Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

In Texas, ex-oil and gas workers champion geothermal energy as a replacement for fossil-fueled power plants

News Feed
Tuesday, March 26, 2024

Sign up for The Brief, The Texas Tribune’s daily newsletter that keeps readers up to speed on the most essential Texas news. This is the second of a three-part series on emerging energy sources and Texas' role in developing them. Part one, on hydrogen fuel, published on Monday; part three, on small nuclear reactors, will publish on Wednesday. STARR COUNTY — In 2009, on a plot of shrub-covered cattle land about 45 miles northwest of McAllen, Shell buried and abandoned a well it drilled to look for gas. The well turned out to be a dry hole. Vegetation grew back over the site. In 2021, a Houston-based energy company run by former Shell employees came looking for it. This company wasn’t drilling for oil or gas, though. Its engineers were looking for a place to experiment with their technology for producing geothermal energy, created by Earth’s underground heat. A startup called Sage Geosystems leased the site. The company installed a wellhead and brought in a diesel-powered pump. They used fluid to create cracks in the rock deep below the surface, a technique similar to fracking for oil and gas. One day last March, the crew pumped 20,000 barrels of water into the 2-mile-deep well. Hours later, an operator opened the well from a control room. Pipes above ground shook as the pressurized water gushed back up. The water spun small turbines, generating electricity. The pressurized water, which was pumped underground and later released to the surface through the well on the right, at the Starr County demonstration on March 22, 2023. Credit: Verónica Gabriela Cárdenas for The Texas Tribune Left: Water spins a turbine at the Starr County demonstration site. Right: An operator controls the flow in and out of the well. Credit: Verónica Gabriela Cárdenas for The Texas Tribune Sage and other companies believe geothermal power is key to replacing polluting coal- and gas-fired power plants. Even though solar and wind are proven clean energy sources, they only produce electricity when the sun shines or the wind blows. Geothermal power could provide continuous, emissions-free energy. “Geothermal heat doesn’t have those variable conditions,” University of Texas at Austin clean energy expert Michael Webber said. “If you hit a hot spot below ground — might be thousands of feet down — the heat won’t matter based on whether it’s cloudy or whether it’s summer.” Texas has become an early hot spot for geothermal energy exploration. At least three companies are based in Houston, and scores of former oil industry workers and executives are taking their knowledge of geology, drilling and extraction to a new energy source. “We’ve punched over a million holes in the ground in Texas since Spindletop,” said former Texas oil and gas regulator Barry Smitherman, who has become a geothermal advocate. “So we have a lot of knowledge, and we have a lot of history and skill set.” Hveragerði, a city in Iceland, where 85% of the country's energy is sustainable, either hydroelectric or geothermal. Credit: Raul Moreno/SOPA Images/via REUTERS Heat constantly radiates out from the center of Earth as radioactive elements break down. That energy warms water that bubbles up to or escapes as steam at the surface. Humans have taken advantage of that phenomenon — an early form of geothermal power — for heating, bathing and cooking since ancient times. For more than 100 years, engineers have used that underground hot water or steam to generate electricity. Geothermal power in 2015 fueled 27% of the electricity in Iceland, which sits on one of the world’s most active volcanic zones. In 2022, it generated about 5% of the electricity in California. The United States is the top geothermal electricity producer in the world. Still, the total amount of geothermal electricity produced in America is tiny compared with other sources. It accounted for about 4 gigawatts last year, according to a federal analysis, or enough to power about 800,000 Texas homes. Businesses such as Sage and government researchers say there’s a lot more geothermal power to be had by pumping fluid through hot rock where there is no natural water. With technological advances, a government analysis predicts geothermal power in the U.S. could grow to 90 gigawatts by 2050. That would have been enough to power the entire Texas grid during last summer’s highest-demand day. Companies are racing to develop their technology and techniques to harness this energy source. They vary in how deep they want to drill (from around 7,000 feet, which oil and gas equipment can handle, to 66,000 feet, which it cannot), how they heat the water (in the well or in the rock) and how they bring the heated water back up (in the same well that sent it down or with a second one). Like oil wildcatters, the geothermal industry must figure out the best places to drill. They’ll face the same concerns about triggering earthquakes that have dogged oil and gas fracking operations and previous geothermal efforts. In 2006, a pilot geothermal plant in Switzerland caused a magnitude 3.4 earthquake that damaged buildings and led to the plant’s closure. In 2017, a magnitude 5.5 earthquake linked to a pilot geothermal project in South Korea injured dozens. Companies should follow existing best practices informed by research to monitor seismicity and adjust or pause operations as needed, said William Ellsworth, an emeritus professor at Stanford University. States could also mandate these protocols. “You have to pay attention to what you’re doing,” Ellsworth said. And perhaps most importantly, the geothermal businesses will have to show they can compete with the cost of other power sources, with help from the federal government in the form of Inflation Reduction Act tax credits. The more the technology is deployed, the more the costs might come down, Rice University Associate Professor Daniel Cohan said. Getting the price where the federal government hopes for it to be cost-competitive is “feasible,” Cohan said, “but there’s no guarantee that the industry will get there.” The federal Department of Energy said this month that $20 billion to $25 billion needed to be invested by 2030 to move toward widespread use. “We’re all doing something a little bit different,” Sage CEO Cindy Taff said. “One of us is going to have a breakthrough that really commercializes this stuff.” The daughter of a geophysicist who worked for Mobil, Taff studied mechanical engineering and built a 36-year career at Shell. She worked her way up from production engineer to vice president, managing a team with an annual budget of around $1 billion. Taff explains how Sage Geosystems uses its Starr County well to store energy. Credit: Verónica Gabriela Cárdenas for The Texas Tribune With freckles and curly hair that falls past her shoulders, Taff said she knew the world wanted to pivot to new energy sources. Her daughter, concerned about climate change, urged her mother to get away from the “dark side” of oil and gas. When former colleagues from Shell told Taff they were co-founding Sage and invited her to join them, she got excited. Taff saw that Sage was a nimble company with people she considered some of the smartest in the industry. The geothermal business had a lot of growing to do, like the early days of wind or solar. Her work could have a large impact. “It was exciting to be working with people that I knew had a sense of urgency and made a difference,” Taff said. “And then, it was exciting to be working for yourself in a way that you can push the agenda.” So, in 2020, Taff took the leap. Her daughter joined the company too. Building interest in geothermal  In 1989, the Exxon Valdez oil tanker spilled 11 million gallons of oil off the coast of Alaska, killing some 250,000 seabirds, 2,800 sea otters and 300 harbor seals. In Augusta, Georgia, 10-year-old Jamie Beard was riveted by the news coverage. “I understood things enough to know that that was not something we wanted,” Beard said. That experience pushed Beard into environmental activism, starting the next day, when she took a Kleenex box decorated like the ocean to raise money for coral reefs. She painted murals about environmental rights. In college, at Appalachian State University, she organized an Earth Day festival and tied herself to trees on a West Virginia mountaintop to protest workers scraping them away to mine for coal. Years before Jamie Beard helped launch Sage Geosystems, she was a student at Appalachian State University teaching others how to use solar ovens. Credit: Courtesy of Jamie Beard Beard went on to study environmental law at Boston University. She represented corporations, telling herself she could make change best from the inside. That proved incorrect. She joined a startup working on technology that could be applied to geothermal drilling. That’s when her life changed. Beard read an interview about the huge potential for geothermal power to provide electricity around the world. The interview was with Massachusetts Institute of Technology professor Jefferson Tester, who led a team that published a 372-page assessment of the resource for the federal government in 2006. “The technology needed to advance … but it wasn’t like it had to invent a whole new area because it’s so compatible with what we do with hydrocarbon extraction,” Tester said in an interview with the Texas Tribune. “They drill