Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

As fossil fuel plants face retirement, a Puerto Rico community pushes for rooftop solar

News Feed
Saturday, May 18, 2024

The coastal communities of Guayama and Salinas in southern Puerto Rico feature acres of vibrant green farmland, and a rich, biodiverse estuary, the protected Jobos Bay, which stretches between the neighboring townships. But this would-be tropical paradise is also the home of both a 52-year-old oil-fired power plant and a 22-year-old coal-fired power plant, which local residents say contaminate their drinking water and air, and harm people’s health.  “It’s a classic sacrifice zone,” said Ruth Santiago, a lawyer and community activist who has fought against environmental injustice in Puerto Rico for more than 20 years. “A friend calls this ‘the beautiful place with serious problems.’” Local residents envision a cleaner future as these fossil fuel plants are scheduled to retire within the next several years. They see rooftop solar as the best alternative as the island transitions to renewable energy.  In November 2023, the federal government allocated $440 million in funding for rooftop solar energy in Puerto Rico, part of a billion dollar energy investment in the island. Officials, in recent years, have acknowledged that the region has suffered as the home of polluting power plants. After a 2022 visit to Salinas and Guayama, Environmental Protection Agency Administrator Michael Regan announced a plan to spend $100,000 to improve monitoring of the air and water pollution from the coal-fired power plant, which is owned by Virginia-based Applied Energy Services Corporation, or AES. Read Next As states slash rooftop solar incentives, Puerto Rico extends them Gabriela Aoun Angueira “For too long, communities in Puerto Rico have suffered untold inequities—from challenges with access to clean drinking water to fragile infrastructure that cannot withstand the increase and intensity of storms brought on by climate change,” Regan said in a press release.  The EPA examined a drinking water sample in May 2023 from groundwater near the power plants that supplies drinking water to the region and found that metal levels did not exceed federal criteria. EPA public information officer Carlos Vega said more samples will be analyzed and the EPA will continue to inform the community. No timeline for the additional testing has been established. For decades, most of Puerto Rico’s electricity has been generated in the southern part of the island. The Puerto Rico Electric Power Authority uses over 30,000 miles of distribution lines to send energy generated in the south to more urban areas, primarily in the north, like San Juan. Coastal power plants in the south have posed health risks for community members, Santiago said; according to a 2022 report from the environmental law nonprofit Earthjustice, the AES plant produces 800 tons of coal ash waste per day that contaminates the air and nearby waters. Many low-income residents in the south struggle to pay electricity bills that are more than 30 percent higher than in the U.S. as a whole. Nearly half of Guayama’s residents were below the poverty line in 2022.  AES did not respond to multiple email requests for comment. AES Puerto Rico said that their plants are in compliance with regulations in a 2020 press release. The Aguirre Power Complex oil-fired plant in Salinas, Puerto Rico is scheduled to retire by 2030. The plant neighbors Jobos Bay, a protected estuary home to multiple endangered species, according to the National Oceanic and Atmospheric Association. Esther Frances/Medill News Service An EPA inspection in 2021 revealed the coal facility was not in compliance with the Clean Water Act for releasing polluted stormwater without a permit. In 2022, the EPA found the coal plant exceeded legal emission limits for pollutants like carbon monoxide and mercury, according to an Earthjustice analysis. The EPA issued several other violations for the coal plant dating back to 2019, citing it for inadequate disposal of coal ash and endangering residents, according to the Environmental Integrity Project, an environmental watchdog group. “People know that it’s a terrible impact, but it’s not easy to move to find somewhere else to live,” Santiago said. Many local residents cannot move because average home prices have increased across the island since Hurricane Maria hit in 2017, according to activists and researchers in Puerto Rico.  The coal plant is scheduled to retire in 2027, when a 25-year contract expires between AES and the Puerto Rico Electric Power Authority. To replace coal, AES has turned to utility-scale solar power. AES Puerto Rico began construction for the 135-acre Ilumina Solar PV Park in Guayama in 2011. AES Puerto Rico’s coal plant, solar farm and some smaller projects together supplied up to 25 percent of Puerto Rico’s electricity. A few solar farms have already been built on the South Coast, and in February 2022, the Puerto Rican Energy Bureau approved 18 new utility-scale solar panel projects across the island. Critics say the solar farms are using dwindling agricultural land, and a group of environmental and public health organizations including Earthjustice and the Sierra Club Puerto Rico filed a lawsuit in August 2023 to stop the government of Puerto Rico from allowing the solar farms to be built on ecologically important land. Read Next Energy Department backs solar loans for low-income Puerto Ricans Gabriela Aoun Angueira A 2019 law mandated that the Puerto Rico Electric Power Authority reduce the use of fossil fuels for electrical generation on the island and generate 100 percent renewable energy by 2050. In addition, the Puerto Rico Electric Power Authority issued an Integrated Resource Plan in 2020 that includes a plan to retire the Aguirre Power Complex oil-fired plant by 2030.  