Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

How to Filter Out Harmful ‘Forever Chemicals’ at Home

News Feed
Thursday, April 25, 2024

The following essay is reprinted with permission from The Conversation, an online publication covering the latest research.Chemists invented PFAS in the 1930s to make life easier: Nonstick pans, waterproof clothing, grease-resistant food packaging and stain-resistant carpet were all made possible by PFAS. But in recent years, the growing number of health risks found to be connected to these chemicalshas become increasingly alarming.PFAS – perfluoroalkyl and polyfluoroalkyl substances – are now either suspected or known to contribute to thyroid disease, elevated cholesterol, liver damage and cancer, among other health issues.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.They can be found in the blood of most Americans and in many drinking water systems, which is why the Environmental Protection Agency in April 2024 finalized the first enforceable federal limits for six types of PFAS in drinking water systems. The limits – between 4 and 10 parts per trillion for PFOS, PFOA, PFHxS, PFNA and GenX – are less than a drop of water in a thousand Olympic-sized swimming pools, which speaks to the chemicals’ toxicity. The sixth type, PFBS, is regulated as a mixture using what’s known as a hazard index.Meeting these new limits won’t be easy or cheap. And there’s another problem: While PFAS can be filtered out of water, these “forever chemicals” are hard to destroy.My team at the University of Notre Dame works on solving problems involving contaminants in water systems, including PFAS. We explore new technologies to remove PFAS from drinking water and to handle the PFAS waste. Here’s a glimpse of the magnitude of the challenge and ways you can reduce PFAS in your own drinking water:Removing PFAS will cost billions per yearEvery five years, the EPA is required to choose 30 unregulated contaminants to monitor in public drinking water systems. Right now, 29 of those 30 contaminants are PFAS. The tests provide a sense of just how widespread PFAS are in water systems and where.The EPA has taken over 22,500 samples from about 3,800 of the 154,000 public drinking water systems in the U.S. In 22% of those water systems, its testing found at least one of the six newly regulated PFAS, and about 16% of the systems exceeded the new standards. East Coast states had the largest percentage of systems with PFAS levels exceeding the new standards in EPA tests conducted so far.Under the new EPA rules, public water systems have until 2027 to complete monitoring for PFAS and provide publicly available data. If they find PFAS at concentrations that exceed the new limits, then they must install a treatment system by 2029.How much that will cost public water systems, and ultimately their customers, is still a big unknown, but it won’t be cheap.The EPA estimated the cost to the nation’s public drinking water systems to comply with the news rules at about US$1.5 billion per year. But other estimates suggest the total costs of testing and cleaning up PFAS contamination will be much higher. The American Water Works Association put the cost at over $3.8 billion per year for PFOS and PFOA alone.There are more than 5,000 chemicals that are considered PFAS, yet only a few have been studied for their toxicity, and even fewer tested for in drinking water. The United States Geological Survey estimates that nearly half of all tap water is contaminated with PFAS.Some money for testing and cleanup will come from the federal government. Other funds will come from 3M and DuPont, the leading makers of PFAS. 3M agreed in a settlement to pay between $10.5 billion to $12.5 billion to help reimburse public water systems for some of their PFAS testing and treatment. But public water systems will still bear additional costs, and those costs will be passed on to residents.Next problem: Disposing of ‘forever chemicals’Another big question is how to dispose of the captured PFAS once they have been filtered out.Landfills are being considered, but that just pushes the problem to the next generation. PFAS are known as “forever chemicals” for a reason – they are incredibly resilient and don’t break down naturally, so they are hard to destroy.Studies have shown that PFAS can be broken down with energy-intensive technologies. But this comes with steep costs. Incinerators must reach over 1,800 degrees Fahrenheit (1,000 Celsius)to destroy PFAS, and the possibility of creating potentially harmful byproducts is not yet well understood. Other suggested techniques, such as supercritical water oxidation or plasma reactors, have the same drawbacks.So who is responsible for managing that PFAS waste? Ultimately the responsibility will likely fall on public drinking water systems.The EPA on April 19, 2024, designated PFOA and PFOS as eligible contaminants for Superfund status, which means companies that are responsible for contaminating sites with those chemicals can be required to pay for cleanup. However, the EPA said it did not intend to go after wastewater treatment plants or public landfills.Steps to protect your home from PFASYour first instinct might be to use bottled water to try to avoid PFAS exposures, but a recent study found that even bottled water can contain these chemicals. And bottled water is regulated by a different federal agency, the Food and Drug Administration, which has no standards for PFAS.Your best option is to rely on the same technologies that treatment facilities will be using:Activated carbon is similar to charcoal. Like a sponge, it will capture the PFAS, removing it from the water. This is the same technology in refrigerator filters and in some water pitcher filters, like Brita or PUR. Note that many refrigerator manufacture’s filters are not certified for PFAS, so don’t assume they will remove PFAS to safe levels.Ion exchange resin is the same technology found in many home water softeners. Like activated carbon, it captures PFAS from the water, and you can find this technology in many pitcher filter products. If you opt for a whole house treatment system, which a plumber can attach where the water enters the house, ion exchange resin is probably the best choice. But it is expensive.Reverse osmosis is a membrane technology that only allows water and select compounds to pass through the membrane, while PFAS are blocked. This is commonly installed at the kitchen sink and has been found to be very effective at removing most PFAS in water. It is not practical for whole house treatment, but it is likely to remove a lot of other contaminants as well.If you have a private well instead of a public drinking water system, that doesn’t mean you’re safe from PFAS exposure. Wisconsin’s Department of Natural Resources estimates that 71% of shallow private wells in that state have some level of PFAS contamination. Using a certified laboratory to test well water for PFAS can run $300-$600 per sample, a cost barrier that will leave many private well owners in the dark.For all the treatment options, make sure the device you choose is certified for PFAS by a reputable testing agency, and follow the recommended schedule for maintenance and filter replacement. Unfortunately, there is currently no safe way to dispose of the filters, so they go in the trash. No treatment option is perfect, and none is likely to remove all PFAS down to safe levels, but some treatment is better than none.This article was originally published on The Conversation. Read the original article.