holes in the ground and they pull fluids out of the ground, whether they’re gas or liquids, and they sell it. Well, that’s what you do for geothermal too.” Beard read the report over and over. This is my career, Beard thought. The history of modern geothermal power went back a century: The world’s first full-scale geothermal power plant started operating in 1913 in Italy. In 1960, Pacific Gas and Electric built the first commercial geothermal power plant in the United States at a spot in Northern California known as “The Geysers.” In the 1970s, the federal Department of Energy started researching pulling power from what was referred to as hot, dry rock. The country that decade suffered through Arab countries’ embargo on exporting oil to America, causing oil prices to skyrocket. Still, the technology didn’t get far enough for the concept to take off. The Larderello geothermal power plant, which is the world's oldest, was built in Tuscany, Italy. Credit: Enel Green Power Engineers built geothermal power plants where they could find existing water resources relatively easily, maybe marked by hot springs or fumaroles, which are holes where hot gases and vapors escape from underground, said Lauren Boyd, director of the U.S. Department of Energy’s geothermal technologies office. But building new plants got riskier as prime locations got harder to find. Beard saw opportunity. She knew the oil and gas industry could develop technology quickly. The U.S. ushered in the “shale revolution” as companies drilled horizontally and cracked open rock with hydraulic fracturing, known as fracking, to extract giant amounts of oil and gas. That technology could be used for geothermal. Beard, 45, is the type of person who speaks with an energy that rubs off on you. Her hair is cut into an angular bob; she wears artsy glasses. She made giving a TED talk look easy. Armed with a $1 million Department of Energy grant, Beard moved to the University of Texas at Austin around 2019 to convince people that now was the time to start a geothermal company. She argued that oil and gas experts did not have to be only the villains in the climate change story; they could also be the people who help alleviate it. Jamie Beard speaks at a SXSW panel titled "Geothermal and the Promise of Clean Energy Abundance" on March 9 in Austin. Credit: Courtesy of Jamie Beard “Oil and gas people are a gigantic brain trust,” Beard said. “They are a huge asset.” Beard had a young son. She learned he inherited a rare genetic condition that gave him a life expectancy of 10 or so years. A journalist from Wired who profiled Beard described a woman facing an existential choice: She could let the doom of his fate swallow her, or focus on changing the world. Beard started by reaching out to industry veterans whom she suspected were retired, golfing and bored. Maybe their grandchildren were after them for being part of the fossil fuel industry that contributes to climate change. Beard said she spent months talking with people like Lance Cook, who retired from Shell as a vice president. Beard said the reaction she usually got was “it’ll never work,” followed by a phone call a few weeks later that the person was still thinking about it. But Cook decided to jump in, and he became the chief technology officer for a new company named for Beard’s son, Sage. Chris Anderson, the leader of TED, known for its conferences with TED talks by experts on various topics, invested $16 million through his climate investment fund. Drilling firm Nabors invested $9 million more. Early successes  Beard wasn’t the only person who saw the potential of leveraging expertise from the oil and gas industry to develop geothermal in Texas. Tim Latimer grew up in a city of about 1,000 residents in Central Texas, where he remembers being fascinated by the Discovery Channel show “Build It Bigger” about constructing large projects that impact many lives, such as bridges, tunnels and dams. Latimer studied mechanical engineering at the University of Tulsa. He wanted a job back in Texas to be near family and friends, so when he graduated in 2012 he went to work on drilling sites while the shale revolution was taking off. Latimer considered whether he should be working in fossil fuels in a world confronting climate change. But working on rapidly developing technology alongside smart people excited him. Moving into wind or solar didn’t feel right after years studying drilling. Fervo CEO Tim Latimer at the Fervo Energy office in Houston on March 22. Credit: Mark Felix for the The Texas Tribune Then came the lightbulb moment. He found the same 2006 geothermal report that inspired Beard. He realized that what he was doing, which included drilling into high-temperature rock in South Texas, presented what he called a “huge opportunity for tech transfer” into geothermal. Latimer thought the idea was so obvious he could join a geothermal company already doing it. He found none. What if this could change how the world gets energy and no one tried it? he wondered. Like other startup founders, he’s articulate and dreams big. At a conference where some wore suits, he wore sneakers, a button-down and jeans. Latimer went to Stanford University Graduate School of Business and met a classmate getting a PhD in geothermal research. Together they started Fervo Energy. They headquartered the business in Houston. Their first Houston-based hire had 15 years of experience working for oil and gas companies Hess and BP. Fervo now employs 80 people, about 60% of whom came from oil and gas work. Fervo’s approach is basically to drill vertically, then use fracking technology to create horizontal cracks in the earth. That way, operators can send water down the well, where it can flow through the small cracks in the rock to heat before coming back up another nearby well. Two California energy providers have signed contracts to buy power from Fervo. Google also has a financial agreement with them. Oil and gas company Devon Energy Corporation invested $10 million. Last summer, Fervo ran a 30-day test in 375-degree rock in Nevada. They deemed it a success, and now the company is building a project nearby in Utah, next to where the Department of Energy has sponsored a geothermal field lab. They expect the project will put power mostly onto the California grid in 2026. Drilling deeper Back in Houston, in a beige set of warehouses on the south side of town, another company led by former oil and gas experts is taking a third approach. Henry Phan left a 19-year career in product development at Schlumberger, where his work included designing drilling equipment that could steer sideways, to join a former colleague who launched Quaise Energy. The company focuses on using millimeter waves — which are higher frequency microwaves like the ones used to heat food — to create wells by vaporizing rock. Henry Phan, vice president of engineering for Quaise Energy, stands with a wave guide that the company uses to direct waves from the surface into the hole they are creating, in Houston on Feb. 15, 2024. Credit: Joseph Bui for The Texas Tribune First: Employees of Quaise Energy stand next to a repurposed drilling rig that will hold a wave guide. Last: Vaporized basalt rock from testing at Quaise Energy in Houston. Credit: Joseph Bui for The Texas Tribune Oil and gas equipment begins to fail when temperatures below ground reach around 400 degrees. Drill bits wear down quickly against harder rock and electronics are pushed past their limits. Using millimeter waves would allow operators to “drill” deeper than oil and gas equipment can go — which means reaching hotter rock that could produce more power. The idea interested Phan, and he thought the physics made sense. Plus, he would work on cutting-edge technology that he thought could be a “big step change for humanity.” Quaise had a lot less bureaucracy than at the giant Schlumberger, where money going into product development seemed to be diminishing. In 2020, he signed on as Quaise’s vice president of engineering. He brought more former colleagues with him. Quaise aims to be able to drill into 300 to 500 degree rock by 2026, produce steam that can generate electricity by 2028 and go commercial after that. Their investors include Nabors, climate investors Prelude Ventures and billionaire Vinod Khosla. In early experiments with the technology, they used millimeter waves to “drill” through an eight-foot cylinder of basalt rock, plus samples of 1- to 2-inch-thick basalt. The examples sit on display in their office. “It’s cool to work on a new product,” Phan said, “but the fact that it can make an impact to … our life and our children’s life and their generation and their kids is monumental. So it’s rewarding from the point of view that we’re working on something that is so impactful if we can make this thing work.” Disclosure: Google, Rice University and the University of Texas at Austin have been financial supporters of The Texas Tribune, a nonprofit, nonpartisan news organization that is funded in part by donations from members, foundations and corporate sponsors. Financial supporters play no role in the Tribune's journalism. Find a complete list of them here. We can’t wait to welcome you to downtown Austin Sept. 5-7 for the 2024 Texas Tribune Festival! Join us at Texas’ breakout politics and policy event as we dig into the 2024 elections, state and national politics, the state of democracy, and so much more. When tickets go on sale this spring, Tribune members will save big. Donate to join or renew today.

