Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

In coal-rich Kentucky, a new green aluminum plant could bring jobs and clean energy

News Feed
Sunday, September 15, 2024

When John Holbrook first started working as a pipefitter in the early 1990s, jobs were easy to come by in his corner of northeastern Kentucky. A giant iron and steel mill routinely needed maintenance and repair work, as did the coal “coking” ovens next to it. There was also a hulking coal-fired power plant and a bustling petroleum refinery nearby. Fossil fuels extracted from beneath the region’s rugged Appalachian terrain supplied these industrial sites, which sprung up during the 19th and 20th centuries along the yawning Ohio River and its tributary, Big Sandy. “Work was so plentiful,” Holbrook recalled on a scorching August morning in Ashland, a quiet riverfront city of some 21,000 people. Ashland retains its motto as the place ​“Where Coal Meets Iron,” and railcars still rumble by. But after years of downsizing production, the steel mill’s owner demolished the complex in 2022. A decade ago, the coal plant switched to burning natural gas to generate electricity, which requires less hands-on maintenance. Meanwhile, thousands of jobs vanished from surrounding coalfields as mining became more mechanized, market forces shifted, and clean air policies took hold. Many families have since moved away. The tradespeople who’ve stayed often drive for hours to work on the new construction projects sprouting up in other places, like the massive factories for making and recycling electric-car batteries in western Kentucky and the electricity-powered steel furnace in neighboring West Virginia. If America is undergoing a manufacturing boom, it hasn’t yet reached this hard-hit stretch of the Bluegrass State. But that could soon change. In March, Century Aluminum, the nation’s biggest producer of primary, or virgin, aluminum, announced that it plans to build an enormous plant in the United States — the nation’s first new smelter in 45 years. Jesse Gary, the company’s president and CEO, has pointed to northeastern Kentucky as the project’s preferred location, though he said there were still a ​“myriad of steps” before the company reaches a final decision. The Chicago-based manufacturer is slated to receive up to $500 million in funding from the U.S. Department of Energy to build the facility, which could emit 75 percent less carbon dioxide than traditional smelters, thanks to its use of carbon-free energy and energy-efficient designs. The award is part of a $6.3 billion federal program — funded by the Inflation Reduction Act and the Bipartisan Infrastructure Law — that aims to sharply reduce greenhouse gas emissions from heavy-industry sectors. The Ohio River seen from Ashland, Kentucky, right. John Holbrook at his office in Ashland. Aluminum demand is set to soar globally by up to 80 percent by 2050 as the world produces more solar panels and other clean energy technologies. The makers of the essential material are now under mounting pressure from policymakers and consumers to clean up their operations. In North America alone, aluminum producers will need to cut carbon emissions by 92 percent from 2021 levels to meet net-zero climate goals. Century already owns two aging smelters in western Kentucky. The new ​“green smelter” is expected to create over 5,500 construction jobs and more than 1,000 full-time union jobs. If built in eastern Kentucky, the $5 billion project would mark the region’s largest investment on record. “We just need a crumb or two, just a little giant smelter,” Holbrook said with a laugh when we met at his office near Ashland’s historic main street. A short walk away, stones used in the city’s original iron-making furnaces stand as monuments overlooking the Ohio River. Today, Holbrook heads the Tri-State Building and Construction Trades Council, which represents unions in a cluster of adjoining counties in Kentucky, Ohio, and West Virginia. He’s part of a broad coalition of labor organizers, local officials, environmentalists, and clean energy advocates who are urging Kentucky Governor Andy Beshear, a Democrat, to work with Century to secure the smelter and hammer out a long-term deal to provide clean energy for it. “It’d be a godsend for that area,” said Chad Mills, a pipefitter and the director of the Kentucky State Building and Construction Trades Council. The region ​“needs it more than you can imagine.” The impact of Century’s new smelter would ripple far beyond this rural stretch of verdant peaks and meandering creeks. The planned facility is set to nearly double the amount of primary aluminum that the United States produces — helping to revitalize a domestic industry that has been steadily shrinking for decades owing to spiking power prices and increased competition from China. In 2000, U.S. companies operated 23 aluminum smelters. Today, only four plants are operating, while another two have been indefinitely curtailed. That includes Century’s 55-year-old plant in Hawesville, Kentucky, which has been idle since June 2022. The decline in U.S. production has complicated the country’s efforts to both make and procure lower-carbon aluminum for its supply chains, experts say. Globally, the aluminum sector contributes around 2 percent of total greenhouse gas emissions every year. Nearly 70 percent of those emissions come from generating high volumes of electricity — often derived from fossil fuels — to power smelters almost around the clock. As U.S. primary production dwindles, the country is importing more aluminum made in overseas smelters that are powered by dirtier, less efficient electrical grids. Ironically, an increasing share of that aluminum is being used to make solar panels, electric cars, heat pumps, power cables, and many other clean energy components. The metal is lightweight and inexpensive, and it’s a key ingredient in global efforts to electrify and decarbonize the wider economy. But aluminum is also mind-bogglingly ubiquitous outside the energy sector. The versatile material is found in everything from pots and pans, deodorant, and smartphones to car doors, bridges, and skyscrapers. It’s the second-most-used metal in the world after steel.  Last year, the U.S. produced around 750,000 metric tons of primary aluminum while importing 4.8 million metric tons of it, according to the U.S. Geological Survey.  Meanwhile, the country produced 3.3 million metric tons of ​“secondary” aluminum in 2023. Boosting recycling rates is seen as a necessary step for addressing aluminum’s emissions problem, because the recycling process requires about 95 percent less energy than making aluminum from scratch. But even secondary producers need primary aluminum to ​“sweeten” their batches and achieve the right strength and durability, said Annie Sartor, the aluminum campaign director for Industrious Labs, an advocacy organization. “Primary aluminum is essential, and we have a primary industry that’s been in decline, is very polluting, and is very high-emitting,” Sartor said. Century’s proposed new smelter ​“could be a turning point for this industry,” she added. ​“We all would like to see it get built and thrive.” An employee walks by Century Aluminum’s smelter in Hawesville, Kentucky, in a 2017 photo. The smelter has been idle since 2022. Luke Sharrett for The Washington Post via Getty Images A new green smelter wouldn’t just boost supplies of primary aluminum for making clean energy technologies. The facility, with its voracious electricity appetite, is also expected to accelerate the region’s buildout of clean energy capacity, which has lagged behind that of many other states.  Century expects its planned smelter to produce about 600,000 metric tons of aluminum a year. That means it could need at least a gigawatt’s worth of power to operate annually at full tilt, equal to the yearly demand of roughly 750,000 U.S. homes. By way of comparison, Louisville, Kentucky’s largest city, is home to some 625,000 people. But Kentucky has very little carbon-free capacity available today.  About 0.2 percent of the state’s electricity generation came from solar in 2022, while 6 percent was supplied by hydroelectric dams, mainly in the western part of the state. Coal and gas plants produced most of the rest. Still, after decades of clinging tightly to its coal-rich history, Kentucky is seeing a raft of new utility-scale solar installations under development, including atop former coal mines.  And manufacturers in Kentucky can access the renewable energy being generated in neighboring states as well as regional grid networks like PJM. Swaths of eastern Kentucky are covered by a robust array of high-voltage, long-distance transmission lines operated by Kentucky Power, a subsidiary of the utility giant American Electric Power. Lane Boldman, executive director of the Kentucky Conservation Committee, said that investing in clean energy and upgrading grid infrastructure would offer a chance to employ more of Kentucky’s skilled workers. “It’s exciting, because it actually modernizes our industry and leverages a local workforce that has a great expertise with energy already,” she said when we met in Lexington, near the rolling green hills and long white fences of the area’s horse farms. ​“There are ways you can create economic development that are not so extractive, that just leave the community bare.” Lane Boldman says she became an environmental advocate years ago after seeing how coal strip mining was harming Appalachian communities. Maria Gallucci/Canary Media Northeastern Kentucky isn’t the only location that Century is considering for the smelter. The company is also evaluating sites in the Ohio and Mississippi river basins. The final decision will depend on where there’s a steady supply of affordable power, a Century executive told The Wall Street Journal in early July. (A spokesperson didn’t respond to Canary’s repeated requests for comment.) Century is aiming to secure a power-supply deal to meet a decade’s worth of electricity demand from the new smelter, according to the Journal. The goal is to finalize plans in the next two years and then begin construction, which could take around three years. In the meantime, the U.S. will continue to see a rapid buildout of solar, wind, and other carbon-free power supplies connecting to the grid. Governor Beshear has participated in discussions about the smelter’s power supply, in the hopes of landing Century’s megaproject and all of its ​“good-paying jobs.” His administration ​“continues to work with multiple experts to determine a location in northeastern Kentucky that includes a river port and can support workforce training as well as provide the cleanest, most reliable electric service capacity needed,” Crystal Staley, a spokesperson for the governor’s office, said by email.  