An environmental engineer provides a glimpse of the magnitude of the challenge to remove PFAS from water supplies and ways you can reduce these “forever chemicals” in your own drinking water

The following essay is reprinted with permission from The ConversationThe Conversation, an online publication covering the latest research.

Chemists invented PFAS in the 1930s to make life easier: Nonstick pans, waterproof clothing, grease-resistant food packaging and stain-resistant carpet were all made possible by PFAS. But in recent years, the growing number of health risks found to be connected to these chemicalshas become increasingly alarming.

PFAS – perfluoroalkyl and polyfluoroalkyl substances – are now either suspected or known to contribute to thyroid disease, elevated cholesterol, liver damage and cancer, among other health issues.


On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.


They can be found in the blood of most Americans and in many drinking water systems, which is why the Environmental Protection Agency in April 2024 finalized the first enforceable federal limits for six types of PFAS in drinking water systems. The limits – between 4 and 10 parts per trillion for PFOS, PFOA, PFHxS, PFNA and GenX – are less than a drop of water in a thousand Olympic-sized swimming pools, which speaks to the chemicals’ toxicity. The sixth type, PFBS, is regulated as a mixture using what’s known as a hazard index.

Meeting these new limits won’t be easy or cheap. And there’s another problem: While PFAS can be filtered out of water, these “forever chemicals” are hard to destroy.

My team at the University of Notre Dame works on solving problems involving contaminants in water systems, including PFAS. We explore new technologies to remove PFAS from drinking water and to handle the PFAS waste. Here’s a glimpse of the magnitude of the challenge and ways you can reduce PFAS in your own drinking water:

Removing PFAS will cost billions per year

Every five years, the EPA is required to choose 30 unregulated contaminants to monitor in public drinking water systems. Right now, 29 of those 30 contaminants are PFAS. The tests provide a sense of just how widespread PFAS are in water systems and where.

The EPA has taken over 22,500 samples from about 3,800 of the 154,000 public drinking water systems in the U.S. In 22% of those water systems, its testing found at least one of the six newly regulated PFAS, and about 16% of the systems exceeded the new standards. East Coast states had the largest percentage of systems with PFAS levels exceeding the new standards in EPA tests conducted so far.