Texas has become an early hot spot for geothermal energy exploration as scores of former oil industry workers and executives are taking their knowledge to a new energy source.

Sign up for The Brief, The Texas Tribune’s daily newsletter that keeps readers up to speed on the most essential Texas news.


This is the second of a three-part series on emerging energy sources and Texas' role in developing them. Part one, on hydrogen fuel, published on Monday; part three, on small nuclear reactors, will publish on Wednesday.

STARR COUNTY — In 2009, on a plot of shrub-covered cattle land about 45 miles northwest of McAllen, Shell buried and abandoned a well it drilled to look for gas. The well turned out to be a dry hole. Vegetation grew back over the site.

In 2021, a Houston-based energy company run by former Shell employees came looking for it.

This company wasn’t drilling for oil or gas, though. Its engineers were looking for a place to experiment with their technology for producing geothermal energy, created by Earth’s underground heat.

A startup called Sage Geosystems leased the site. The company installed a wellhead and brought in a diesel-powered pump. They used fluid to create cracks in the rock deep below the surface, a technique similar to fracking for oil and gas.

One day last March, the crew pumped 20,000 barrels of water into the 2-mile-deep well. Hours later, an operator opened the well from a control room. Pipes above ground shook as the pressurized water gushed back up. The water spun small turbines, generating electricity.

The pressurized water, which was pumped underground and later released to the surface through the well on the right, at the Starr County demonstration on March 22, 2023. Credit: Verónica Gabriela Cárdenas for The Texas Tribune
Left: Water spins a turbine at the Starr County demonstration site. Right: An operator controls the flow in and out of the well. Credit: Verónica Gabriela Cárdenas for The Texas Tribune

Sage and other companies believe geothermal power is key to replacing polluting coal- and gas-fired power plants. Even though solar and wind are proven clean energy sources, they only produce electricity when the sun shines or the wind blows. Geothermal power could provide continuous, emissions-free energy.