Instead of large solar farms, many local organizations in Puerto Rico see a better solution for their region’s electricity production—rooftop solar panels. They prefer this kind of solar energy for communities because unlike large solar facilities, rooftop solar installations do not use up farmland, which in Puerto Rico decreased by 37.5 percent between 2012 and 2018, according to the Census of Agriculture.  In February, the Department of Energy released results of its study of Puerto Rican renewable energy, named PR100. The study reported the huge potential for rooftop solar in Puerto Rico—up to 6,100 MW by 2050 under the most aggressive scenario—but said utility-scale renewable energy would still be needed.  The study also noted the challenges in deploying rooftop solar, including unstable roofs and lack of property titles. But Puerto Rico has a long way to go to reach the 2050 green energy goal; as of 2022, only 6 percent of electricity generated in Puerto Rico was renewable. Ruth Santiago’s son Jose and other electricians helped install rooftop solar panels in Salinas neighborhoods through Coquí Solar, a community-based organization working to help low-income and vulnerable residents access solar energy. The solar kits from Coquí Solar provided homes with solar panels and batteries, which could provide electricity during a blackout. Rooftop solar arrays often cannot meet a home’s entire electricity demand, but the battery storage the solar array generates can run crucial things like refrigerators, lights and medical equipment in case of an electrical blackout, while also reducing a household’s energy bills significantly.  Read Next Puerto Rico is using residents’ home batteries to back up its grid Gabriela Aoun Angueira The kits cost about $7,000, which Ruth Santiago said Coquí Solar purchased using grants from various Puerto Rico-based organizations and foundations. Coquí Solar, working with other organizations in the area, also installed the equipment in the homes of vulnerable community members for free. Jose Santiago said the elderly and people living with chronic illnesses and disabilities in the area suffer during blackouts, which are frequent on the island. “Every year, the power leaves for five, six days,” Jose Santiago said. “Sometimes more, sometimes several times, and you don’t want to see the old people in the line at the gas station trying to get ice to put in their fridge. So, [rooftop solar energy] helps them.” After Hurricane Maria caused structural damages to the island’s electrical infrastructure in 2017, the Puerto Rico Electric Power Authority reported that all of their electric consumers, over 1.5 million customers, were without power. Some Puerto Rico residents spent close to 11 months without power, according to climate change and development specialist Ramón Bueno. “That just sounds like a number, but all we have to think about is how do we deal with losing power for two, three days? That’s radical,” Bueno said. “So, two, three months is very radical. And five times that is even more.” Ruth Santiago said Coquí Solar’s rooftop solar installments have empowered the community by giving residents “agency” over their electricity generation. The desire for electricity independence had grown in Puerto Rico after recent destructive hurricanes and other impacts of climate change. Organizations like Coquí Solar have spent years working toward decentralizing solar energy across the island, and Bueno said many are strong and independent. “They’re pretty articulate framers of an alternative way to move forward with energy systems,” Bueno said.  Ruth Santiago worried that the retirement dates of the coal and oil plants could be delayed or that a new infrastructure would depend heavily on utility scale solar that would rely on a centralized grid and expose communities to blackouts during and after storms. She hoped that concerns about the community’s health and environment would be enough to force the plants to close on schedule and that rooftop solar would be prioritized over large-scale solar.  “We need to really go beyond resilience, we need to go toward energy security and sovereignty, and that’s what we’re trying to do, at least create and do these pilot projects, these community-based examples of what that transformation would look like,” Ruth Santiago said. “If we don’t do it now, then when?” This story was originally published by Grist with the headline As fossil fuel plants face retirement, a Puerto Rico community pushes for rooftop solar on May 18, 2024.