U.S. Map shows where high PFAS levels are most common.

Under the new EPA rules, public water systems have until 2027 to complete monitoring for PFAS and provide publicly available data. If they find PFAS at concentrations that exceed the new limits, then they must install a treatment system by 2029.

How much that will cost public water systems, and ultimately their customers, is still a big unknown, but it won’t be cheap.

The EPA estimated the cost to the nation’s public drinking water systems to comply with the news rules at about US$1.5 billion per year. But other estimates suggest the total costs of testing and cleaning up PFAS contamination will be much higher. The American Water Works Association put the cost at over $3.8 billion per year for PFOS and PFOA alone.

Chart shows average levels of PFOS and PFOA in public drinking water treatment systems.

There are more than 5,000 chemicals that are considered PFAS, yet only a few have been studied for their toxicity, and even fewer tested for in drinking water. The United States Geological Survey estimates that nearly half of all tap water is contaminated with PFAS.

Some money for testing and cleanup will come from the federal government. Other funds will come from 3M and DuPont, the leading makers of PFAS. 3M agreed in a settlement to pay between $10.5 billion to $12.5 billion to help reimburse public water systems for some of their PFAS testing and treatment. But public water systems will still bear additional costs, and those costs will be passed on to residents.

Next problem: Disposing of ‘forever chemicals’

Another big question is how to dispose of the captured PFAS once they have been filtered out.

Landfills are being considered, but that just pushes the problem to the next generation. PFAS are known as “forever chemicals” for a reason – they are incredibly resilient and don’t break down naturally, so they are hard to destroy.

Studies have shown that PFAS can be broken down with energy-intensive technologies. But this comes with steep costs. Incinerators must reach over 1,800 degrees Fahrenheit (1,000 Celsius)to destroy PFAS, and the possibility of creating potentially harmful byproducts is not yet well understood. Other suggested techniques, such as supercritical water oxidation or plasma reactors, have the same drawbacks.

So who is responsible for managing that PFAS waste? Ultimately the responsibility will likely fall on public drinking water systems.

The EPA on April 19, 2024, designated PFOA and PFOS as eligible contaminants for Superfund status, which means companies that are responsible for contaminating sites with those chemicals can be required to pay for cleanup. However, the EPA said it did not intend to go after wastewater treatment plants or public landfills.

Steps to protect your home from PFAS

Your first instinct might be to use bottled water to try to avoid PFAS exposures, but a recent study found that even bottled water can contain these chemicals. And bottled water is regulated by a different federal agency, the Food and Drug Administration, which has no standards for PFAS.

Your best option is to rely on the same technologies that treatment facilities will be using:

  • Activated carbon is similar to charcoal. Like a sponge, it will capture the PFAS, removing it from the water. This is the same technology in refrigerator filters and in some water pitcher filters, like Brita or PUR. Note that many refrigerator manufacture’s filters are not certified for PFAS, so don’t assume they will remove PFAS to safe levels.

  • Ion exchange resin is the same technology found in many home water softeners. Like activated carbon, it captures PFAS from the water, and you can find this technology in many pitcher filter products. If you opt for a whole house treatment system, which a plumber can attach where the water enters the house, ion exchange resin is probably the best choice. But it is expensive.

  • Reverse osmosis is a membrane technology that only allows water and select compounds to pass through the membrane, while PFAS are blocked. This is commonly installed at the kitchen sink and has been found to be very effective at removing most PFAS in water. It is not practical for whole house treatment, but it is likely to remove a lot of other contaminants as well.

If you have a private well instead of a public drinking water system, that doesn’t mean you’re safe from PFAS exposure. Wisconsin’s Department of Natural Resources estimates that 71% of shallow private wells in that state have some level of PFAS contamination. Using a certified laboratory to test well water for PFAS can run $300-$600 per sample, a cost barrier that will leave many private well owners in the dark.