“Geothermal heat doesn’t have those variable conditions,” University of Texas at Austin clean energy expert Michael Webber said. “If you hit a hot spot below ground — might be thousands of feet down — the heat won’t matter based on whether it’s cloudy or whether it’s summer.”

Texas has become an early hot spot for geothermal energy exploration. At least three companies are based in Houston, and scores of former oil industry workers and executives are taking their knowledge of geology, drilling and extraction to a new energy source.

“We’ve punched over a million holes in the ground in Texas since Spindletop,” said former Texas oil and gas regulator Barry Smitherman, who has become a geothermal advocate. “So we have a lot of knowledge, and we have a lot of history and skill set.”

Hveragerði, a city in Iceland, where 85% of the country's energy is sustainable, either hydroelectric or geothermal. Credit: Raul Moreno/SOPA Images/via REUTERS

Heat constantly radiates out from the center of Earth as radioactive elements break down. That energy warms water that bubbles up to or escapes as steam at the surface. Humans have taken advantage of that phenomenon — an early form of geothermal power — for heating, bathing and cooking since ancient times.

For more than 100 years, engineers have used that underground hot water or steam to generate electricity. Geothermal power in 2015 fueled 27% of the electricity in Iceland, which sits on one of the world’s most active volcanic zones. In 2022, it generated about 5% of the electricity in California. The United States is the top geothermal electricity producer in the world.

Still, the total amount of geothermal electricity produced in America is tiny compared with other sources. It accounted for about 4 gigawatts last year, according to a federal analysis, or enough to power about 800,000 Texas homes.

Businesses such as Sage and government researchers say there’s a lot more geothermal power to be had by pumping fluid through hot rock where there is no natural water. With technological advances, a government analysis predicts geothermal power in the U.S. could grow to 90 gigawatts by 2050. That would have been enough to power the entire Texas grid during last summer’s highest-demand day.

Companies are racing to develop their technology and techniques to harness this energy source. They vary in how deep they want to drill (from around 7,000 feet, which oil and gas equipment can handle, to 66,000 feet, which it cannot), how they heat the water (in the well or in the rock) and how they bring the heated water back up (in the same well that sent it down or with a second one).

Like oil wildcatters, the geothermal industry must figure out the best places to drill. They’ll face the same concerns about triggering earthquakes that have dogged oil and gas fracking operations and previous geothermal efforts. In 2006, a pilot geothermal plant in Switzerland caused a magnitude 3.4 earthquake that damaged buildings and led to the plant’s closure. In 2017, a magnitude 5.5 earthquake linked to a pilot geothermal project in South Korea injured dozens.

Companies should follow existing best practices informed by research to monitor seismicity and adjust or pause operations as needed, said William Ellsworth, an emeritus professor at Stanford University. States could also mandate these protocols. “You have to pay attention to what you’re doing,” Ellsworth said.

And perhaps most importantly, the geothermal businesses will have to show they can compete with the cost of other power sources, with help from the federal government in the form of Inflation Reduction Act tax credits.

The more the technology is deployed, the more the costs might come down, Rice University Associate Professor Daniel Cohan said. Getting the price where the federal government hopes for it to be cost-competitive is “feasible,” Cohan said, “but there’s no guarantee that the industry will get there.”

The federal Department of Energy said this month that $20 billion to $25 billion needed to be invested by 2030 to move toward widespread use.

“We’re all doing something a little bit different,” Sage CEO Cindy Taff said. “One of us is going to have a breakthrough that really commercializes this stuff.”

The daughter of a geophysicist who worked for Mobil, Taff studied mechanical engineering and built a 36-year career at Shell. She worked her way up from production engineer to vice president, managing a team with an annual budget of around $1 billion.

Taff explains how Sage Geosystems uses its Starr County well to store energy. Credit: Verónica Gabriela Cárdenas for The Texas Tribune

With freckles and curly hair that falls past her shoulders, Taff said she knew the world wanted to pivot to new energy sources. Her daughter, concerned about climate change, urged her mother to get away from the “dark side” of oil and gas.

When former colleagues from Shell told Taff they were co-founding Sage and invited her to join them, she got excited.

Taff saw that Sage was a nimble company with people she considered some of the smartest in the industry. The geothermal business had a lot of growing to do, like the early days of wind or solar. Her work could have a large impact.

“It was exciting to be working with people that I knew had a sense of urgency and made a difference,” Taff said. “And then, it was exciting to be working for yourself in a way that you can push the agenda.”

So, in 2020, Taff took the leap. Her daughter joined the company too.

Building interest in geothermal 

In 1989, the Exxon Valdez oil tanker spilled 11 million gallons of oil off the coast of Alaska, killing some 250,000 seabirds, 2,800 sea otters and 300 harbor seals. In Augusta, Georgia, 10-year-old Jamie Beard was riveted by the news coverage.

“I understood things enough to know that that was not something we wanted,” Beard said.

That experience pushed Beard into environmental activism, starting the next day, when she took a Kleenex box decorated like the ocean to raise money for coral reefs. She painted murals about environmental rights. In college, at Appalachian State University, she organized an Earth Day festival and tied herself to trees on a West Virginia mountaintop to protest workers scraping them away to mine for coal.

Years before Jamie Beard helped launch Sage Geosystems, she was a student at Appalachian State University teaching others how to use solar ovens. Credit: Courtesy of Jamie Beard

Beard went on to study environmental law at Boston University. She represented corporations, telling herself she could make change best from the inside. That proved incorrect. She joined a startup working on technology that could be applied to geothermal drilling.

That’s when her life changed.

Beard read an interview about the huge potential for geothermal power to provide electricity around the world. The interview was with Massachusetts Institute of Technology professor Jefferson Tester, who led a team that published a 372-page assessment of the resource for the federal government in 2006.