Land for large solar arrays is limited on the island. Rooftop panels can provide electricity during blackouts and bring the island closer to its clean energy goals.

The coastal communities of Guayama and Salinas in southern Puerto Rico feature acres of vibrant green farmland, and a rich, biodiverse estuary, the protected Jobos Bay, which stretches between the neighboring townships. But this would-be tropical paradise is also the home of both a 52-year-old oil-fired power plant and a 22-year-old coal-fired power plant, which local residents say contaminate their drinking water and air, and harm people’s health. 

“It’s a classic sacrifice zone,” said Ruth Santiago, a lawyer and community activist who has fought against environmental injustice in Puerto Rico for more than 20 years. “A friend calls this ‘the beautiful place with serious problems.’”

Local residents envision a cleaner future as these fossil fuel plants are scheduled to retire within the next several years. They see rooftop solar as the best alternative as the island transitions to renewable energy. 

In November 2023, the federal government allocated $440 million in funding for rooftop solar energy in Puerto Rico, part of a billion dollar energy investment in the island. Officials, in recent years, have acknowledged that the region has suffered as the home of polluting power plants.

After a 2022 visit to Salinas and Guayama, Environmental Protection Agency Administrator Michael Regan announced a plan to spend $100,000 to improve monitoring of the air and water pollution from the coal-fired power plant, which is owned by Virginia-based Applied Energy Services Corporation, or AES.

