intestines from plastic... and so these were physical harms that you could see, that you could see in the gut of these animals, and that were reported by scientists,” said Murphy describing the reports. The paper did not look at other ways plastic can kill marine animals — strangulation, entanglement and drowning. Nor did it look at malnutrition or toxicity caused by eating plastic.“So, this is likely an underestimate of the impacts of ingestion, and it’s definitely an underestimate of the lethality of plastics more broadly,” said Murphy.Nearly half the animals in their analysis were threatened or endangered species. More than 11 million metric tonnes — or more than 24 billion pounds — of plastic enters the world’s oceans every year, according to several environmental and industry reports. That’s a garbage truck’s worth dumped every minute.According to the United Nations, that number is expected to triple in the next twenty years. “I find this piece a brilliant contribution to the field,” said Greg Merrill, a researcher with the Duke University Marine Lab, who did not participate in the study.“We have thousands of examples of marine animals ingesting plastic debris. But for a number of reasons, eg. lack of data, difficulty of conducting laboratory-based experiments, and ethical considerations, risk assessments are really challenging to conduct,” he said in an email. Such assessments are crucial for actually linking plastic ingestion to mortality, because “once we know some of those thresholds, they can help policy makers make informed decisions,” said Merrill.And that’s what Murphy said she and her co-authors are hoping for: That lawmakers and others can use this information to reduce plastic, by crafting regulations to ban or reduce plastics, such as plastic bag or balloon bans, and encouraging small, local events such as beach clean ups.“The science is clear: We need to reduce the amount of plastic that we’re producing and we need to improve collection and recycling to clean up what’s already out there,” said Murphy. Earlier this year, in internationals talks on limiting plastic pollution, oil and gas producing countries succeeded in preventing language that would reduce the amount of plastics produced.

See how this wolf steals fish, a new discovery of animals using tools

Video from the coast of British Columbia may be the first documented instance of a wild wolf using a tool, according to the researchers who published it on Monday.

The wolf seemed to know exactly what she was doing.She dove into the water, fetched a fishing float and brought it to shore. She then waded back in and tugged on a rope connected to the float. She pulled and backed up, pulled and backed up, until a crab trap emerged. When it was within easy reach, she tore it open and consumed the bait inside.Subscribe for unlimited access to The PostYou can cancel anytime.SubscribeThe scene, caught on camera on the coast of British Columbia in May 2024, may be the first documented instance of a wild wolf using a tool, according to the scientists who published the footage in the journal Ecology and Evolution on Monday.Although the intelligence of wolves is well known, the discovery adds to an expanding list of animals capable of manipulating tools to forage for food, a trait once thought to be unique to humans.“It’s not a surprise they have the capacity to do this,” said Kyle Artelle, an ecologist with the State University of New York College of Environmental Science and Forestry who published the footage. “Yet our jaw dropped when we saw the video.”The discovery also solved a mystery.People of the Heiltsuk Nation in central British Columbia had been puzzled about what was foiling their efforts to capture invasive green crabs along their shores.The crabs are a real problem — they eat through eelgrass that harbors marine life and they devastate the native clam, herring and salmon populations the tribe relies on for food. But the traps people were setting with herring and other bait kept getting damaged. Sometimes, there were just minor tears in the nets. Other times, the entire trap was torn to shreds.Some of the traps were set so deep that, at first, researchers thought the thief must be an otter, seal or other marine mammal. William Housty, director of the Heiltsuk Integrated Resource Management Department, wondered whether tourists were tampering with them. The Heiltsuk Nation worked with Artelle to set up a trail camera to record the perpetrator.A day after the camera was installed, it recorded the female wolf in action.The efficiency with which she snagged the bait — in just three minutes — suggested to Artelle that the animal had done this before.“She’s staring exactly at the trap. Every motion she does is perfectly tailored to getting that trap out as quickly as possible,” said Artelle.In February, the team recorded a second video of a different wolf pulling a line attached to a partially submerged trap. The camera shut off before it could show whether the animal had learned to finish the job and eat the bait. But afterward, two traps were seen on the shore with their bait cups removed.The “weight of evidence,” Artelle said, suggests the female wolf or her full pack are responsible for the pilfering.The tribal territory in British Columbia is a rare place where wolves remain unharassed by hunters, potentially giving them time to learn.“We’ve always maintained a very respectful relationship with the wolves up here in the territory,” Housty said. The oral history of his people, he added, talks of a time when humans and wolves could shape-shift between one another.Researchers have seen tool use in captive canines before. Dingoes, for instance, have been observed opening latches and moving small tables to reach food at a sanctuary in Australia. And pets owners are familiar with the inventiveness of dogs, which can carry hockey pucks in plastic flying discs and move chairs to reach food.Biologists are witnessing more and more animals brandishing tools. Crows maneuver sticks in their beaks to collect grub from crevices. Pandas grab bamboo to scratch their bodies. Octopuses wield the severed tentacles of other animals as makeshift weapons to ward off predators.The wolf video raises a philosophical question: What does it mean to use a tool? Does the animal have to make the tool, as crows do when shortening sticks and peeling off their bark so they fit into crannies? Or can we call an animal a “tool user” if it uses an existing tool, as the wolf did with the rope?“I’m speaking to you on Zoom right now. I did not design this computer. I don’t know how it works, but I’m ‘using’ it, right?” Artelle asked.He said he hopes adding wolves to the list of tool-using animals will prompt some people to see them in a different light — the way public appreciation of chimpanzees grew after Jane Goodall discovered the primates dipping blades of grass into termite mounds to eat the insects.It is “an intelligence that is so familiar to us,” Artelle said. “For better or for worse, as humans, we tend to afford more care and compassion to other people or other species that we see most like us.”

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.