For all the treatment options, make sure the device you choose is certified for PFAS by a reputable testing agency, and follow the recommended schedule for maintenance and filter replacement. Unfortunately, there is currently no safe way to dispose of the filters, so they go in the trash. No treatment option is perfect, and none is likely to remove all PFAS down to safe levels, but some treatment is better than none.

This article was originally published on The Conversation. Read the original article.

Read the full story here.
Photos courtesy of

Industrial Chemical Linked To Parkinson's Disease

By Dennis Thompson HealthDay ReporterTHURSDAY, Oct. 2, 2025 (HealthDay News) — Long-term exposure to a chemical used in metal degreasing and dry...

By Dennis Thompson HealthDay ReporterTHURSDAY, Oct. 2, 2025 (HealthDay News) — Long-term exposure to a chemical used in metal degreasing and dry cleaning might increase the risk of Parkinson’s disease, a new study says.Seniors living in places with the highest airborne levels of trichloroethylene showed a 10% higher risk for Parkinson’s than those in areas with the lowest levels, researchers report in the journal Neurology.Further, risk of Parkinson’s increased fourfold for people living one to five miles downwind of an Oregon factory that used the chemical, researchers found.“Long-term exposure to trichloroethylene in outdoor air was associated with a small but measurable increase in Parkinson’s risk,” said lead researcher Brittany Krzyzanowski, an assistant professor at the Barrow Neurological Institute in Phoenix.“These findings add to a growing body of evidence that environmental exposures may contribute to Parkinson’s disease,” she said in a news release.Trichloroethylene (TCE) is known to cause kidney cancer, and studies have linked the chemical to blood cancers and liver cancer, according to the National Cancer Institute.It’s a persistent environmental pollutant in air, water and soil across the United States, researchers noted. A 2000 U.S. Environmental Protection Agency  (EPA) report estimated that up to 30% of the nation’s drinking water supplies were contaminated with TCE. In 2024, the EPA issued a ban on the chemical for all consumer and commercial uses that was set to start in 2025. However, the ban was stayed pending a legal challenge, and the chemical remains in use.For the new study, researchers used Medicare data to identify seniors older than 67 newly diagnosed with Parkinson’s between 2016 and 2018, and compared each participant to five other seniors who didn’t have the disease.Parkinson’s occurs when brain cells that produce the neurotransmitter dopamine either die or become impaired. When that happens, people start to have movement problems that include shaking, stiffness, and difficulty with balance and coordination, according to Cleveland Clinic.All told, the study included nearly 222,000 people with Parkinson’s and more than 1.1 million people without the disease, researchers said.Using ZIP codes and EPA data, researchers mapped everyone’s exposure to outdoor TCE concentrations two years prior to their diagnosis.Researchers concluded that people exposed to the highest levels of TCE appeared to have a greater risk of Parkinson’s, after controlling for other risk factors for the disorder.“While the increased risk was modest, the sheer number of people exposed to TCE in the environment means the potential public health impact could be substantial,” Krzyzanowski said.The team also identified several geographic “hot spots” where outdoor TCE levels were highest, particularly in the Rust Belt region, as well as three facilities that operated as the nation’s top TCE-emitting facilities in 2002.Results showed that Parkinson’s risk was higher close to two of the three facilities. At one of those sites, Parkinson’s risk clearly rose the closer people lived to the facility. People living one to five miles downwind from a lithium battery plant in Lebanon, Oregon, had a more than four times greater risk of Parkinson’s than those living up to 10 miles away.“This underscores the need for stronger regulations and more monitoring of industrial pollutants,” Krzyzanowski said.The researchers noted that their study could not draw a direct cause-and-effect link between TCE and Parkinson’s. Their results only show an association.However, previous reports have also linked TCE to Parkinson’s, researchers said.For example, TCE contamination of the drinking water at Camp Lejeune, a Marine Corps base in Jacksonville, N.C., has been linked with a 70% higher risk of Parkinson’s among service members stationed there.SOURCES: American Academy of Neurology, news release, Oct. 1, 2025; Neurology, Oct. 1, 2025Copyright © 2025 HealthDay. All rights reserved.

Why Is This Remote and Rugged River in Alaska Turning Orange?