“For too long, communities in Puerto Rico have suffered untold inequities—from challenges with access to clean drinking water to fragile infrastructure that cannot withstand the increase and intensity of storms brought on by climate change,” Regan said in a press release

The EPA examined a drinking water sample in May 2023 from groundwater near the power plants that supplies drinking water to the region and found that metal levels did not exceed federal criteria. EPA public information officer Carlos Vega said more samples will be analyzed and the EPA will continue to inform the community. No timeline for the additional testing has been established.

For decades, most of Puerto Rico’s electricity has been generated in the southern part of the island. The Puerto Rico Electric Power Authority uses over 30,000 miles of distribution lines to send energy generated in the south to more urban areas, primarily in the north, like San Juan.

Coastal power plants in the south have posed health risks for community members, Santiago said; according to a 2022 report from the environmental law nonprofit Earthjustice, the AES plant produces 800 tons of coal ash waste per day that contaminates the air and nearby waters. Many low-income residents in the south struggle to pay electricity bills that are more than 30 percent higher than in the U.S. as a whole. Nearly half of Guayama’s residents were below the poverty line in 2022. 

AES did not respond to multiple email requests for comment. AES Puerto Rico said that their plants are in compliance with regulations in a 2020 press release.

A small blue building sits in front of a large industrial complex with cooling towers.
The Aguirre Power Complex oil-fired plant in Salinas, Puerto Rico is scheduled to retire by 2030. The plant neighbors Jobos Bay, a protected estuary home to multiple endangered species, according to the National Oceanic and Atmospheric Association. Esther Frances/Medill News Service

An EPA inspection in 2021 revealed the coal facility was not in compliance with the Clean Water Act for releasing polluted stormwater without a permit. In 2022, the EPA found the coal plant exceeded legal emission limits for pollutants like carbon monoxide and mercury, according to an Earthjustice analysis. The EPA issued several other violations for the coal plant dating back to 2019, citing it for inadequate disposal of coal ash and endangering residents, according to the Environmental Integrity Project, an environmental watchdog group.

“People know that it’s a terrible impact, but it’s not easy to move to find somewhere else to live,” Santiago said.

Many local residents cannot move because average home prices have increased across the island since Hurricane Maria hit in 2017, according to activists and researchers in Puerto Rico. 

The coal plant is scheduled to retire in 2027, when a 25-year contract expires between AES and the Puerto Rico Electric Power Authority. To replace coal, AES has turned to utility-scale solar power.

AES Puerto Rico began construction for the 135-acre Ilumina Solar PV Park in Guayama in 2011. AES Puerto Rico’s coal plant, solar farm and some smaller projects together supplied up to 25 percent of Puerto Rico’s electricity.

A few solar farms have already been built on the South Coast, and in February 2022, the Puerto Rican Energy Bureau approved 18 new utility-scale solar panel projects across the island. Critics say the solar farms are using dwindling agricultural land, and a group of environmental and public health organizations including Earthjustice and the Sierra Club Puerto Rico filed a lawsuit in August 2023 to stop the government of Puerto Rico from allowing the solar farms to be built on ecologically important land.

2019 law mandated that the Puerto Rico Electric Power Authority reduce the use of fossil fuels for electrical generation on the island and generate 100 percent renewable energy by 2050. In addition, the Puerto Rico Electric Power Authority issued an Integrated Resource Plan in 2020 that includes a plan to retire the Aguirre Power Complex oil-fired plant by 2030. 

Instead of large solar farms, many local organizations in Puerto Rico see a better solution for their region’s electricity production—rooftop solar panels. They prefer this kind of solar energy for communities because unlike large solar facilities, rooftop solar installations do not use up farmland, which in Puerto Rico decreased by 37.5 percent between 2012 and 2018, according to the Census of Agriculture

In February, the Department of Energy released results of its study of Puerto Rican renewable energy, named PR100. The study reported the huge potential for rooftop solar in Puerto Rico—up to 6,100 MW by 2050 under the most aggressive scenario—but said utility-scale renewable energy would still be needed. 

The study also noted the challenges in deploying rooftop solar, including unstable roofs and lack of property titles. But Puerto Rico has a long way to go to reach the 2050 green energy goal; as of 2022, only 6 percent of electricity generated in Puerto Rico was renewable.

Ruth Santiago’s son Jose and other electricians helped install rooftop solar panels in Salinas neighborhoods through Coquí Solar, a community-based organization working to help low-income and vulnerable residents access solar energy.

The solar kits from Coquí Solar provided homes with solar panels and batteries, which could provide electricity during a blackout. Rooftop solar arrays often cannot meet a home’s entire electricity demand, but the battery storage the solar array generates can run crucial things like refrigerators, lights and medical equipment in case of an electrical blackout, while also reducing a household’s energy bills significantly. 