Environmental advocates say the aluminum plant represents a chance to reimagine what a major industrial facility can look like: powered by clean energy, equipped with modern pollution controls, and built with local community input from the beginning. Starting sometime this fall, the Sierra Club is planning to host public meetings and distribute flyers in northeastern Kentucky to let residents know about the giant smelter that could potentially be built in their backyards. “It’s an opportunity for us to engage people who might shy away from other aspects of being an environmental activist and say, ​‘Hey, this is something that we can embrace, because it’s going to help us create jobs so that people can stay in their region,’” said Julia Finch, the director of Sierra Club’s Kentucky chapter. ​“This is a chance for us to lead on what a green transition looks like for industry.” Aluminum is the most abundant metal in Earth’s crust. But turning it into a sturdy, usable material is a laborious and dirty process — one that begins with scraping topsoil to extract bauxite, a reddish clay rock that is rich in alumina (also called aluminum oxide). The trickiest part comes next: removing oxygen and other molecules to transform that alumina into aluminum. Until the late 19th century, the methods for accomplishing this were so costly that the tinfoil we now buy at the grocery store was considered a precious metal, like gold, silver, and platinum. Then in 1886, Charles Martin Hall figured out an inexpensive way to smelt aluminum through electrolysis, a technique that uses electrical energy to drive a chemical reaction. Not long after, he helped launch the Pittsburgh Reduction Company, which went on to become the U.S. aluminum behemoth presently known as Alcoa. Around the same time that Hall was tinkering in his woodshed in Oberlin, Ohio, a French inventor named Paul Louis Touissant Héroult was making a similar discovery in Paris. Modern aluminum smelters now use what’s called the Hall-Héroult process — an effective but also energy-intensive and carbon-intensive way of making primary aluminum metal.  Smelting involves dissolving alumina in a molten salt called cryolite, which is heated to over 1,700 degrees Fahrenheit. Large carbon blocks, or ​“anodes,” are lowered down into the highly corrosive bath, and electrical currents run through the entire structure. Aluminum then deposits at the bottom as oxygen combines with carbon in the blocks, creating carbon dioxide as a byproduct.  Today, this electrochemical process contributes about 17 percent of the total CO2 emissions from global aluminum production. It also causes the release of perfluorochemicals (PFCs) — potent and long-lasting greenhouse gases — as well as sulfur dioxide pollution, which can harm people’s respiratory systems and damage trees and crops. In 2021, PFCs accounted for more than half the emissions from Century’s Hawesville smelter and a third of the emissions from its Sebree smelter in Robards, Kentucky, according to the Sierra Club. Newer smelters can dramatically reduce their PFC emissions by using automated control systems, which Century deploys at its smelter in Grundartangi, Iceland. Researchers are also working to slash CO2 by developing carbon-free blocks. The technology involves using chemically inactive, or ​“inert,” metallic alloys in the anodes through which the electrical currents flow. Elysis, a joint venture of Alcoa and the mining giant Rio Tinto, says it is making progress toward the large-scale implementation of its inert anodes and has plans for a demonstration plant in Quebec. The alternative anodes may not be ready in time for a project like Century’s planned green U.S. smelter. Previously, large-scale buyers of aluminum, such as automakers and construction companies, had anticipated that inert anodes would help slash CO2 emissions in the aluminum supply chain in time for companies to meet their 2030 climate goals. But now that’s looking less likely. “There’s a feeling now that it’s just taking longer to develop that technology,” said Lachlan Wright, a manager of the climate intelligence program at RMI, a clean energy think tank. One challenge might simply be the limited production capacity for the new anodes, which can’t yet meet the demands of a large aluminum user. Beyond that, ​“It’s not exactly clear what some of the barriers are there,” Wright added. Still, when it comes to tackling aluminum’s biggest CO2 culprit — all the electricity it takes to run a smelter — the solutions already exist, in the form of renewable energy and other carbon-free sources. “We don’t need a new or emerging technology,” Sartor said. ​“We need huge amounts of existing technology, and it needs to be available in places that work for the industry.” Deep in the heart of Kentucky’s coal country, the scarred and treeless lands of former surface mines are increasingly being repurposed to supply that clean energy.  On another sun-blasted day in early August, I met with Mike Smith in Hazard, a city of some 5,300 people that’s enveloped by the Appalachian Mountains and built along the winding curves of the North Fork Kentucky River. We hopped in his white pickup truck and headed toward his family’s 800-acre property. For years, they leased the land to Pine Branch Mining, which dynamited the mountaintop to reach coal seams buried beneath the surface. ​“I can’t say that I was for it,” Smith told me as we drove past modest homes tucked into creekside hollers and up a bumpy gravel road. Today, he said, ​“the only coal that’s left here is under the river.” After the mine closed a decade ago, the land was reclaimed: smoothed out, packed down, and covered with vegetation to prevent erosion. Now, the property is about to undergo its latest transformation, as the home of the 80-megawatt Bright Mountain Solar facility. Landowner Mike Smith and Louise Sizemore of Edelen Renewables surveyed the former mining site that will soon become the Bright Mountain Solar farm during a visit on August 7. Maria Gallucci/Canary Media Avangrid, the lead developer, plans to begin installing solar panels here next year, according to Edelen Renewables, the project’s local development partner. Edelen is also helping to advance other ​“coal-to-solar” projects in the region, including the 200 MW Martin County Solar Project under construction as well as BrightNight​’s 800 MW Starfire installation. Rivian, the electric-truck maker, has signed on as the anchor customer for the $1 billion Starfire project, which is in the early stages of development.  Building on old mining sites can be more expensive and logistically trickier than, say, putting panels on flat, solid farmland. For one, hauling equipment to the former mines requires driving big, heavy vehicles up narrow mountain roads. Smith’s site is divided into uneven tiers of unpaved land. On our visit, he expertly accelerated his truck up a steep dirt path. When we reached the top, I audibly exhaled with relief. Smith gently laughed. Despite the challenges, there’s an obvious poetry to building clean energy in a place that once yielded fossil fuels. Ideally, it can also bring justice to communities that are still hurting economically and spiritually from the coal industry’s inexorable decline. Bright Mountain and other coal-to-solar developments are projected to generate millions of dollars in local tax revenue over their lifetimes, using land that was left unsuitable for anything other than cattle grazing. “You’ve got to reinvent yourself,” Smith told me as we gazed at the empty expanse of land where the solar project will eventually stand. Dragonflies darted by, and a quail called from somewhere on the property. ​“That’s the only way we can survive.” The next day, I met Adam Edelen, the founder and CEO of Edelen Renewables, at his office in downtown Lexington. Sitting in a wicker rocking chair and sipping a pint glass of sweet tea, Edelen lamented the years of ​“outright hostility” to renewable energy development in the state. However, some Kentucky policymakers are starting to recognize the need to clean up the state’s electricity sector — if not explicitly to tackle climate change, then at least to attract manufacturers like Century Aluminum that want to power their operations with carbon-free energy sources. The Martin County Solar Project spans 900 acres on the old Martiki mine site in Pilgrim, Kentucky. Edelen Renewables “Now, we’re in this headlong rush to make sure we’ve got a diversified energy portfolio to meet the needs of the private sector,” Edelen said. For Century in particular, he added, ​“The issue is that they need cheap power and they need green energy, neither of which Kentucky has a lot of.”  Electricity accounts for about 40 percent of a smelter’s total operating expenses. To remain cost competitive, aluminum producers need to hit a ​“magic benchmark” of around $40 per megawatt-hour, said Wright of RMI. Currently, power-purchase agreements for U.S. renewable energy projects are in the range of $50 to $60 per megawatt-hour — a significant difference for facilities that can consume 1 megawatt-hour of electricity just to produce a single metric ton of aluminum. Provisions in the Inflation Reduction Act could help to narrow that price gap for Century and other primary aluminum makers. The 45X production tax credit is a keystone of the IRA, which President Joe Biden signed into law two years ago. The incentive allows producers of critical materials, solar panels, batteries, and other types of ​“advanced manufacturing” products to receive a federal tax credit for up to 10 percent of their production costs, including electricity. The IRA also set aside another $10 billion for the 48C investment tax credit, an Obama-era program that’s now available to help manufacturers install equipment that reduces emissions by 20 percent. Aluminum producers could use the tax credit to cover the cost of technology that improves their operating efficiency while also slashing CO2 pollution. Edelen Renewables says the 48C tax credit will apply to all the coal-to-solar projects, which the company hopes can supply some of the electricity needed for Century’s green smelter. Under the expanded program, renewable energy projects built in ​“energy communities,” including former coal mine sites, can receive tax credits worth up to 40 percent of project costs, significantly lowering the final cost of electricity associated with the installations. Eastern Kentucky ​“has played such a vital role in powering the country’s economy for the last 100 years,” Edelen said. Coal communities ​“deserve a place in the newer economy, and they’re hungry for that.” Construction on the Martin County Solar Project began in 2023 and is slated to be completed later this year. Edelen Renewables Over in Ashland, John Holbrook said he’s anxiously watching to see if northeastern Kentucky will find its place in the nation’s green industrial transition. If Century selects the region to host its new aluminum smelter, the area’s trade councils and union apprenticeship programs will be more than ready to start training and recruiting workers, he said. But Holbrook and other local labor leaders aren’t holding their breath. Several people I spoke to recalled the elation they felt in 2018 when the company Braidy Industries broke ground near Ashland on a $1.5 billion aluminum rolling mill — and the heartbreak that followed years later when Braidy backtracked on the plant and its promise of hundreds of jobs. Braidy’s former CEO was later accused of misleading the company’s board members, state officials, and journalists about the project’s true financial status. While the Braidy scandal was a unique affair, the fallout still lingers in discussions about Century’s green smelter. ​“I think they’d have to start moving trailers in before we’d feel confident to start saying, ​‘Yeah, this is really happening,’” Holbrook said from behind his wide wooden desk.  Still, he remains ​“cautiously optimistic” about the prospect of Century building its aluminum plant here. ​“It would be region-changing,” he said. ​“And life-changing.”  This story was originally published by Grist with the headline In coal-rich Kentucky, a new green aluminum plant could bring jobs and clean energy on Sep 15, 2024.