“The technology needed to advance … but it wasn’t like it had to invent a whole new area because it’s so compatible with what we do with hydrocarbon extraction,” Tester said in an interview with the Texas Tribune. “They drill holes in the ground and they pull fluids out of the ground, whether they’re gas or liquids, and they sell it. Well, that’s what you do for geothermal too.”

Beard read the report over and over.

This is my career, Beard thought.

The history of modern geothermal power went back a century: The world’s first full-scale geothermal power plant started operating in 1913 in Italy. In 1960, Pacific Gas and Electric built the first commercial geothermal power plant in the United States at a spot in Northern California known as “The Geysers.”

In the 1970s, the federal Department of Energy started researching pulling power from what was referred to as hot, dry rock. The country that decade suffered through Arab countries’ embargo on exporting oil to America, causing oil prices to skyrocket. Still, the technology didn’t get far enough for the concept to take off.

The Larderello geothermal power plant, which is the world's oldest, was built in Tuscany, Italy. Credit: Enel Green Power

Engineers built geothermal power plants where they could find existing water resources relatively easily, maybe marked by hot springs or fumaroles, which are holes where hot gases and vapors escape from underground, said Lauren Boyd, director of the U.S. Department of Energy’s geothermal technologies office. But building new plants got riskier as prime locations got harder to find.

Beard saw opportunity. She knew the oil and gas industry could develop technology quickly. The U.S. ushered in the “shale revolution” as companies drilled horizontally and cracked open rock with hydraulic fracturing, known as fracking, to extract giant amounts of oil and gas. That technology could be used for geothermal.

Beard, 45, is the type of person who speaks with an energy that rubs off on you. Her hair is cut into an angular bob; she wears artsy glasses. She made giving a TED talk look easy.

Armed with a $1 million Department of Energy grant, Beard moved to the University of Texas at Austin around 2019 to convince people that now was the time to start a geothermal company. She argued that oil and gas experts did not have to be only the villains in the climate change story; they could also be the people who help alleviate it.

Jamie Beard speaks at a SXSW panel titled "Geothermal and the Promise of Clean Energy Abundance" on March 9 in Austin. Credit: Courtesy of Jamie Beard

“Oil and gas people are a gigantic brain trust,” Beard said. “They are a huge asset.”

Beard had a young son. She learned he inherited a rare genetic condition that gave him a life expectancy of 10 or so years. A journalist from Wired who profiled Beard described a woman facing an existential choice: She could let the doom of his fate swallow her, or focus on changing the world.

Beard started by reaching out to industry veterans whom she suspected were retired, golfing and bored. Maybe their grandchildren were after them for being part of the fossil fuel industry that contributes to climate change.

Beard said she spent months talking with people like Lance Cook, who retired from Shell as a vice president. Beard said the reaction she usually got was “it’ll never work,” followed by a phone call a few weeks later that the person was still thinking about it. But Cook decided to jump in, and he became the chief technology officer for a new company named for Beard’s son, Sage.

Chris Anderson, the leader of TED, known for its conferences with TED talks by experts on various topics, invested $16 million through his climate investment fund. Drilling firm Nabors invested $9 million more.

Early successes 

Beard wasn’t the only person who saw the potential of leveraging expertise from the oil and gas industry to develop geothermal in Texas.

Tim Latimer grew up in a city of about 1,000 residents in Central Texas, where he remembers being fascinated by the Discovery Channel show “Build It Bigger” about constructing large projects that impact many lives, such as bridges, tunnels and dams.

Latimer studied mechanical engineering at the University of Tulsa. He wanted a job back in Texas to be near family and friends, so when he graduated in 2012 he went to work on drilling sites while the shale revolution was taking off.

Latimer considered whether he should be working in fossil fuels in a world confronting climate change. But working on rapidly developing technology alongside smart people excited him. Moving into wind or solar didn’t feel right after years studying drilling.

Fervo CEO Tim Latimer at the Fervo Energy office in Houston on March 22. Credit: Mark Felix for the The Texas Tribune

Then came the lightbulb moment. He found the same 2006 geothermal report that inspired Beard. He realized that what he was doing, which included drilling into high-temperature rock in South Texas, presented what he called a “huge opportunity for tech transfer” into geothermal.

Latimer thought the idea was so obvious he could join a geothermal company already doing it. He found none. What if this could change how the world gets energy and no one tried it? he wondered. Like other startup founders, he’s articulate and dreams big. At a conference where some wore suits, he wore sneakers, a button-down and jeans.

Latimer went to Stanford University Graduate School of Business and met a classmate getting a PhD in geothermal research. Together they started Fervo Energy. They headquartered the business in Houston. Their first Houston-based hire had 15 years of experience working for oil and gas companies Hess and BP. Fervo now employs 80 people, about 60% of whom came from oil and gas work.

Fervo’s approach is basically to drill vertically, then use fracking technology to create horizontal cracks in the earth. That way, operators can send water down the well, where it can flow through the small cracks in the rock to heat before coming back up another nearby well.

Two California energy providers have signed contracts to buy power from Fervo. Google also has a financial agreement with them. Oil and gas company Devon Energy Corporation invested $10 million.

Last summer, Fervo ran a 30-day test in 375-degree rock in Nevada. They deemed it a success, and now the company is building a project nearby in Utah, next to where the Department of Energy has sponsored a geothermal field lab. They expect the project will put power mostly onto the California grid in 2026.

Drilling deeper

Back in Houston, in a beige set of warehouses on the south side of town, another company led by former oil and gas experts is taking a third approach.

Henry Phan left a 19-year career in product development at Schlumberger, where his work included designing drilling equipment that could steer sideways, to join a former colleague who launched Quaise Energy. The company focuses on using millimeter waves — which are higher frequency microwaves like the ones used to heat food — to create wells by vaporizing rock.