The kits cost about $7,000, which Ruth Santiago said Coquí Solar purchased using grants from various Puerto Rico-based organizations and foundations. Coquí Solar, working with other organizations in the area, also installed the equipment in the homes of vulnerable community members for free. Jose Santiago said the elderly and people living with chronic illnesses and disabilities in the area suffer during blackouts, which are frequent on the island.

“Every year, the power leaves for five, six days,” Jose Santiago said. “Sometimes more, sometimes several times, and you don’t want to see the old people in the line at the gas station trying to get ice to put in their fridge. So, [rooftop solar energy] helps them.”

After Hurricane Maria caused structural damages to the island’s electrical infrastructure in 2017, the Puerto Rico Electric Power Authority reported that all of their electric consumers, over 1.5 million customers, were without power. Some Puerto Rico residents spent close to 11 months without power, according to climate change and development specialist Ramón Bueno.

“That just sounds like a number, but all we have to think about is how do we deal with losing power for two, three days? That’s radical,” Bueno said. “So, two, three months is very radical. And five times that is even more.”

Ruth Santiago said Coquí Solar’s rooftop solar installments have empowered the community by giving residents “agency” over their electricity generation. The desire for electricity independence had grown in Puerto Rico after recent destructive hurricanes and other impacts of climate change.

Organizations like Coquí Solar have spent years working toward decentralizing solar energy across the island, and Bueno said many are strong and independent.

“They’re pretty articulate framers of an alternative way to move forward with energy systems,” Bueno said. 

Ruth Santiago worried that the retirement dates of the coal and oil plants could be delayed or that a new infrastructure would depend heavily on utility scale solar that would rely on a centralized grid and expose communities to blackouts during and after storms. She hoped that concerns about the community’s health and environment would be enough to force the plants to close on schedule and that rooftop solar would be prioritized over large-scale solar. 

“We need to really go beyond resilience, we need to go toward energy security and sovereignty, and that’s what we’re trying to do, at least create and do these pilot projects, these community-based examples of what that transformation would look like,” Ruth Santiago said. “If we don’t do it now, then when?”

This story was originally published by Grist with the headline As fossil fuel plants face retirement, a Puerto Rico community pushes for rooftop solar on May 18, 2024.

Read the full story here.
Photos courtesy of

State approves Zenith Energy’s air quality permit

The DEQ found Zenith was in compliance with state law, had met all applicable rules and regulations and had submitted a complete permit application, including an updated land-use credential issued by the city of Portland.

The Oregon Department of Environmental Quality has issued Zenith Energy’s air quality permit, allowing the controversial company to continue storing and loading crude oil and renewable fuels at a hub in Northwest Portland. State regulators issued the permit on Thursday after evaluating more than 800 written and 60 verbal comments, many of them opposing the permit. Zenith needed the permit approval to continue operations at the Critical Energy Infrastructure hub on the Willamette River. The Houston-based Zenith’s presence in Portland has attracted fierce backlash in recent years from environmental activists and some city residents concerned with the company’s myriad violations and the potential for fuel spills and explosions in the event of a large earthquake in the region. Zenith is one of 11 fuel companies at the hub.Lisa Ball, an air quality permit manager with DEQ, said the agency issued the permit because it found Zenith was in compliance with state law, had met all applicable rules and regulations and had submitted a complete permit application, including an updated land-use credential issued by the city of Portland. The new permit requires less frequent state inspections and company reporting requirements than Zenith’s previous permit, Ball said, though the department retains the authority to inspect the company as needed or in the case of violations. Ball said the new permit is also more stringent than Zenith’s previous permit because it prohibits crude oil storage and loading starting in October 2027 and includes stricter emission standards. It requires Zenith to reduce by 80% the amount of emitted volatile organic compounds, known as VOCs, a group of air pollutants that can cause irritation to the eyes, nose and throat, damage to the liver, kidney and central nervous system and, in some cases, cause cancer. It also adds PM 2.5 and greenhouse gases – chiefly carbon dioxide – to the company’s regulated pollutants. PM 2.5 are tiny particles that are small enough to penetrate deep into the lungs and even enter the bloodstream. “This permit is more protective of human health and the environment,” Ball said.Environmental groups have disputed that characterization and said their own analysis – submitted as part of the public comments on the permit application – shows Zenith will not meet the emissions limits in the newly granted permit. “DEQ chose to accept Zenith’s mathematical sleight of hand despite expert analysis showing real-world pollution will be much worse,” said Audrey Leonard, an attorney with Columbia Riverkeeper, a Hood River-based environmental group focused on protecting the river. “The public knows better – Zenith’s expansion of so-called renewable fuels will result in more harm to our rivers, air and communities.” A previous analysis of Zenith’s draft air quality permit application by The Oregonian/OregonLive showed the permit, if approved, was not likely to lead to substantial emission reductions because Zenith is currently emitting far below the cap of its previous permit limits. The analysis also found the permit would likely pave the way for Zenith to significantly expand the amount of fuel it stores in Portland because renewable fuels such as renewable diesel or renewable naphta produce less pollution, allowing the company to store more of them without going over the permit limits. Zenith officials praised the permit approval and said the company’s transition to renewable fuel storage would ensure Oregon has the supply it needs to meet its carbon reduction goals. “The infrastructure investments being made during this transition will also ensure our terminal continues to operate at the highest standards of safety. We look forward to supporting regional leaders in creating a lower-carbon future,” Zenith’s chief commercial officer Grady Reamer said in a statement. In the meantime, Portland is still in the midst of an investigation into the potential violations of Zenith Energy’s franchise agreement, including whether Zenith violated the law when it constructed and used new pipes at an additional dock on the river – without reporting it to authorities – to load renewable and fossil fuels. City officials have said the investigation would likely conclude by the end of the year. Also ongoing: a legal challenge over the city’s land-use approval for Zenith, filed by environmental groups with the Oregon Land Use Board of Appeals. Portland officials have had a complex relationship with the company. The city denied Zenith’s land-use credential in 2001 and defended the decision in court before reversing course and approving it with the condition that Zenith transition to renewable fuels and secure a new air permit with more stringent emission limits. In February, despite mounting opposition from local activists, city staff once again approved a land-use credential for Zenith.The approval came after DEQ last year found Zenith had been using the McCall dock and pipes to load and unload fuels without authorization. As part of the sanctions, DEQ officials required Zenith to seek a new land-use approval before continuing its air quality permit process.DEQ officials said they would reevaluate Zenith’s air permit if the legal case or city investigation led to any changes to the status of the land-use approval – such as if the city revoked it or the state land use panel invalidated it.The newly issued air permit is valid for five years. If you purchase a product or register for an account through a link on our site, we may receive compensation. By using this site, you consent to our User Agreement and agree that your clicks, interactions, and personal information may be collected, recorded, and/or stored by us and social media and other third-party partners in accordance with our Privacy Policy.