Labor and state leaders wants to land the first new U.S. smelter in 45 years. But the deal won’t happen unless Kentucky can furnish lots of clean energy.

When John Holbrook first started working as a pipefitter in the early 1990s, jobs were easy to come by in his corner of northeastern Kentucky.

A giant iron and steel mill routinely needed maintenance and repair work, as did the coal “coking” ovens next to it. There was also a hulking coal-fired power plant and a bustling petroleum refinery nearby. Fossil fuels extracted from beneath the region’s rugged Appalachian terrain supplied these industrial sites, which sprung up during the 19th and 20th centuries along the yawning Ohio River and its tributary, Big Sandy.

“Work was so plentiful,” Holbrook recalled on a scorching August morning in Ashland, a quiet riverfront city of some 21,000 people.

Ashland retains its motto as the place ​“Where Coal Meets Iron,” and railcars still rumble by. But after years of downsizing production, the steel mill’s owner demolished the complex in 2022. A decade ago, the coal plant switched to burning natural gas to generate electricity, which requires less hands-on maintenance. Meanwhile, thousands of jobs vanished from surrounding coalfields as mining became more mechanized, market forces shifted, and clean air policies took hold.

Many families have since moved away. The tradespeople who’ve stayed often drive for hours to work on the new construction projects sprouting up in other places, like the massive factories for making and recycling electric-car batteries in western Kentucky and the electricity-powered steel furnace in neighboring West Virginia. If America is undergoing a manufacturing boom, it hasn’t yet reached this hard-hit stretch of the Bluegrass State.

But that could soon change.

In March, Century Aluminum, the nation’s biggest producer of primary, or virgin, aluminum, announced that it plans to build an enormous plant in the United States — the nation’s first new smelter in 45 years. Jesse Gary, the company’s president and CEO, has pointed to northeastern Kentucky as the project’s preferred location, though he said there were still a ​“myriad of steps” before the company reaches a final decision.

The Chicago-based manufacturer is slated to receive up to $500 million in funding from the U.S. Department of Energy to build the facility, which could emit 75 percent less carbon dioxide than traditional smelters, thanks to its use of carbon-free energy and energy-efficient designs. The award is part of a $6.3 billion federal program — funded by the Inflation Reduction Act and the Bipartisan Infrastructure Law — that aims to sharply reduce greenhouse gas emissions from heavy-industry sectors.

The Ohio River seen from Ashland, Kentucky, right. John Holbrook at his office in Ashland.

Aluminum demand is set to soar globally by up to 80 percent by 2050 as the world produces more solar panels and other clean energy technologies. The makers of the essential material are now under mounting pressure from policymakers and consumers to clean up their operations. In North America alone, aluminum producers will need to cut carbon emissions by 92 percent from 2021 levels to meet net-zero climate goals.

Century already owns two aging smelters in western Kentucky. The new ​“green smelter” is expected to create over 5,500 construction jobs and more than 1,000 full-time union jobs. If built in eastern Kentucky, the $5 billion project would mark the region’s largest investment on record.

“We just need a crumb or two, just a little giant smelter,” Holbrook said with a laugh when we met at his office near Ashland’s historic main street. A short walk away, stones used in the city’s original iron-making furnaces stand as monuments overlooking the Ohio River.

Today, Holbrook heads the Tri-State Building and Construction Trades Council, which represents unions in a cluster of adjoining counties in Kentucky, Ohio, and West Virginia. He’s part of a broad coalition of labor organizers, local officials, environmentalists, and clean energy advocates who are urging Kentucky Governor Andy Beshear, a Democrat, to work with Century to secure the smelter and hammer out a long-term deal to provide clean energy for it.

“It’d be a godsend for that area,” said Chad Mills, a pipefitter and the director of the Kentucky State Building and Construction Trades Council. The region ​“needs it more than you can imagine.”


The impact of Century’s new smelter would ripple far beyond this rural stretch of verdant peaks and meandering creeks.

The planned facility is set to nearly double the amount of primary aluminum that the United States produces — helping to revitalize a domestic industry that has been steadily shrinking for decades owing to spiking power prices and increased competition from China. In 2000, U.S. companies operated 23 aluminum smelters. Today, only four plants are operating, while another two have been indefinitely curtailed. That includes Century’s 55-year-old plant in Hawesville, Kentucky, which has been idle since June 2022.

The decline in U.S. production has complicated the country’s efforts to both make and procure lower-carbon aluminum for its supply chains, experts say.

Globally, the aluminum sector contributes around 2 percent of total greenhouse gas emissions every year. Nearly 70 percent of those emissions come from generating high volumes of electricity — often derived from fossil fuels — to power smelters almost around the clock.

As U.S. primary production dwindles, the country is importing more aluminum made in overseas smelters that are powered by dirtier, less efficient electrical grids. Ironically, an increasing share of that aluminum is being used to make solar panels, electric cars, heat pumps, power cables, and many other clean energy components. The metal is lightweight and inexpensive, and it’s a key ingredient in global efforts to electrify and decarbonize the wider economy.

But aluminum is also mind-bogglingly ubiquitous outside the energy sector. The versatile material is found in everything from pots and pans, deodorant, and smartphones to car doors, bridges, and skyscrapers. It’s the second-most-used metal in the world after steel. 

Last year, the U.S. produced around 750,000 metric tons of primary aluminum while importing 4.8 million metric tons of it, according to the U.S. Geological Survey. 