New research suggests the Salmon River is full of toxic metals that are likely harming fish and other aquatic creatures

Why Is This Remote and Rugged River in Alaska Turning Orange? New research suggests the Salmon River is full of toxic metals that are likely harming fish and other aquatic creatures Sarah Kuta - Daily Correspondent October 1, 2025 4:56 p.m. New research suggests that the Salmon River in northwest Alaska is full of toxic metals. Ray Koleser Alaska’s Salmon River was once so clean that author John McPhee described it as the “clearest, purest water I have ever seen flowing over rocks.” Now, however, the remote waterway is a muddy, orangish-yellow mess. It’s brimming with toxic metals, at concentrations that are likely harmful to aquatic life. The culprit? Thawing permafrost resulting from climate change, according to a study published in the journal Proceedings of the National Academy of Sciences last month. “It’s a sobering study,” says Diane McKnight, a geochemist at the University of Colorado Boulder who was not involved with the research, to Chemical & Engineering News’ Fionna Samuels. The Salmon River winds 70 miles through Kobuk Valley National Park in northwest Alaska, flowing from Mount Angayukaqsraq to the Kobuk River. The federal government designated it a National Wild and Scenic River in 1980, noting its large salmon runs and its “water of exceptional clarity.” However, around 2019, the once-crystal-clear waters of the Salmon River and its tributaries turned orange and murky. Patrick Sullivan, an ecologist at the University of Alaska Anchorage, and Roman Dial, a now-retired biologist at Alaska Pacific University, first noticed the unusual hue during an unrelated research trip in the region. Fun Fact Alaska archaeology Alaska is home to the oldest known evidence of salmon fishing in the Americas—11,500-year-old fish bones. The Salmon River had become what’s known as a “rusting river,” a phenomenon caused by the presence of high amounts of iron and other metals. Sullivan, Dial and their colleagues returned to the waterway to take samples in 2022 and 2023. Based on their analyses, they suspect it has fallen victim to sulfide mineral weathering, also known as acid-rock drainage, which can occur when permafrost thaws. Found primarily in the Arctic and some high-elevation regions, permafrost is the name given to soil, sand, sediment and rock that remains at or below freezing temperatures for at least two years. The bedrock beneath some permafrost contains sulfide minerals, which are typically inaccessible to groundwater. However, when permafrost thaws, those minerals become exposed to water and oxygen for the first time in hundreds or even thousands of years. As the minerals dissolve, they produce acids, which in turn cause metals to leach out of rocks. In this way, acid-rock drainage is a form of natural pollution that can occur far from humans—even though it’s caused by human activity. “There are few places left on Earth as untouched as these rivers,” says co-author Tim Lyons, a geochemist at the University of California Riverside, to BBC Wildlife Magazine’s Daniel Graham. “But even here, far from cities and highways, the fingerprint of global warming is unmistakable. No place is spared.” The team’s analyses show the Salmon River is chock-full of metals—including aluminum, cadmium, copper, iron, nickel, and zinc—at concentrations above the U.S. Environmental Protection Agency’s safe limits for aquatic life. “If there were a mine that were operating in the headwaters of the Salmon, they would be facing regulatory intervention at this point,” Sullivan tells Chemical & Engineering News. Pollution from mines is typically limited to a single source and can be managed with treatment systems. Acid-rock drainage caused by permafrost thaw, on the other hand, is occurring at various sites and is nearly impossible to mitigate, the researchers say. “The only hope for solving this problem…is the recovery of the permafrost, which of course would involve pretty massive emissions reductions at this point,” Sullivan tells Chemical & Engineering News. And the ripple effects of permafrost thaw are not limited to the Salmon River. The process can occur in any waterway located near permafrost covering sulfide-rich bedrock, and scientists are using satellite imagery to look for other rivers and streams that might be affected. The high levels of toxic metals in the Salmon River might help explain a recent drop in the number of chum salmon returning to spawn, the researchers say. But, they add, they need to conduct more research to confirm that hunch. Even if the pollution is not to blame for the depressed salmon runs, it’s likely still affecting the local food chain. “It would be very hard, for instance, for a bear to fish for a salmon just because of the turbidity,” Sullivan tells the Alaska Beacon’s Yereth Rosen. “Raptors would have a really hard time catching a fish if they were fishing there.” The water is simply too cloudy, he says, citing his own failed attempts to fish the river. The metals also seem to be harming aquatic insects, such as stoneflies and mayflies, a source of food for many fish, per Science’s Warren Cornwall. In parts of the Salmon River with high levels of aluminum and iron, for instance, the scientists found very few insect larvae. “We have no idea when that process might reach its conclusion and how many new acid seeps might develop,” Sullivan tells the Alaska Beacon. Get the latest stories in your inbox every weekday.