Renewables have now passed coal globally – and growth is fastest in countries like Bhutan and Nepal

Even as clean energy progress slows in the US and EU, developing nations such as Bhutan, Nepal, Sri Lanka and the Maldives are surging ahead.

Commuters pass a new solar array in the Maldives. Ishara S. Kodikara/GettyFor the first time, renewables have toppled coal as the world’s leading source of electricity, in keeping with International Energy Agency projections for this historic shift. But progress is uneven. The shift away from fossil fuels has slowed in the United States and the European Union – but accelerated sharply in developing nations. China attracts headlines for the sheer scale of its shift. But many smaller nations are now taking up clean energy, electric vehicles and battery storage at remarkable speed, driven by governments, businesses and individuals. Importantly, these moves often aren’t about climate change. Reasons range from cutting dependence on expensive fossil fuels and international market volatility to reducing reliance on unreliable power grids to finding ways to boost livelihoods. Pakistan’s enormous solar boom is partly a response to spiking power prices and grid unreliability. Meanwhile Pacific nations see clean energy as a way to slash the crippling cost of importing diesel and expand electricity access. My research has given me insight into the paths four countries in South Asia have taken to seize the benefits of clean technology, each shaped by unique pressures and opportunities. All are moving rapidly, blending necessity with ambition. Their stories show the clean energy path isn’t one-size-fits-all. Bhutan: from hydropower giant to diversified energy The landlocked Himalayan kingdom of Bhutan has long relied on hydroelectricity. But the country faces a persistent challenge: seasonal variability. Most of Bhutan’s plants are run-of-the-river, meaning they don’t have large dams. As a result, power generation drops sharply during dry winter months when river flows are low, particularly between January and April. At the same time, rapid industrialisation has driven up demand for power, outstripping winter capacity. Climate change is expected to worsen this variability. During these months, Bhutan shifts from its role as clean-energy exporter to an importer, buying electricity from India. But imports aren’t a long-term solution. To secure reliable supply year-round, Bhutan’s government is diversifying energy sources. To that end, up to 300 megawatts of solar is expected to be installed, potentially as soon as next year. Bhutan’s first utility-scale solar farm is under construction. Over time, Bhutan will blend hydro with solar, wind and biomass to create a more balanced clean energy mix. Bhutan has long relied on hydroelectricity. But authorities are moving to find new sources of power as demand surges and river flows become less reliable. Kuni Takahashi/Getty Nepal: electric cars in Kathmandu Nepal has long imported all its petrol from India. But when India launched an unofficial blockade in 2015, vital supplies and fuel tankers stopped coming. Fuel prices surged. People queued for days at petrol stations, while black-market prices soared and public transport collapsed. Households, already enduring many hours of daily blackouts, faced even worse conditions. The crisis exposed Nepal’s deep vulnerability. The mountainous nation makes its own electricity, largely through hydropower. But it had to import petrol. In 2018, authorities launched an ambitious program to shift to electric vehicles and free the nation from dependence on imports. Electric vehicles would charge on domestic hydropower and reduce Kathmandu’s well-known air pollution. The plan called for electric vehicles to reach 90% share of new commuter vehicle sales (including popular two-wheelers) by 2030. This year, the electric vehicle share for new four-wheel vehicles reached 76%, jumping rapidly in just the past year. Exemptions and incentives have supported this growth. As electric vehicles surge, new charging station and maintenance businesses have emerged. It’s not all smooth sailing. A protest movement recently overthrew Nepal’s government, creating uncertainty. Analysts warn stable government policy and infrastructure investment will be essential. Electric vehicles are soaring in popularity in Nepal. Pictured: the opening of an event by Chinese carmaker BYD in Kathmandu in February 2025. Chinese News Service/Getty Sri Lanka: innovation emerging from crisis Between 2022 and 2023, a serious economic crisis hit Sri Lanka. Citizens reeled from severe energy shocks, such as fuel shortages, 12-hour blackouts and punishing electricity price hikes of over 140%. Half a million people were disconnected from the grid as they were unable to pay. The crisis showed how fragile the island nation’s energy system was. Authorities looked for better options. Hydroelectricity has long been a mainstay, but solar and wind are growing rapidly. Sri Lanka runs on about 50% renewables, with hydro the largest contributor by far. By 2030, the goal is to reach 70% renewable energy. While renewables offer cheap power, they have to be coupled with energy storage and new systems to integrate them into the grid. In response, universities, international partners and companies have worked to integrate renewable energy in the grid, developing artificial intelligence-based systems to improve reliability and supply to consumers. For instance, they can reduce voltage fluctuations associated with high uptake of rooftop solar. Importantly, some of these projects have a gender focus, prioritising women-led small enterprises and training for women engineers. The crisis may prove a turning point by exposing vulnerabilities and pushing Sri Lanka to adopt new energy solutions. After a severe energy crisis gripped Sri Lanka, authorities began looking for ways to reduce reliance on imported fossil fuels. Pictured: a closed service station in Colombo in late 2022 with a sign warning of no petrol. Ishara S. Kodikara/Getty Maldives: bringing solar to diesel-dependent islands Few countries are more vulnerable to fossil fuel dependence than the Maldives. Spread across 1,000 islands, the nation relies on imported diesel for power generation, with high transport costs and exposure to oil price swings. In 2014, Maldivian authorities launched the Preparing Outer Islands for Sustainable Energy Development project as part of a plan to reach net-zero by 2030. The project focuses on around 160 poorer islands further from the capital, progressively replacing a reliance on diesel generators with solar arrays, battery storage and upgraded power grids. Women’s economic empowerment is a priority, as women-led enterprises run solar systems and utilities train female operations officers. The Maldives government released a 2030 roadmap, which has a welcome focus on the “just energy transition” – ensuring communities benefit equitably. For the Maldives, renewables are more than an environmental choice — they are a lifeline for economic survival and resilience. Lessons from the margins While these energy transitions rarely make global headlines, Bhutan, Nepal, Sri Lanka and the Maldives show how smaller economies are finding their own pathways to cleaner, more resilient energy. Their reasons to act stem from different crises, from blockades to economic upheaval. But each nation is working to turn challenge into opportunity. Reihana Mohideen has previously consulted for the POISED project in the Maldives.

Riccardo Comin, two MIT alumni named 2025 Moore Experimental Physics Investigators

MIT physicist seeks to use award to study magnetoelectric multiferroics that could lead to energy-efficient storage devices.