Henry Phan, vice president of engineering for Quaise Energy, stands with a wave guide that the company uses to direct waves from the surface into the hole they are creating, in Houston on Feb. 15, 2024. Credit: Joseph Bui for The Texas Tribune
First: Employees of Quaise Energy stand next to a repurposed drilling rig that will hold a wave guide. Last: Vaporized basalt rock from testing at Quaise Energy in Houston. Credit: Joseph Bui for The Texas Tribune

Oil and gas equipment begins to fail when temperatures below ground reach around 400 degrees. Drill bits wear down quickly against harder rock and electronics are pushed past their limits. Using millimeter waves would allow operators to “drill” deeper than oil and gas equipment can go — which means reaching hotter rock that could produce more power.

The idea interested Phan, and he thought the physics made sense. Plus, he would work on cutting-edge technology that he thought could be a “big step change for humanity.” Quaise had a lot less bureaucracy than at the giant Schlumberger, where money going into product development seemed to be diminishing. In 2020, he signed on as Quaise’s vice president of engineering. He brought more former colleagues with him.

Quaise aims to be able to drill into 300 to 500 degree rock by 2026, produce steam that can generate electricity by 2028 and go commercial after that. Their investors include Nabors, climate investors Prelude Ventures and billionaire Vinod Khosla.

In early experiments with the technology, they used millimeter waves to “drill” through an eight-foot cylinder of basalt rock, plus samples of 1- to 2-inch-thick basalt. The examples sit on display in their office.

“It’s cool to work on a new product,” Phan said, “but the fact that it can make an impact to … our life and our children’s life and their generation and their kids is monumental. So it’s rewarding from the point of view that we’re working on something that is so impactful if we can make this thing work.”

Disclosure: Google, Rice University and the University of Texas at Austin have been financial supporters of The Texas Tribune, a nonprofit, nonpartisan news organization that is funded in part by donations from members, foundations and corporate sponsors. Financial supporters play no role in the Tribune's journalism. Find a complete list of them here.


We can’t wait to welcome you to downtown Austin Sept. 5-7 for the 2024 Texas Tribune Festival! Join us at Texas’ breakout politics and policy event as we dig into the 2024 elections, state and national politics, the state of democracy, and so much more. When tickets go on sale this spring, Tribune members will save big. Donate to join or renew today.

Read the full story here.
Photos courtesy of

State approves Zenith Energy’s air quality permit

The DEQ found Zenith was in compliance with state law, had met all applicable rules and regulations and had submitted a complete permit application, including an updated land-use credential issued by the city of Portland.

The Oregon Department of Environmental Quality has issued Zenith Energy’s air quality permit, allowing the controversial company to continue storing and loading crude oil and renewable fuels at a hub in Northwest Portland. State regulators issued the permit on Thursday after evaluating more than 800 written and 60 verbal comments, many of them opposing the permit. Zenith needed the permit approval to continue operations at the Critical Energy Infrastructure hub on the Willamette River. The Houston-based Zenith’s presence in Portland has attracted fierce backlash in recent years from environmental activists and some city residents concerned with the company’s myriad violations and the potential for fuel spills and explosions in the event of a large earthquake in the region. Zenith is one of 11 fuel companies at the hub.Lisa Ball, an air quality permit manager with DEQ, said the agency issued the permit because it found Zenith was in compliance with state law, had met all applicable rules and regulations and had submitted a complete permit application, including an updated land-use credential issued by the city of Portland. The new permit requires less frequent state inspections and company reporting requirements than Zenith’s previous permit, Ball said, though the department retains the authority to inspect the company as needed or in the case of violations. Ball said the new permit is also more stringent than Zenith’s previous permit because it prohibits crude oil storage and loading starting in October 2027 and includes stricter emission standards. It requires Zenith to reduce by 80% the amount of emitted volatile organic compounds, known as VOCs, a group of air pollutants that can cause irritation to the eyes, nose and throat, damage to the liver, kidney and central nervous system and, in some cases, cause cancer. It also adds PM 2.5 and greenhouse gases – chiefly carbon dioxide – to the company’s regulated pollutants. PM 2.5 are tiny particles that are small enough to penetrate deep into the lungs and even enter the bloodstream. “This permit is more protective of human health and the environment,” Ball said.Environmental groups have disputed that characterization and said their own analysis – submitted as part of the public comments on the permit application – shows Zenith will not meet the emissions limits in the newly granted permit. “DEQ chose to accept Zenith’s mathematical sleight of hand despite expert analysis showing real-world pollution will be much worse,” said Audrey Leonard, an attorney with Columbia Riverkeeper, a Hood River-based environmental group focused on protecting the river. “The public knows better – Zenith’s expansion of so-called renewable fuels will result in more harm to our rivers, air and communities.” A previous analysis of Zenith’s draft air quality permit application by The Oregonian/OregonLive showed the permit, if approved, was not likely to lead to substantial emission reductions because Zenith is currently emitting far below the cap of its previous permit limits. The analysis also found the permit would likely pave the way for Zenith to significantly expand the amount of fuel it stores in Portland because renewable fuels such as renewable diesel or renewable naphta produce less pollution, allowing the company to store more of them without going over the permit limits. Zenith officials praised the permit approval and said the company’s transition to renewable fuel storage would ensure Oregon has the supply it needs to meet its carbon reduction goals. “The infrastructure investments being made during this transition will also ensure our terminal continues to operate at the highest standards of safety. We look forward to supporting regional leaders in creating a lower-carbon future,” Zenith’s chief commercial officer Grady Reamer said in a statement. In the meantime, Portland is still in the midst of an investigation into the potential violations of Zenith Energy’s franchise agreement, including whether Zenith violated the law when it constructed and used new pipes at an additional dock on the river – without reporting it to authorities – to load renewable and fossil fuels. City officials have said the investigation would likely conclude by the end of the year. Also ongoing: a legal challenge over the city’s land-use approval for Zenith, filed by environmental groups with the Oregon Land Use Board of Appeals. Portland officials have had a complex relationship with the company. The city denied Zenith’s land-use credential in 2001 and defended the decision in court before reversing course and approving it with the condition that Zenith transition to renewable fuels and secure a new air permit with more stringent emission limits. In February, despite mounting opposition from local activists, city staff once again approved a land-use credential for Zenith.The approval came after DEQ last year found Zenith had been using the McCall dock and pipes to load and unload fuels without authorization. As part of the sanctions, DEQ officials required Zenith to seek a new land-use approval before continuing its air quality permit process.DEQ officials said they would reevaluate Zenith’s air permit if the legal case or city investigation led to any changes to the status of the land-use approval – such as if the city revoked it or the state land use panel invalidated it.The newly issued air permit is valid for five years. If you purchase a product or register for an account through a link on our site, we may receive compensation. By using this site, you consent to our User Agreement and agree that your clicks, interactions, and personal information may be collected, recorded, and/or stored by us and social media and other third-party partners in accordance with our Privacy Policy.