Bills Target Crucitas Gold Mining Mess in Costa Rica

Crucitas ranks among Costa Rica’s most severe environmental setbacks. Illegal gold mining has ravaged the area for years, bringing crime, community unrest, water pollution, and deaths among those risking their lives in unauthorized operations. The once-rich natural zone now shows clear signs of decline, with forests cleared and rivers tainted by chemicals. Recent events highlight […] The post Bills Target Crucitas Gold Mining Mess in Costa Rica appeared first on The Tico Times | Costa Rica News | Travel | Real Estate.

Crucitas ranks among Costa Rica’s most severe environmental setbacks. Illegal gold mining has ravaged the area for years, bringing crime, community unrest, water pollution, and deaths among those risking their lives in unauthorized operations. The once-rich natural zone now shows clear signs of decline, with forests cleared and rivers tainted by chemicals. Recent events highlight the ongoing trouble. Just this month, authorities detained five Nicaraguans for illegal mining, and earlier, two young brothers from Nicaragua died when a tunnel collapsed on them. Rescue teams recovered their bodies after hours of work, a grim reminder of the dangers. These incidents add to a long list of fatalities, as people cross borders chasing gold amid poverty. Lawmakers in the Legislative Assembly are pushing several bills to tackle this mess. The government’s plan stands out—it would permit gold exploration and extraction in Crucitas to curb the chaos from illegal activities. The Alajuela Commission gave it a green light on September 11 with an 8-1 vote, sending it to the full assembly for debate. It awaits scheduling, and motions could still alter it. Supporters argue that regulated mining would bring order, generate jobs, and fund cleanup, but critics question the fit with Costa Rica’s eco-friendly reputation. Open-pit methods, which the bill would allow under strict rules, carry heavy costs. They strip away land, wipe out habitats, and reduce plant and animal diversity. Air gets dusty, water sources shift or get contaminated, and noise drives away wildlife. Communities nearby face health risks from pollutants, as seen already in Crucitas where mercury and cyanide have seeped into streams. Despite bans since 2010, illegal digs persist, often tied to organized groups, making the site a hotspot for violence and smuggling. Another bill, backed by the Frente Amplio party and the Civic Environmental Parliament, takes a different path. It proposes a Sustainable Development Hub for the Huetar Norte region, focusing on recovery without mining. At its core is the Crucitas International Environmental Geopark, covering wooded hills between Fortuna and Botija. A natural and historical museum would join it, highlighting the area’s past and ecology. This approach draws from UNESCO geoparks, with 13 already in Latin America, including one in Nicaragua. Costa Rica’s planning ministry has approved a similar site in Rio Cuarto. The idea is to protect resources while allowing research and low-key recreation. No gold digging permitted—that aligns with the country’s green identity. The hub would put the National System of Conservation Areas in charge of oversight. Locals could run small-scale businesses with support from the Development Bank and rural agencies. Educational programs through the National Learning Institute and universities would train people, creating opportunities on the ground. Tax breaks aim to attract private projects that fit the goals, like eco-tourism or studies. A key part involves cleaning up the damage. Remediation targets the toxins left behind, aiming to restore soil and water. Some still push for mining as the fix, claiming it would stop illegals and boost the economy, but that ignores the added harm to an already battered spot. The debate boils down to priorities: quick cash from gold versus long-term protection. Costa Rica has built its image on sustainability, drawing tourists to parks and beaches. Reopening to mining could shift that, while the hub option builds on strengths in conservation. As bills move forward, locals watch closely, hoping for a solution that heals rather than harms. The post Bills Target Crucitas Gold Mining Mess in Costa Rica appeared first on The Tico Times | Costa Rica News | Travel | Real Estate.