Meanwhile, the country produced 3.3 million metric tons of ​“secondary” aluminum in 2023. Boosting recycling rates is seen as a necessary step for addressing aluminum’s emissions problem, because the recycling process requires about 95 percent less energy than making aluminum from scratch. But even secondary producers need primary aluminum to ​“sweeten” their batches and achieve the right strength and durability, said Annie Sartor, the aluminum campaign director for Industrious Labs, an advocacy organization.

“Primary aluminum is essential, and we have a primary industry that’s been in decline, is very polluting, and is very high-emitting,” Sartor said. Century’s proposed new smelter ​“could be a turning point for this industry,” she added. ​“We all would like to see it get built and thrive.”

An employee walks by Century Aluminum’s smelter in Hawesville, Kentucky, in a 2017 photo. The smelter has been idle since 2022. Luke Sharrett for The Washington Post via Getty Images

A new green smelter wouldn’t just boost supplies of primary aluminum for making clean energy technologies. The facility, with its voracious electricity appetite, is also expected to accelerate the region’s buildout of clean energy capacity, which has lagged behind that of many other states. 

Century expects its planned smelter to produce about 600,000 metric tons of aluminum a year. That means it could need at least a gigawatt’s worth of power to operate annually at full tilt, equal to the yearly demand of roughly 750,000 U.S. homes. By way of comparison, Louisville, Kentucky’s largest city, is home to some 625,000 people.

But Kentucky has very little carbon-free capacity available today. 

About 0.2 percent of the state’s electricity generation came from solar in 2022, while 6 percent was supplied by hydroelectric dams, mainly in the western part of the state. Coal and gas plants produced most of the rest. Still, after decades of clinging tightly to its coal-rich history, Kentucky is seeing a raft of new utility-scale solar installations under development, including atop former coal mines. 

And manufacturers in Kentucky can access the renewable energy being generated in neighboring states as well as regional grid networks like PJM. Swaths of eastern Kentucky are covered by a robust array of high-voltage, long-distance transmission lines operated by Kentucky Power, a subsidiary of the utility giant American Electric Power.

Lane Boldman, executive director of the Kentucky Conservation Committee, said that investing in clean energy and upgrading grid infrastructure would offer a chance to employ more of Kentucky’s skilled workers.

“It’s exciting, because it actually modernizes our industry and leverages a local workforce that has a great expertise with energy already,” she said when we met in Lexington, near the rolling green hills and long white fences of the area’s horse farms. ​“There are ways you can create economic development that are not so extractive, that just leave the community bare.”

Lane Boldman says she became an environmental advocate years ago after seeing how coal strip mining was harming Appalachian communities. Maria Gallucci/Canary Media

Northeastern Kentucky isn’t the only location that Century is considering for the smelter. The company is also evaluating sites in the Ohio and Mississippi river basins. The final decision will depend on where there’s a steady supply of affordable power, a Century executive told The Wall Street Journal in early July. (A spokesperson didn’t respond to Canary’s repeated requests for comment.)

Century is aiming to secure a power-supply deal to meet a decade’s worth of electricity demand from the new smelter, according to the Journal. The goal is to finalize plans in the next two years and then begin construction, which could take around three years. In the meantime, the U.S. will continue to see a rapid buildout of solar, wind, and other carbon-free power supplies connecting to the grid.

Governor Beshear has participated in discussions about the smelter’s power supply, in the hopes of landing Century’s megaproject and all of its ​“good-paying jobs.” His administration ​“continues to work with multiple experts to determine a location in northeastern Kentucky that includes a river port and can support workforce training as well as provide the cleanest, most reliable electric service capacity needed,” Crystal Staley, a spokesperson for the governor’s office, said by email. 

Environmental advocates say the aluminum plant represents a chance to reimagine what a major industrial facility can look like: powered by clean energy, equipped with modern pollution controls, and built with local community input from the beginning. Starting sometime this fall, the Sierra Club is planning to host public meetings and distribute flyers in northeastern Kentucky to let residents know about the giant smelter that could potentially be built in their backyards.

“It’s an opportunity for us to engage people who might shy away from other aspects of being an environmental activist and say, ​‘Hey, this is something that we can embrace, because it’s going to help us create jobs so that people can stay in their region,’” said Julia Finch, the director of Sierra Club’s Kentucky chapter. ​“This is a chance for us to lead on what a green transition looks like for industry.”


Aluminum is the most abundant metal in Earth’s crust. But turning it into a sturdy, usable material is a laborious and dirty process — one that begins with scraping topsoil to extract bauxite, a reddish clay rock that is rich in alumina (also called aluminum oxide). The trickiest part comes next: removing oxygen and other molecules to transform that alumina into aluminum. Until the late 19th century, the methods for accomplishing this were so costly that the tinfoil we now buy at the grocery store was considered a precious metal, like gold, silver, and platinum.

Then in 1886, Charles Martin Hall figured out an inexpensive way to smelt aluminum through electrolysis, a technique that uses electrical energy to drive a chemical reaction. Not long after, he helped launch the Pittsburgh Reduction Company, which went on to become the U.S. aluminum behemoth presently known as Alcoa.

Around the same time that Hall was tinkering in his woodshed in Oberlin, Ohio, a French inventor named Paul Louis Touissant Héroult was making a similar discovery in Paris. Modern aluminum smelters now use what’s called the Hall-Héroult process — an effective but also energy-intensive and carbon-intensive way of making primary aluminum metal. 

Smelting involves dissolving alumina in a molten salt called cryolite, which is heated to over 1,700 degrees Fahrenheit. Large carbon blocks, or ​“anodes,” are lowered down into the highly corrosive bath, and electrical currents run through the entire structure. Aluminum then deposits at the bottom as oxygen combines with carbon in the blocks, creating carbon dioxide as a byproduct. 

Today, this electrochemical process contributes about 17 percent of the total CO2 emissions from global aluminum production. It also causes the release of perfluorochemicals (PFCs) — potent and long-lasting greenhouse gases — as well as sulfur dioxide pollution, which can harm people’s respiratory systems and damage trees and crops. In 2021, PFCs accounted for more than half the emissions from Century’s Hawesville smelter and a third of the emissions from its Sebree smelter in Robards, Kentucky, according to the Sierra Club.

Newer smelters can dramatically reduce their PFC emissions by using automated control systems, which Century deploys at its smelter in Grundartangi, Iceland. Researchers are also working to slash CO2 by developing carbon-free blocks. The technology involves using chemically inactive, or ​“inert,” metallic alloys in the anodes through which the electrical currents flow. Elysis, a joint venture of Alcoa and the mining giant Rio Tinto, says it is making progress toward the large-scale implementation of its inert anodes and has plans for a demonstration plant in Quebec.

The alternative anodes may not be ready in time for a project like Century’s planned green U.S. smelter. Previously, large-scale buyers of aluminum, such as automakers and construction companies, had anticipated that inert anodes would help slash CO2 emissions in the aluminum supply chain in time for companies to meet their 2030 climate goals. But now that’s looking less likely.

“There’s a feeling now that it’s just taking longer to develop that technology,” said Lachlan Wright, a manager of the climate intelligence program at RMI, a clean energy think tank. One challenge might simply be the limited production capacity for the new anodes, which can’t yet meet the demands of a large aluminum user. Beyond that, ​“It’s not exactly clear what some of the barriers are there,” Wright added.

Still, when it comes to tackling aluminum’s biggest CO2 culprit — all the electricity it takes to run a smelter — the solutions already exist, in the form of renewable energy and other carbon-free sources.

“We don’t need a new or emerging technology,” Sartor said. ​“We need huge amounts of existing technology, and it needs to be available in places that work for the industry.”


Deep in the heart of Kentucky’s coal country, the scarred and treeless lands of former surface mines are increasingly being repurposed to supply that clean energy. 

On another sun-blasted day in early August, I met with Mike Smith in Hazard, a city of some 5,300 people that’s enveloped by the Appalachian Mountains and built along the winding curves of the North Fork Kentucky River.

We hopped in his white pickup truck and headed toward his family’s 800-acre property. For years, they leased the land to Pine Branch Mining, which dynamited the mountaintop to reach coal seams buried beneath the surface. ​“I can’t say that I was for it,” Smith told me as we drove past modest homes tucked into creekside hollers and up a bumpy gravel road. Today, he said, ​“the only coal that’s left here is under the river.”