Renewables have now passed coal globally – and growth is fastest in countries like Bhutan and Nepal

Even as clean energy progress slows in the US and EU, developing nations such as Bhutan, Nepal, Sri Lanka and the Maldives are surging ahead.

Commuters pass a new solar array in the Maldives. Ishara S. Kodikara/GettyFor the first time, renewables have toppled coal as the world’s leading source of electricity, in keeping with International Energy Agency projections for this historic shift. But progress is uneven. The shift away from fossil fuels has slowed in the United States and the European Union – but accelerated sharply in developing nations. China attracts headlines for the sheer scale of its shift. But many smaller nations are now taking up clean energy, electric vehicles and battery storage at remarkable speed, driven by governments, businesses and individuals. Importantly, these moves often aren’t about climate change. Reasons range from cutting dependence on expensive fossil fuels and international market volatility to reducing reliance on unreliable power grids to finding ways to boost livelihoods. Pakistan’s enormous solar boom is partly a response to spiking power prices and grid unreliability. Meanwhile Pacific nations see clean energy as a way to slash the crippling cost of importing diesel and expand electricity access. My research has given me insight into the paths four countries in South Asia have taken to seize the benefits of clean technology, each shaped by unique pressures and opportunities. All are moving rapidly, blending necessity with ambition. Their stories show the clean energy path isn’t one-size-fits-all. Bhutan: from hydropower giant to diversified energy The landlocked Himalayan kingdom of Bhutan has long relied on hydroelectricity. But the country faces a persistent challenge: seasonal variability. Most of Bhutan’s plants are run-of-the-river, meaning they don’t have large dams. As a result, power generation drops sharply during dry winter months when river flows are low, particularly between January and April. At the same time, rapid industrialisation has driven up demand for power, outstripping winter capacity. Climate change is expected to worsen this variability. During these months, Bhutan shifts from its role as clean-energy exporter to an importer, buying electricity from India. But imports aren’t a long-term solution. To secure reliable supply year-round, Bhutan’s government is diversifying energy sources. To that end, up to 300 megawatts of solar is expected to be installed, potentially as soon as next year. Bhutan’s first utility-scale solar farm is under construction. Over time, Bhutan will blend hydro with solar, wind and biomass to create a more balanced clean energy mix. Bhutan has long relied on hydroelectricity. But authorities are moving to find new sources of power as demand surges and river flows become less reliable. Kuni Takahashi/Getty Nepal: electric cars in Kathmandu Nepal has long imported all its petrol from India. But when India launched an unofficial blockade in 2015, vital supplies and fuel tankers stopped coming. Fuel prices surged. People queued for days at petrol stations, while black-market prices soared and public transport collapsed. Households, already enduring many hours of daily blackouts, faced even worse conditions. The crisis exposed Nepal’s deep vulnerability. The mountainous nation makes its own electricity, largely through hydropower. But it had to import petrol. In 2018, authorities launched an ambitious program to shift to electric vehicles and free the nation from dependence on imports. Electric vehicles would charge on domestic hydropower and reduce Kathmandu’s well-known air pollution. The plan called for electric vehicles to reach 90% share of new commuter vehicle sales (including popular two-wheelers) by 2030. This year, the electric vehicle share for new four-wheel vehicles reached 76%, jumping rapidly in just the past year. Exemptions and incentives have supported this growth. As electric vehicles surge, new charging station and maintenance businesses have emerged. It’s not all smooth sailing. A protest movement recently overthrew Nepal’s government, creating uncertainty. Analysts warn stable government policy and infrastructure investment will be essential. Electric vehicles are soaring in popularity in Nepal. Pictured: the opening of an event by Chinese carmaker BYD in Kathmandu in February 2025. Chinese News Service/Getty Sri Lanka: innovation emerging from crisis Between 2022 and 2023, a serious economic crisis hit Sri Lanka. Citizens reeled from severe energy shocks, such as fuel shortages, 12-hour blackouts and punishing electricity price hikes of over 140%. Half a million people were disconnected from the grid as they were unable to pay. The crisis showed how fragile the island nation’s energy system was. Authorities looked for better options. Hydroelectricity has long been a mainstay, but solar and wind are growing rapidly. Sri Lanka runs on about 50% renewables, with hydro the largest contributor by far. By 2030, the goal is to reach 70% renewable energy. While renewables offer cheap power, they have to be coupled with energy storage and new systems to integrate them into the grid. In response, universities, international partners and companies have worked to integrate renewable energy in the grid, developing artificial intelligence-based systems to improve reliability and supply to consumers. For instance, they can reduce voltage fluctuations associated with high uptake of rooftop solar. Importantly, some of these projects have a gender focus, prioritising women-led small enterprises and training for women engineers. The crisis may prove a turning point by exposing vulnerabilities and pushing Sri Lanka to adopt new energy solutions. After a severe energy crisis gripped Sri Lanka, authorities began looking for ways to reduce reliance on imported fossil fuels. Pictured: a closed service station in Colombo in late 2022 with a sign warning of no petrol. Ishara S. Kodikara/Getty Maldives: bringing solar to diesel-dependent islands Few countries are more vulnerable to fossil fuel dependence than the Maldives. Spread across 1,000 islands, the nation relies on imported diesel for power generation, with high transport costs and exposure to oil price swings. In 2014, Maldivian authorities launched the Preparing Outer Islands for Sustainable Energy Development project as part of a plan to reach net-zero by 2030. The project focuses on around 160 poorer islands further from the capital, progressively replacing a reliance on diesel generators with solar arrays, battery storage and upgraded power grids. Women’s economic empowerment is a priority, as women-led enterprises run solar systems and utilities train female operations officers. The Maldives government released a 2030 roadmap, which has a welcome focus on the “just energy transition” – ensuring communities benefit equitably. For the Maldives, renewables are more than an environmental choice — they are a lifeline for economic survival and resilience. Lessons from the margins While these energy transitions rarely make global headlines, Bhutan, Nepal, Sri Lanka and the Maldives show how smaller economies are finding their own pathways to cleaner, more resilient energy. Their reasons to act stem from different crises, from blockades to economic upheaval. But each nation is working to turn challenge into opportunity. Reihana Mohideen has previously consulted for the POISED project in the Maldives.