Extraordinary pictures show what a common antibiotic does to E. coli

A commonly used class of antibiotics seems to kill bacteria like E. coli by breaking down their tough armour

The top image shows an untreated E.coli bacterium; the bottom shows a bacterium after 90 minutes of being exposed to the antibiotic polymyxin BCarolina Borrelli, Edward Douglas et al./Nature Microbiology The way antibiotics called polymyxins pierce the armour of bacteria has been revealed in stunning detail by high-resolution microscopy, which could help us develop new treatments for drug-resistant infections. Polymyxins are commonly used as a last-resort treatment against some so-called gram-negative bacteria, which can cause infections such as pneumonia, meningitis and typhoid fever. “The top three World Health Organization priority pathogens are all gram-negative bacteria, and this is largely a reflection of their complex cell envelope,” says Andrew Edwards at Imperial College London. Around their inner cell, these bacteria have an outer surface layer containing molecules called lipopolysaccharides, which act like armour. We knew polymyxins target this outer layer, but how exactly they disrupt it and then kill bacteria wasn’t understood; neither was why the drugs don’t always work. Now, Edwards and his colleagues have used biochemical experiments and atomic force microscopy – in which a needle just a few nanometres wide creates an image of a cell by sensing its shape – to reveal that one of the two types of polymyxin used therapeutically, called polymyxin B, causes strange bulges to break out on the surface of the gram-negative bacterium E. coli. Minutes after the protrusions appear, the bacterium begins to quickly shed its lipopolysaccharides, which the researchers detected in the solution it was in. The researchers say the antibiotic’s presence triggers the bacterium to try to put more and more “bricks” of lipopolysaccharide in its defensive wall. But as it adds bricks, it is also shedding some, temporarily leaving gaps in its defences that allow the antibiotic to enter and kill it. “The antibiotics are a bit like a crowbar that helps these bricks come out of the wall,” says Edwards. “The outer membrane doesn’t disintegrate; it doesn’t fall off. But there are clearly gaps where the antibiotic can then get to the second membrane.” He and his colleagues also uncovered why the antibiotic doesn’t always work: it only affected bacteria that were active and growing. When bacteria were dormant, a state they can enter to survive environmental stress such as nutrient deprivation, the polymyxin B was ineffective, because it wasn’t producing its armour. Images of E. coli exposed to polymyxin B, showing changes to the outer layer of its membrane, from left to right: untreated; bacterium after 15 minutes of antibiotic exposure; after 30 minutes; after 60 minutes; after 90 minutesCarolina Borrelli, Edward Douglas et al. / Nature Microbiology However, the researchers found that providing sugar to the E. coli cells woke them from this dormant state and, within 15 minutes, armour production resumed and the cells were killed. The same is expected to apply to the other polymyxin antibiotic used therapeutically, polymyxin E. Edwards says it might be possible to target dormant bacteria by giving people sugars, but there are dangers to waking these pathogens from their dormant state. “You don’t necessarily want bacteria at an infection site to start multiplying rapidly because that has its own downsides,” he says. Instead, he adds, it might be possible to combine different drugs to bypass the hibernation state without waking the bacteria up.

Cleanup of toxic forever chemicals at Portland base delayed by feds

An Air Force base near Spokane also is among those that will have a longer timeline for cleanup of PFAS.