MIT associate professor of physics Riccardo Comin has been selected as 2025 Experimental Physics Investigator by the Gordon and Betty Moore Foundation. Two MIT physics alumni — Gyu-Boong Jo PhD ’10 of Rice University, and Ben Jones PhD ’15 of the University of Texas at Arlington — were also among this year’s cohort of 22 honorees.The prestigious Experimental Physics Investigators (EPI) Initiative recognizes mid-career scientists advancing the frontiers of experimental physics. Each award provides $1.3 million over five years to accelerate breakthroughs and strengthen the experimental physics community.At MIT, Comin investigates magnetoelectric multiferroics by engineering interfaces between two-dimensional materials and three-dimensional oxide thin films. His research aims to overcome long-standing limitations in spin-charge coupling by moving beyond epitaxial constraints, enabling new interfacial phases and coupling mechanisms. In these systems, Comin’s team explores the coexistence and proximity of magnetic and ferroelectric order, with a focus on achieving strong magnetoelectric coupling. This approach opens new pathways for designing tunable multiferroic systems unconstrained by traditional synthesis methods.Comin’s research expands the frontier of multiferroics by demonstrating stacking-controlled magnetoelectric coupling at 2D–3D interfaces. This approach enables exploration of fundamental physics in a versatile materials platform and opens new possibilities for spintronics, sensing, and data storage. By removing constraints of epitaxial growth, Comin’s work lays the foundation for microelectronic and spintronic devices with novel functionalities driven by interfacial control of spin and polarization.Comin’s project, Interfacial MAGnetoElectrics (I-MAGinE), aims to study a new class of artificial magnetoelectric multiferroics at the interfaces between ferroic materials from 2D van der Waals systems and 3D oxide thin films. The team aims to identify and understand novel magnetoelectric effects to demonstrate the viability of stacking-controlled interfacial magnetoelectric coupling. This research could lead to significant contributions in multiferroics, and could pave the way for innovative, energy-efficient storage devices.“This research has the potential to make significant contributions to the field of multiferroics by demonstrating the viability of stacking-controlled interfacial magnetoelectric coupling,” according to Comin’s proposal. “The findings could pave the way for future applications in spintronics, data storage, and sensing. It offers a significant opportunity to explore fundamental physics questions in a novel materials platform, while laying the ground for future technological applications, including microelectronic and spintronic devices with new functionalities.”Comin’s group has extensive experience in researching 2D and 3D ferroic materials and electronically ordered oxide thin films, as well as ultrathin van der Waals magnets, ferroelectrics, and multiferroics. Their lab is equipped with state-of-the-art tools for material synthesis, including bulk crystal growth of van der Waals materials and pulsed laser deposition targets, along with comprehensive fabrication and characterization capabilities. Their expertise in magneto-optical probes and advanced magnetic X-ray techniques promises to enable in-depth studies of electronic and magnetic structures, specifically spin-charge coupling, in order to contribute significantly to understanding spin-charge coupling in magnetochiral materials.The coexistence of ferroelectricity and ferromagnetism in a single material, known as multiferroicity, is rare, and strong spin-charge coupling is even rarer due to fundamental chemical and electronic structure incompatibilities.The few known bulk multiferroics with strong magnetoelectric coupling generally rely on inversion symmetry-breaking spin arrangements, which only emerge at low temperatures, limiting practical applications. While interfacial magnetoelectric multiferroics offer an alternative, achieving efficient spin-charge coupling often requires stringent conditions like epitaxial growth and lattice matching, which limit material combinations. This research proposes to overcome these limitations by using non-epitaxial interfaces of 2D van der Waals materials and 3D oxide thin films.Unique features of this approach include leveraging the versatility of 2D ferroics for seamless transfer onto any substrate, eliminating lattice matching requirements, and exploring new classes of interfacial magnetoelectric effects unconstrained by traditional thin-film synthesis limitations.Launched in 2018, the Moore Foundation’s EPI Initiative cultivates collaborative research environments and provides research support to promote the discovery of new ideas and emphasize community building.“We have seen numerous new connections form and new research directions pursued by both individuals and groups based on conversations at these gatherings,” says Catherine Mader, program officer for the initiative.The Gordon and Betty Moore Foundation was established to create positive outcomes for future generations. In pursuit of that vision, it advances scientific discovery, environmental conservation, and the special character of the San Francisco Bay Area.

New England’s final coal plant shuts down years ahead of schedule

Even as the federal government attempts to prop up the waning coal industry, New England’s last coal-fired power plant has ceased operations three years ahead of its planned retirement date. The closure of the New Hampshire facility paves the way for its owner to press ahead with an initiative to transform the site…

Additionally, solar power production accelerated from 2010 on, lowering demand on the grid during the day and creating more evening peaks. Coal plants take longer to ramp up production than other sources, and are therefore less economical for these shorter bursts of demand, Dolan said. In recent years, Merrimack operated only a few weeks annually. In 2024, the plant generated just 0.22% of the region’s electricity. It wasn’t making enough money to justify continued operations, observers said. The closure ​“is emblematic of the transition that has been occurring in the generation fleet in New England for many years,” Dolan said. ​“The combination of all those factors has meant that coal facilities are no longer economic in this market.” Granite Shore Power, the plant’s owner, first announced its intention to shutter Merrimack in March 2024, following years of protests and legal wrangling by environmental advocates. The company pledged to cease coal-fired operations by 2028 to settle a lawsuit claiming that the facility was in violation of the federal Clean Water Act. The agreement included another commitment to shut down the company’s Schiller plant in Portsmouth, New Hampshire, by the end of 2025; this smaller plant can burn coal but hasn’t done so since 2020. At the time, the company outlined a proposal to repurpose the 400-acre Merrimack site, just outside Concord, for clean energy projects, taking advantage of existing electric infrastructure to connect a 120-megawatt combined solar and battery storage system to the grid. It is not yet clear whether changes in federal renewable energy policies will affect this vision. In a statement announcing the Merrimack closure, Granite Shore Power was less specific about its plans than it had been, saying, ​“We continue to consider all opportunities for redevelopment” of the site, but declining to follow up with more detail. Still, advocates are looking ahead with optimism. “This is progress — there’s no doubt the math is there,” Corkery said. ​“It is never over until it is over, but I am very hopeful.”