After the mine closed a decade ago, the land was reclaimed: smoothed out, packed down, and covered with vegetation to prevent erosion. Now, the property is about to undergo its latest transformation, as the home of the 80-megawatt Bright Mountain Solar facility.

Landowner Mike Smith and Louise Sizemore of Edelen Renewables surveyed the former mining site that will soon become the Bright Mountain Solar farm during a visit on August 7. Maria Gallucci/Canary Media

Avangrid, the lead developer, plans to begin installing solar panels here next year, according to Edelen Renewables, the project’s local development partner. Edelen is also helping to advance other ​“coal-to-solar” projects in the region, including the 200 MW Martin County Solar Project under construction as well as BrightNight​’s 800 MW Starfire installation. Rivian, the electric-truck maker, has signed on as the anchor customer for the $1 billion Starfire project, which is in the early stages of development. 

Building on old mining sites can be more expensive and logistically trickier than, say, putting panels on flat, solid farmland. For one, hauling equipment to the former mines requires driving big, heavy vehicles up narrow mountain roads. Smith’s site is divided into uneven tiers of unpaved land. On our visit, he expertly accelerated his truck up a steep dirt path. When we reached the top, I audibly exhaled with relief. Smith gently laughed.

Despite the challenges, there’s an obvious poetry to building clean energy in a place that once yielded fossil fuels. Ideally, it can also bring justice to communities that are still hurting economically and spiritually from the coal industry’s inexorable decline. Bright Mountain and other coal-to-solar developments are projected to generate millions of dollars in local tax revenue over their lifetimes, using land that was left unsuitable for anything other than cattle grazing.

“You’ve got to reinvent yourself,” Smith told me as we gazed at the empty expanse of land where the solar project will eventually stand. Dragonflies darted by, and a quail called from somewhere on the property. ​“That’s the only way we can survive.”

The next day, I met Adam Edelen, the founder and CEO of Edelen Renewables, at his office in downtown Lexington. Sitting in a wicker rocking chair and sipping a pint glass of sweet tea, Edelen lamented the years of ​“outright hostility” to renewable energy development in the state. However, some Kentucky policymakers are starting to recognize the need to clean up the state’s electricity sector — if not explicitly to tackle climate change, then at least to attract manufacturers like Century Aluminum that want to power their operations with carbon-free energy sources.

The Martin County Solar Project spans 900 acres on the old Martiki mine site in Pilgrim, Kentucky. Edelen Renewables

“Now, we’re in this headlong rush to make sure we’ve got a diversified energy portfolio to meet the needs of the private sector,” Edelen said. For Century in particular, he added, ​“The issue is that they need cheap power and they need green energy, neither of which Kentucky has a lot of.” 

Electricity accounts for about 40 percent of a smelter’s total operating expenses. To remain cost competitive, aluminum producers need to hit a ​“magic benchmark” of around $40 per megawatt-hour, said Wright of RMI. Currently, power-purchase agreements for U.S. renewable energy projects are in the range of $50 to $60 per megawatt-hour — a significant difference for facilities that can consume 1 megawatt-hour of electricity just to produce a single metric ton of aluminum.

Provisions in the Inflation Reduction Act could help to narrow that price gap for Century and other primary aluminum makers.

The 45X production tax credit is a keystone of the IRA, which President Joe Biden signed into law two years ago. The incentive allows producers of critical materials, solar panels, batteries, and other types of ​“advanced manufacturing” products to receive a federal tax credit for up to 10 percent of their production costs, including electricity.

The IRA also set aside another $10 billion for the 48C investment tax credit, an Obama-era program that’s now available to help manufacturers install equipment that reduces emissions by 20 percent. Aluminum producers could use the tax credit to cover the cost of technology that improves their operating efficiency while also slashing CO2 pollution.

Edelen Renewables says the 48C tax credit will apply to all the coal-to-solar projects, which the company hopes can supply some of the electricity needed for Century’s green smelter. Under the expanded program, renewable energy projects built in ​“energy communities,” including former coal mine sites, can receive tax credits worth up to 40 percent of project costs, significantly lowering the final cost of electricity associated with the installations.

Eastern Kentucky ​“has played such a vital role in powering the country’s economy for the last 100 years,” Edelen said. Coal communities ​“deserve a place in the newer economy, and they’re hungry for that.”

Construction on the Martin County Solar Project began in 2023 and is slated to be completed later this year. Edelen Renewables

Over in Ashland, John Holbrook said he’s anxiously watching to see if northeastern Kentucky will find its place in the nation’s green industrial transition. If Century selects the region to host its new aluminum smelter, the area’s trade councils and union apprenticeship programs will be more than ready to start training and recruiting workers, he said.

But Holbrook and other local labor leaders aren’t holding their breath. Several people I spoke to recalled the elation they felt in 2018 when the company Braidy Industries broke ground near Ashland on a $1.5 billion aluminum rolling mill — and the heartbreak that followed years later when Braidy backtracked on the plant and its promise of hundreds of jobs. Braidy’s former CEO was later accused of misleading the company’s board members, state officials, and journalists about the project’s true financial status.

While the Braidy scandal was a unique affair, the fallout still lingers in discussions about Century’s green smelter. ​“I think they’d have to start moving trailers in before we’d feel confident to start saying, ​‘Yeah, this is really happening,’” Holbrook said from behind his wide wooden desk. 

Still, he remains ​“cautiously optimistic” about the prospect of Century building its aluminum plant here. ​“It would be region-changing,” he said. ​“And life-changing.” 

This story was originally published by Grist with the headline In coal-rich Kentucky, a new green aluminum plant could bring jobs and clean energy on Sep 15, 2024.

Read the full story here.
Photos courtesy of

Latest Kote climate order aims to speed up Oregon’s clean energy transition

The executive order seeks to accelerate wind and solar energy and energy storage, energy efficiency and the transition to clean fuels in Oregon.