The U.S. Department of Defense quietly changed its timeline for cleaning up toxic forever chemicals contaminating groundwater at two military bases in Oregon and Washington, delaying the process by six years without public announcement.The Air National Guard base in Portland and the Fairchild Air Force base near Spokane are among nearly 140 military sites nationwide with delayed investigations and remediation for a group of chemicals known as PFAS. The delays come as congressional Republicans are proposing cutting by nearly $200 million the defense agency’s budget for environmental cleanup, including PFAS, an abbreviation for perfluoroalkyl and polyfluoroalkyl substances, and rolling back a 2024 ban on the agency’s use of firefighting foam containing PFAS.Exposure to the human-made chemicals found in flame retardants, nonstick cookware and waterproof clothing can lead to increased risks for cancers, heart damage, high cholesterol and birth defects, among other adverse health effects.Washington was the first state to ban the sale and use of firefighting foam containing PFAS in 2018, and Oregon lawmakers this year voted to phase out the use of PFAS-laden firefighting foam. Such foam was heavily used at military bases for decades, and the Department of Defense has identified at least 600 military sites where PFAS are known to have been released.The delays to PFAS cleanup at military bases were first reported Tuesday by The New York Times. The Times cross-referenced a March list of potentially contaminated military sites — a list not publicly posted on the Defense Department’s website until recently — with a list that had been posted in December by the agency, when it was under the Biden administration.The Capital Chronicle’s own analysis of a Sept. 30, 2024. list found that the Air National Guard site in Portland, then slated to have its PFAS investigation and cleanup planning completed by the end of September 2025, is now slated instead to have that done by September 2031. The remedial investigation and planning for PFAS cleanup previously slated to be complete at Fairchild Air Force base by July 2026 is now expected to be done by June 2032.Michael Loch, a spokesperson for the Oregon Department of Environmental Quality, said in an email that the Air National Guard told Oregon officials at an Aug. 26 meeting that the timeline for cleaning up the base in Portland would be delayed so that money could be directed to other potentially contaminated sites that had not yet undergone investigation. Loch was not able to confirm whether Guard officials told Oregon officials that it would be a full five-year delay.“We are concerned that this shift could mean several years of delay, especially given the high PFAS concentrations already found at the site and its proximity to sensitive water resources like the Columbia Slough,” Loch wrote.The Department of Defense was unable to answer questions from the Capital Chronicle by Tuesday evening about how much information the agency shared with Oregon and Washington state leaders, agencies or impacted communities about the changes.“It will likely take up to a week for our response to be reviewed by general council,” an unidentified Pentagon spokesperson from the Office of the Secretary of Defense said in an email.Stephanie May, a spokesperson for Washington’s Department of Ecology, said in an email she could not confirm by Tuesday whether the Department of Defense told any ecology officials about changes to the clean-up schedule at Fairchild Air Force base, but that they are looking into it.“Our focus in working with the base has been to urge immediate actions that can help nearby residents get safe drinking water and protect their families,” she said.The Environmental Protection Agency officially declared the Fairchild Air Force base a Superfund Site in 1995 for a litany of other contamination issues, and identified in 2017 severe PFAS contamination through well testing. About 100 people who live near the base filed a class action lawsuit in 2018 against 3M — the manufacturer of the firefighting foam used on the base — alleging it has caused them serious health problems.About one-quarter of all military sites with known PFAS releases that are trying to investigate and address contamination now face an average delay of five years, according to the Times’ reporting.In 2024, the U.S. Environmental Protection Agency added several PFAS to the federal list of regulated hazardous substances and mandated states begin testing for them in drinking water systems. In May, the Oregon Department of Environmental Quality added six common PFAS substances to the state’s list of regulated contaminants.Suspected sources of past or ongoing PFAS pollution in Oregon include eight commercial airports that are or were required to maintain PFAS-containing firefighting foam on site, as well as 18 municipal fire training facilities near 20 of the most populous cities in the state, according to rulemaking documents from DEQ.Officials at Portland International Airport began testing for PFAS in 2017 in and around a firefighter training ground there, and found impaired fish and aquatic species in the nearby waters of the Columbia Slough. They have since switched to using PFAS-free firefighting foam and begun initial stages of cleanup.-- Alex Baumhardt, Oregon Capital ChronicleThe Oregon Capital Chronicle, founded in 2021, is a nonprofit news organization that focuses on Oregon state government, politics and policy.If you purchase a product or register for an account through a link on our site, we may receive compensation. By using this site, you consent to our User Agreement and agree that your clicks, interactions, and personal information may be collected, recorded, and/or stored by us and social media and other third-party partners in accordance with our Privacy Policy.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.