Fears of Massive Battery Fires Spark Local Opposition to Energy Storage Projects

Lithium-ion batteries are increasingly being used to store power for electrical grids, but some localities are concerned about fire risks

More and more, big arrays of lithium-ion batteries are being hooked up to electrical grids around the U.S. to store power that can be discharged in times of high demand.But as more energy storage is added, residents in some places are pushing back due to fears that the systems will go up in flames, as a massive facility in California did earlier this year.Proponents maintain that state-of-the-art battery energy storage systems are safe, but more localities are enacting moratoriums.“We’re not guinea pigs for anybody ... we are not going to experiment, we’re not going to take risk,” said Michael McGinty, the mayor of Island Park, New York, which passed a moratorium in July after a storage system was proposed near the village line.At least a few dozen localities around the United States have moved to temporarily block development of big battery systems in recent years.Long Island, where the power grid could get a boost in the next few years as offshore wind farms come online, has been a hotbed of activism, even drawing attention recently from the Trump administration. Opponents there got a boost in August when Environmental Protection Agency Administrator Lee Zeldin visited New York to complain that the state was rushing approvals of sites in order to meet “delusional” green power goals — a claim state officials deny.Battery energy storage systems that suck up cheap power during periods of low demand, then discharge it at a profit during periods of high demand, are considered critical with the rise of intermittent energy sources such as wind and solar.Known by the acronym BESS, the systems can make grids more reliable and have been credited with reducing blackouts. A large battery system might consist of rows of shipping containers in a fenced lot, with the containers holding hundreds of thousands of cells.China and the United States lead the world in rapidly adding battery storage energy systems. However, Saudi Arabia, South Africa, Australia, Netherlands, Chile, Canada and the U.K. have commissioned or started construction on large projects since 2024, too, according to research from BloombergNEF.In the U.S., California and Texas have been leaders in battery storage. But other states are moving quickly, often with privately developed systems. While the Trump administration has been unsupportive or even hostile to renewable energy, key tax credits for energy storage projects were maintained in the recently approved federal budget for qualified projects that begin construction in the next eight years.Developers added 4,908 megawatts of battery storage capacity in the second quarter of 2025, with Arizona, California and Texas accounting for about three-quarters of that new capacity, according to a report from American Clean Power Association, an industry group. That’s enough to power nearly 1.7 million households.New York has an ambitious goal to add 6,000 megawatts of energy storage by 2030, half of it large-scale systems.Opposition to the storage systems usually focuses on the possibility of thermal runaway, a chain reaction of uncontrolled heating that can lead to fire or an explosion. Opponents point to past fires and ask: What if that happens in my neighborhood?A battery storage system in Moss Landing, California caught fire in January, sending plumes of toxic smoke into the atmosphere and forcing the evacuation of about 1,500 people..Experts in the field say battery systems have become safer over the years. Ofodike Ezekoye, a combustion expert and professor of mechanical engineering at The University of Texas at Austin, notes that failures are relatively infrequent, but also that no engineered system is 100% foolproof.“This is a relatively immature technology that is maturing quickly, so I think that there are a lot of really thoughtful researchers and other stakeholders who are trying to improve the overall safety of these systems,” Ezekoye said.Battery storage proponents say a facility like Moss Landing, where batteries were stored indoors, would not be allowed in New York, which has adopted fire codes that require modular enclosure design with required minimum spacing to keep fires from spreading.People who live near proposed sites are not always assured.In Washington state, the city of Maple Valley approved a six-month moratorium in July as a way “to protect us until we know more,” said city manager Laura Philpot.Voters in Halstead, Kansas, which has a moratorium, will be asked this Election Day whether they want to prohibit larger battery storage systems inside the city limits, according to Mayor Dennis Travis. He hopes the city can one day host a safely designed storage system, and said local opponents wrongly fixate on the California fire.The number of localities passing moratoriums began rising in 2023 and 2024, mirroring trends in battery storage deployment, with a notable cluster in New York, according to a presentation last year by the Pacific Northwest National Laboratory.Winnie Sokolowski is among area residents against a proposed 250-megawatt lithium-ion storage system in the Town of Ulster, New York, contending it is too close to schools and homes.“They’re banking on nothing happening, but I don’t think you can place it where they’re proposing and assume nothing’s going to happen,” Sokolowski said. “It’s just too risky if it does.”The developer, Terra-Gen, said the design will keep a fire from spreading and that the system “poses no credible, scientific-based threat to neighbors, the public or the environment.”New York State Energy Research and Development Authority President Doreen Harris said she's confident the state has the right safety rules in place, and that scaling up the use of battery storage systems will “strengthen and modernize our grid.”She noted there also were local concerns in the early stages of siting solar farms, which have since proven their benefits.Associated Press writer Jennifer McDermott in Providence, Rhode Island, contributed to this report.Copyright 2025 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.Photos You Should See – Sept. 2025

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.