Gov. Tina Kotek has issued another broad climate executive order directing state agencies to take specific actions to reduce greenhouse gas emissions and speed up Oregon’s move to carbon-free electricity. Her order Wednesday seeks to accelerate wind and solar energy and energy storage by streamlining land use and environmental reviews, siting, permitting and grid connections.It sets an energy storage goal and directs agencies to prioritize public-private partnerships for clean energy projects and to find ways to support emerging technologies such as enhanced geothermal technology, offshore wind and advanced battery storage. The order also calls for state agencies to increase energy efficiency in public and private buildings and extends Oregon’s Clean Fuels Program through 2040. The program requires suppliers to steadily cut fuel pollution.“The rising cost of living is hitting Oregonians household budgets hard, so we must act effectively and prudently to protect ratepayers from increased energy costs, while also building a more resilient, clean energy future,” Kotek said at a press conference at the state Capitol while flanked by a group of clean energy and climate action supporters.Kotek’s move comes amid growing doubts about Oregon’s ability to hit its ambitious 100% clean energy target. State law requires investor-owned utilities in Oregon to reduce emissions by 80% by 2030 and to transition to all clean electricity by 2040, something experts say utilities are unlikely to do given the lack of transmission lines and the extraordinary growth in electricity demand from data centers, buildings and cars. The order also lands as the Trump administration has moved aggressively to roll back federal climate policies, reversing many emissions-reduction measures enacted under President Joe Biden – including halting wind and solar projects on federal lands and dismantling generous tax credits funded by the Biden-era Inflation Reduction Act. It’s Kotek’s third climate-related executive order in less than a month. At the end of October, she directed state agencies to harness the potential of forests, farms, wetlands and waterways to reduce emissions, preserve wildlife habitat and help communities withstand the threat of climate change. And in early October, she pushed to streamline and accelerate the pace of wind and solar project development in the state before the clock runs out on federal clean energy tax credits.Kotek said the latest executive order can help slow climate change, expand transmission grid capacity, attract new businesses and create economic opportunities across Oregon’s energy sector. The order sets a goal of 8 gigawatts of energy storage in Oregon by 2045. Building more energy storage is key, the governor’s office said, because it provides backup electricity when wind or solar power production is low and during outages or peak demand periods. Energy storage projects also reduce the need for building additional electricity-generating resources such as wind or solar projects.Eight gigawatts is achievable, the governor’s office said, because the state already has nearly 500 megawatts of energy storage and more than 7 gigawatts of storage projects are currently planned for development. The order also directs the state Department of Energy to designate transmission corridors, including on public land, and streamline siting and approval in those corridors or in existing rights of way. The order requires a 50% reduction in carbon intensity of Oregon fuels by 2040. The current rule requires a 10% reduction in average carbon intensity from 2015 levels by 2025, followed by a 20% reduction by 2030 and 37% by 2035. Most fuel producers mix in cleaner fuels such as ethanol, biodiesel or renewable diesel into traditional gasoline and diesel or buy credits from others who have gone beyond the state requirement. In 2024, the Clean Fuels Program led to the reduction of approximately 3 million metric tons of greenhouse gases. Over the lifetime of the program, since 2016, approximately 14.6 million metric tons of greenhouse gases have been reduced.Much of the order focuses on state agencies – including the Department of Energy, the Department of Land Conservation and Development, Department of Environmental Quality and the Public Utility Commission – aligning their decisions, investments and activities, including the implementation of existing programs, to advance clean energy, clean fuels and energy efficiency. It doesn’t entail new programs or additional funding for the remainder of the 2025-2027 biennium but may lead to new funding demands in future years, said Kotek spokesperson Anca Matica. The order directs agencies to tally the barriers to clean energy permitting, construction and connecting into the transmission grid and come up with solutions by next fall. The agencies are to focus on projects that benefit Oregon ratepayers and that involve upgrades to the existing grid and transmission expansion in existing rights-of-way.By September 2026, agencies are to identify strategies to streamline and accelerate the construction of wind and solar projects. Agencies must provide quarterly updates on progress in advancing public-private partnerships. The governor’s office said the order won’t raise rates. Rather, the order directs agencies to prioritize energy efficiency and investments that deliver the greatest value to ratepayers, the governor’s office said. (should you move this up where she has the quote?)Reporter Carlos Fuentes contributed to this story. If you purchase a product or register for an account through a link on our site, we may receive compensation. By using this site, you consent to our User Agreement and agree that your clicks, interactions, and personal information may be collected, recorded, and/or stored by us and social media and other third-party partners in accordance with our Privacy Policy.

Groups Push Back on Montana’s ‘Data Center Boom’ in Petition Before Utility Commission

A group of nonprofit organizations are asking Montana's utility board to tighten its oversight of NorthWestern Energy as it plans to provide large amounts of electricity to data centers

A group of nonprofits is petitioning Montana’s utility board to tighten its oversight of NorthWestern Energy, arguing existing customers could foot the bill for the utility’s plan to provide data centers with electricity.Nine groups working on energy, conservation, social justice and affordability issues on Tuesday asked the Public Service Commission to impose rules on NorthWestern so its 413,000-plus residential customers won’t be forced to shoulder the cost of new power plants and transmission lines to power data centers.Here’s what we know about the data centers in question, how Montana law intersects with the debate and what the petitioners are asking the PSC to do in response. How much power do these data centers want NorthWestern Energy to supply? NorthWestern Energy has signed letters of intent to supply power to three data centers, according to the complaint. If all goes according to the forecasted demand, by 2030, NorthWestern will supply 1,400 megawatts of power to these data centers to meet their needs. That’s roughly equivalent to the annual electricity needs of more than 1 million homes and more than double the 759 megawatts of power NorthWestern’s existing customers require on a typical day.NorthWestern has signed agreements with Atlas Power, which seeks 75 megawatts of power for a facility in Butte starting in 2026 and and another 75 megawatts by 2030; Sabey Data Center Properties, which would initially require 50 megawatts to power a 600-acre campus planned for Butte and eventually expand its use to 250 megawatts; and Quantica Infrastructure, which wants to secure 175 megawatts for a project in Yellowstone County by late 2027 and increase its electrical footprint to 1,000 megawatts by 2030.According to the complaint, NorthWestern currently owns or has standing contracts for about 2,100 megawatts of power. It will acquire 592 additional megawatts of power from the Colstrip coal-fired power plant on Jan. 1, although it already has plans for some of that additional electricity. Why are the petitioners worried about these data centers? The petitioners argue that NorthWestern’s plan to sign electricity service agreements before garnering regulatory approval is “unreasonable, insufficient and contrary to Montana law.”More specifically, they argue that NorthWestern has “short circuited” the public’s right to know what the company is doing. The petitioners also say NorthWestern is inappropriately blocking oversight by, for example, moving to shield the letters of intent from public review. The PSC has the authority to ensure NorthWestern won’t shift new costs to its ratepayers, who are unable to shop around for power from other utilities, the petitioners contend.The petitioners are Big Sky 55+, Butte Watchdogs for Social and Environmental Justice, Climate Smart Missoula, Golden Triangle Resource Council, Helena Interfaith Climate Advocates, Honor the Earth, Montana Environmental Information Center, Montana Public Interest Research Group and NW Energy Coalition.Shannon James, Montana Environmental Information Center’s climate and campaigns organizer, said in a press release Tuesday that Montana should learn from other states’ missteps and avoid a hands-off approach to data center regulation.“Communities across the country have suffered when large, noisy data centers move into their neighborhoods, raising their power bills and taking their water,” James said. “Montana has a chance to get ahead of the curve and protect existing utility customers from having to pay for expensive new fossil fuel power plants so NorthWestern Energy can cater to wealthy tech companies.” What do the petitioners want the PSC to do? The petition asks the PSC to create a separate customer class for data centers, complete with a separate tariff, or rate structure, for the power they buy. In addition to establishing a unique formula for data centers’ power bills, a specialized tariff could stipulate that data centers give NorthWestern plenty of notice before changing their power usage. That could “provide more predictability” to the utility and shield its other customers from undue risk, the complaint reads.If the PSC grants the request, the petitioners will have an opportunity to ask NorthWestern about its plans in a quasi-judicial public hearing. The groups will also have the opportunity to call experts to testify about potential impacts to NorthWestern’s customers if data centers tie into NorthWestern’s grid. What kinds of state laws are in play? The petition references a Montana law outlining the process for large new customers to secure electrical service from a regulated utility. That law says that a new retail customer can’t purchase more than 5 megawatts of power from a public utility unless it first demonstrates to the PSC “that the provision of electricity supply service … will not adversely impact the public utility’s other customers over the long term.”The petition also highlights sections of Montana law that establish the authority and duties of the PSC, which is made up of five elected officials. In keeping with a two-decade trend, the PSC is an all-Republican board.The laws in question give the PSC the authority to “inquire into the management of the business of all public utilities,” and obtain “all necessary information to enable the commission to perform its duties.” It also authorizes the PSC to “inspect the books, accounts, papers, records and memoranda of any public utility and examine, under oath, any officer, agent, or employee of the public utility in relation to its business and affairs.” What does NorthWestern say about the data center agreements? Jo Dee Black, a spokesperson for NorthWestern Energy, wrote in an email to MTFP on Tuesday that the company has committed to establishing a tariff specifically for large-load customers. She added that contracts for new data center customers will be submitted to the PSC “as they are executed.”“New commercial customers with large energy loads, including data centers, will pay their fair share of integration and service costs,” Black wrote. “Infrastructure investments will ultimately mean a larger, more resilient energy system in Montana, however, new large load customers, such as data centers, will have to pay for their costs to integrate with the energy system.” Black didn’t directly answer MTFP’s question regarding the number of agreements NorthWestern has signed with data centers, offering only that the company “has the three Letters of Intent” referenced in the petitioners’ complaint.If the PSC grants the request, parties to the proceeding — the petitioners, NorthWestern Energy and other organizations or individuals that the PSC clears for participation — will start building a case for commissioners to review. The PSC could issue an order based on the case, with or without first scheduling a hearing.This story was originally published by Montana Free Press and distributed through a partnership with The Associated Press. Copyright 2025 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.Photos You Should See – Nov. 2025

Community Benefits

Across California, communities and developers are coming to the negotiating table in an effort to distribute prosperity. Community Benefits Agreements can help.

Construction of a new stadium or solar farm can spark both alarm and promise for local residents, and for good reasons. Often, communities are sidelined in decision making about these projects, and the benefits of such large-scale developments are not always evenly distributed.  Historically, when these opportunities arrive, local officials have held public hearings where residents could voice concerns. However, this type of engagement has its drawbacks. It tends to favor vocal residents with the time and resources to attend. Moreover, research shows residents who attend these public hearings are disproportionately project opponents, rather than those who are pushing for more energy infrastructure or housing. And, ultimately, there is no guarantee that local electeds will take community feedback into consideration.Community Benefit Agreements (CBA) have emerged as one way to increase local control over development decisions and ensure that economic and other gains from new infrastructure are more widely shared.  What is a CBA? A Community Benefit Agreement is a legally binding contract between a developer and local governments or community groups such as labor unions, neighborhood associations, or environmental advocates.  In exchange for specific, tangible benefits, such as job training programs, affordable housing units, local hiring guarantees, parks, reduced electricity rates, or direct financial payments, local organizations agree to support a proposed project – or at least not oppose it. In this way, CBAs might be able to help speed up approval processes and accelerate development by navigating potential community opposition. CBAs to Support Clean Energy Development As California moves toward its goal of 100% renewable energy by 2045, communities are beginning to see many more wind and solar infrastructure projects — particularly those in the inland and rural counties of the state. As of November 2025, there are 282 planned utility-scale solar projects in California. Their total planned capacity is 59,721 megawatts (MW). Historically, Community Benefits Agreements have resulted from extensive advocacy and organizing by local community members. However, instead of pushing communities to self-organize for these benefits, California has begun to require clean energy developers to enter into legally-binding agreements with local community organizations in order to benefit from streamlined permitting at the state level.  CBAs for renewable energy are becoming increasingly prominent in policy and some jurisdictions both in California and other states have institutionalized community benefits:  Riverside County’s Policy B-29 requires large solar projects to pay approximately $150 per acre. Imperial County’s Public Benefit Program collects fees from solar projects to issue grants for infrastructure improvements and job creation.  California’s AB 205 now requires developers seeking state-level permits for large solar and wind facilities to execute a CBA Michigan’s recent legislation mandates that developers enter Host Community Agreements with minimum payments of $2,000 per megawatt. New York established a Host Community Benefits program with annual fees per megawatt issued as electric bill credits to residents of municipalities hosting renewable energy projects Read the Report: Rethinking Community Benefits: Industry-Specific Insights for a Transforming California  In order to help community groups who want to negotiate benefits agreements with developers, our team at the Possibility Lab – in partnership with CA FWD – built an Energy Project Benefits Agreement Database to identify common characteristics of successful agreements.  Explore our Energy Project Benefits Agreement Database  The Promise and Challenges of CBAs The promise of CBAs is that they give communities direct power to negotiate for their needs and preferences. However, it can be unclear who actually represents “the community.” Because CBAs are often negotiated by select community groups, they can lack democratic accountability. And just as the residents attending a public hearing may not be representative of the demographics of a community, with varying and unequal access to economic and political capital, the same could be true of the community groups who participate in negotiating CBAs.  As a result, some critics view CBAs as essentially allowing developers to “buy off” opposition in order to streamline approvals. The importance of timing in these agreements doesn’t improve optics: offered too early, benefits might feel like bribes; too late, they may seem like unjust compensation for negative impacts.  In the end, CBAs are private contracts and the details of many agreements stay hidden. As a result, despite many examples of CBAs in and outside California, surprisingly little is known about their actual structure, benefits, and outcomes. Many important questions remain unanswered, including whether CBAs speed up or slow down development. Which communities successfully negotiate CBAs, and which don’t? What happens when negotiations are unsuccessful? Who follows through to ensure commitments are fulfilled? CBAs are a promising vehicle to address the potential tensions between the need to quickly build more infrastructure and the desire to engage communities in decision-making. Nonetheless, more research is needed to understand their effectiveness in delivering real benefits to communities while enabling progress on housing, energy, and other new development. To learn more, visit the UC Berkeley Possibility Lab’s People-Centered Policymaking site

Introducing the MIT-GE Vernova Climate and Energy Alliance

Five-year collaboration between MIT and GE Vernova aims to accelerate the energy transition and scale new innovations.

MIT and GE Vernova launched the MIT-GE Vernova Energy and Climate Alliance on Sept. 15, a collaboration to advance research and education focused on accelerating the global energy transition.Through the alliance — an industry-academia initiative conceived by MIT Provost Anantha Chandrakasan and GE Vernova CEO Scott Strazik — GE Vernova has committed $50 million over five years in the form of sponsored research projects and philanthropic funding for research, graduate student fellowships, internships, and experiential learning, as well as professional development programs for GE Vernova leaders.“MIT has a long history of impactful collaborations with industry, and the collaboration between MIT and GE Vernova is a shining example of that legacy,” said Chandrakasan in opening remarks at a launch event. “Together, we are working on energy and climate solutions through interdisciplinary research and diverse perspectives, while providing MIT students the benefit of real-world insights from an industry leader positioned to bring those ideas into the world at scale.”The energy of changeAn independent company since its spinoff from GE in April 2024, GE Vernova is focused on accelerating the global energy transition. The company generates approximately 25 percent of the world’s electricity — with the world’s largest installed base of over 7,000 gas turbines, about 57,000 wind turbines, and leading-edge electrification technology.GE Vernova’s slogan, “The Energy of Change,” is reflected in decisions such as locating its headquarters in Cambridge, Massachusetts — in close proximity to MIT. In pursuing transformative approaches to the energy transition, the company has identified MIT as a key collaborator.A key component of the mission to electrify and decarbonize the world is collaboration, according to CEO Scott Strazik. “We want to inspire, and be inspired by, students as we work together on our generation’s greatest challenge, climate change. We have great ambition for what we want the world to become, but we need collaborators. And we need folks that want to iterate with us on what the world should be from here.”Representing the Healey-Driscoll administration at the launch event were Massachusetts Secretary of Energy and Environmental Affairs Rebecca Tepper and Secretary of the Executive Office of Economic Development Eric Paley. Secretary Tepper highlighted the Mass Leads Act, a $1 billion climate tech and life sciences initiative enacted by Governor Maura Healey last November to strengthen Massachusetts’ leadership in climate tech and AI.“We're harnessing every part of the state, from hydropower manufacturing facilities to the blue-to-blue economy in our south coast, and right here at the center of our colleges and universities. We want to invent and scale the solutions to climate change in our own backyard,” said Tepper. “That’s been the Massachusetts way for decades.”Real-world problems, insights, and solutionsThe launch celebration featured interactive science displays and student presenters introducing the first round of 13 research projects led by MIT faculty. These projects focus on generating scalable solutions to our most pressing challenges in the areas of electrification, decarbonization, renewables acceleration, and digital solutions. Read more about the funded projects here.Collaborating with industry offers the opportunity for researchers and students to address real-world problems informed by practical insights. The diverse, interdisciplinary perspectives from both industry and academia will significantly strengthen the research supported through the GE Vernova Fellowships announced at the launch event.“I’m excited to talk to the industry experts at GE Vernova about the problems that they work on,” said GE Vernova Fellow Aaron Langham. “I’m looking forward to learning more about how real people and industries use electrical power.”Fellow Julia Estrin echoed a similar sentiment: “I see this as a chance to connect fundamental research with practical applications — using insights from industry to shape innovative solutions in the lab that can have a meaningful impact at scale.”GE Vernova’s commitment to research is also providing support and inspiration for fellows. “This level of substantive enthusiasm for new ideas and technology is what comes from a company that not only looks toward the future, but also has the resources and determination to innovate impactfully,” says Owen Mylotte, a GE Vernova Fellow.The inaugural cohort of eight fellows will continue their research at MIT with tuition support from GE Vernova. Find the full list of fellows and their research topics here.Pipeline of future energy leadersHighlighting the alliance’s emphasis on cultivating student talent and leadership, GE Vernova CEO Scott Strazik introduced four MIT alumni who are now leaders at GE Vernova: Dhanush Mariappan SM ’03, PhD ’19, senior engineering manager in the GE Vernova Advanced Research Center; Brent Brunell SM ’00, technology director in the Advanced Research Center; Paolo Marone MBA ’21, CFO of wind; and Grace Caza MAP ’22, chief of staff in supply chain and operations.The four shared their experiences of working with MIT as students and their hopes for the future of this alliance in the realm of “people development,” as Mariappan highlighted. “Energy transition means leaders. And every one of the innovative research and professional education programs that will come out of this alliance is going to produce the leaders of the energy transition industry.”The alliance is underscoring its commitment to developing future energy leaders by supporting the New Engineering Education Transformation program (NEET) and expanding opportunities for student internships. With 100 new internships for MIT students announced in the days following the launch, GE Vernova is opening broad opportunities for MIT students at all levels to contribute to a sustainable future.“GE Vernova has been a tremendous collaborator every step of the way, with a clear vision of the technical breakthroughs we need to affect change at scale and a deep respect for MIT’s strengths and culture, as well as a hunger to listen and learn from us as well,” said Betar Gallant, alliance director who is also the Kendall Rohsenow Associate Professor of Mechanical Engineering at MIT. “Students, take this opportunity to learn, connect, and appreciate how much you’re valued, and how bright your futures are in this area of decarbonizing our energy systems. Your ideas and insight are going to help us determine and drive what’s next.”Daring to create the future we wantThe launch event transformed MIT’s Lobby 13 with green lighting and animated conversation around the posters and hardware demos on display, reflecting the sense of optimism for the future and the type of change the alliance — and the Commonwealth of Massachusetts — seeks to advance.“Because of this collaboration and the commitment to the work that needs doing, many things will be created,” said Secretary Paley. “People in this room will work together on all kinds of projects that will do incredible things for our economy, for our innovation, for our country, and for our climate.”The alliance builds on MIT’s growing portfolio of initiatives around sustainable energy systems, including the Climate Project at MIT, a presidential initiative focused on developing solutions to some of the toughest barriers to an effective global climate response. “This new alliance is a significant opportunity to move the needle of energy and climate research as we dare to create the future that we want, with the promise of impactful solutions for the world,” said Evelyn Wang, MIT vice president for energy and climate, who attended the launch.To that end, the alliance is supporting critical cross-institution efforts in energy and climate policy, including funding three master’s students in MIT Technology and Policy Program and hosting an annual symposium in February 2026 to advance interdisciplinary research. GE Vernova is also providing philanthropic support to the MIT Human Insight Collaborative. For 2025-26, this support will contribute to addressing global energy poverty by supporting the MIT Abdul Latif Jameel Poverty Action Lab (J-PAL) in its work to expand access to affordable electricity in South Africa.“Our hope to our fellows, our hope to our students is this: While the stakes are high and the urgency has never been higher, the impact that you are going to have over the decades to come has never been greater,” said Roger Martella, chief corporate and sustainability officer at GE Vernova. “You have so much opportunity to move the world in a better direction. We need you to succeed. And our mission is to serve you and enable your success.”With the alliance’s launch — and GE Vernova’s new membership in several other MIT consortium programs related to sustainability, automation and robotics, and AI, including the Initiative for New Manufacturing, MIT Energy Initiative, MIT Climate and Sustainability Consortium, and Center for Transportation and Logistics — it’s evident why Betar Gallant says the company is “all-in at MIT.”The potential for tremendous impact on the energy industry is clear to those involved in the alliance. As GE Vernova Fellow Jack Morris said at the launch, “This is the beginning of something big.”

Bigger datasets aren’t always better

MIT researchers developed a way to identify the smallest dataset that guarantees optimal solutions to complex problems.

Determining the least expensive path for a new subway line underneath a metropolis like New York City is a colossal planning challenge — involving thousands of potential routes through hundreds of city blocks, each with uncertain construction costs. Conventional wisdom suggests extensive field studies across many locations would be needed to determine the costs associated with digging below certain city blocks.Because these studies are costly to conduct, a city planner would want to perform as few as possible while still gathering the most useful data for making an optimal decision.With almost countless possibilities, how would they know where to start?A new algorithmic method developed by MIT researchers could help. Their mathematical framework provably identifies the smallest dataset that guarantees finding the optimal solution to a problem, often requiring fewer measurements than traditional approaches suggest.In the case of the subway route, this method considers the structure of the problem (the network of city blocks, construction constraints, and budget limits) and the uncertainty surrounding costs. The algorithm then identifies the minimum set of locations where field studies would guarantee finding the least expensive route. The method also identifies how to use this strategically collected data to find the optimal decision.This framework applies to a broad class of structured decision-making problems under uncertainty, such as supply chain management or electricity network optimization.“Data are one of the most important aspects of the AI economy. Models are trained on more and more data, consuming enormous computational resources. But most real-world problems have structure that can be exploited. We’ve shown that with careful selection, you can guarantee optimal solutions with a small dataset, and we provide a method to identify exactly which data you need,” says Asu Ozdaglar, Mathworks Professor and head of the MIT Department of Electrical Engineering and Computer Science (EECS), deputy dean of the MIT Schwarzman College of Computing, and a principal investigator in the Laboratory for Information and Decision Systems (LIDS).Ozdaglar, co-senior author of a paper on this research, is joined by co-lead authors Omar Bennouna, an EECS graduate student, and his brother Amine Bennouna, a former MIT postdoc who is now an assistant professor at Northwestern University; and co-senior author Saurabh Amin, co-director of Operations Research Center, a professor in the MIT Department of Civil and Environmental Engineering, and a principal investigator in LIDS. The research will be presented at the Conference on Neural Information Processing Systems.An optimality guaranteeMuch of the recent work in operations research focuses on how to best use data to make decisions, but this assumes these data already exist.The MIT researchers started by asking a different question — what are the minimum data needed to optimally solve a problem? With this knowledge, one could collect far fewer data to find the best solution, spending less time, money, and energy conducting experiments and training AI models.The researchers first developed a precise geometric and mathematical characterization of what it means for a dataset to be sufficient. Every possible set of costs (travel times, construction expenses, energy prices) makes some particular decision optimal. These “optimality regions” partition the decision space. A dataset is sufficient if it can determine which region contains the true cost.This characterization offers the foundation of the practical algorithm they developed that identifies datasets that guarantee finding the optimal solution.Their theoretical exploration revealed that a small, carefully selected dataset is often all one needs.“When we say a dataset is sufficient, we mean that it contains exactly the information needed to solve the problem. You don’t need to estimate all the parameters accurately; you just need data that can discriminate between competing optimal solutions,” says Amine Bennouna.Building on these mathematical foundations, the researchers developed an algorithm that finds the smallest sufficient dataset.Capturing the right dataTo use this tool, one inputs the structure of the task, such as the objective and constraints, along with the information they know about the problem.For instance, in supply chain management, the task might be to reduce operational costs across a network of dozens of potential routes. The company may already know that some shipment routes are especially costly, but lack complete information on others.The researchers’ iterative algorithm works by repeatedly asking, “Is there any scenario that would change the optimal decision in a way my current data can't detect?” If yes, it adds a measurement that captures that difference. If no, the dataset is provably sufficient.This algorithm pinpoints the subset of locations that need to be explored to guarantee finding the minimum-cost solution.Then, after collecting those data, the user can feed them to another algorithm the researchers developed which finds that optimal solution. In this case, that would be the shipment routes to include in a cost-optimal supply chain.“The algorithm guarantees that, for whatever scenario could occur within your uncertainty, you’ll identify the best decision,” Omar Bennouna says.The researchers’ evaluations revealed that, using this method, it is possible to guarantee an optimal decision with a much smaller dataset than would typically be collected.“We challenge this misconception that small data means approximate solutions. These are exact sufficiency results with mathematical proofs. We’ve identified when you’re guaranteed to get the optimal solution with very little data — not probably, but with certainty,” Amin says.In the future, the researchers want to extend their framework to other types of problems and more complex situations. They also want to study how noisy observations could affect dataset optimality.“I was impressed by the work’s originality, clarity, and elegant geometric characterization. Their framework offers a fresh optimization perspective on data efficiency in decision-making,” says Yao Xie, the Coca-Cola Foundation Chair and Professor at Georgia Tech, who was not involved with this work.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.