Riccardo Comin, two MIT alumni named 2025 Moore Experimental Physics Investigators

MIT physicist seeks to use award to study magnetoelectric multiferroics that could lead to energy-efficient storage devices.

MIT associate professor of physics Riccardo Comin has been selected as 2025 Experimental Physics Investigator by the Gordon and Betty Moore Foundation. Two MIT physics alumni — Gyu-Boong Jo PhD ’10 of Rice University, and Ben Jones PhD ’15 of the University of Texas at Arlington — were also among this year’s cohort of 22 honorees.The prestigious Experimental Physics Investigators (EPI) Initiative recognizes mid-career scientists advancing the frontiers of experimental physics. Each award provides $1.3 million over five years to accelerate breakthroughs and strengthen the experimental physics community.At MIT, Comin investigates magnetoelectric multiferroics by engineering interfaces between two-dimensional materials and three-dimensional oxide thin films. His research aims to overcome long-standing limitations in spin-charge coupling by moving beyond epitaxial constraints, enabling new interfacial phases and coupling mechanisms. In these systems, Comin’s team explores the coexistence and proximity of magnetic and ferroelectric order, with a focus on achieving strong magnetoelectric coupling. This approach opens new pathways for designing tunable multiferroic systems unconstrained by traditional synthesis methods.Comin’s research expands the frontier of multiferroics by demonstrating stacking-controlled magnetoelectric coupling at 2D–3D interfaces. This approach enables exploration of fundamental physics in a versatile materials platform and opens new possibilities for spintronics, sensing, and data storage. By removing constraints of epitaxial growth, Comin’s work lays the foundation for microelectronic and spintronic devices with novel functionalities driven by interfacial control of spin and polarization.Comin’s project, Interfacial MAGnetoElectrics (I-MAGinE), aims to study a new class of artificial magnetoelectric multiferroics at the interfaces between ferroic materials from 2D van der Waals systems and 3D oxide thin films. The team aims to identify and understand novel magnetoelectric effects to demonstrate the viability of stacking-controlled interfacial magnetoelectric coupling. This research could lead to significant contributions in multiferroics, and could pave the way for innovative, energy-efficient storage devices.“This research has the potential to make significant contributions to the field of multiferroics by demonstrating the viability of stacking-controlled interfacial magnetoelectric coupling,” according to Comin’s proposal. “The findings could pave the way for future applications in spintronics, data storage, and sensing. It offers a significant opportunity to explore fundamental physics questions in a novel materials platform, while laying the ground for future technological applications, including microelectronic and spintronic devices with new functionalities.”Comin’s group has extensive experience in researching 2D and 3D ferroic materials and electronically ordered oxide thin films, as well as ultrathin van der Waals magnets, ferroelectrics, and multiferroics. Their lab is equipped with state-of-the-art tools for material synthesis, including bulk crystal growth of van der Waals materials and pulsed laser deposition targets, along with comprehensive fabrication and characterization capabilities. Their expertise in magneto-optical probes and advanced magnetic X-ray techniques promises to enable in-depth studies of electronic and magnetic structures, specifically spin-charge coupling, in order to contribute significantly to understanding spin-charge coupling in magnetochiral materials.The coexistence of ferroelectricity and ferromagnetism in a single material, known as multiferroicity, is rare, and strong spin-charge coupling is even rarer due to fundamental chemical and electronic structure incompatibilities.The few known bulk multiferroics with strong magnetoelectric coupling generally rely on inversion symmetry-breaking spin arrangements, which only emerge at low temperatures, limiting practical applications. While interfacial magnetoelectric multiferroics offer an alternative, achieving efficient spin-charge coupling often requires stringent conditions like epitaxial growth and lattice matching, which limit material combinations. This research proposes to overcome these limitations by using non-epitaxial interfaces of 2D van der Waals materials and 3D oxide thin films.Unique features of this approach include leveraging the versatility of 2D ferroics for seamless transfer onto any substrate, eliminating lattice matching requirements, and exploring new classes of interfacial magnetoelectric effects unconstrained by traditional thin-film synthesis limitations.Launched in 2018, the Moore Foundation’s EPI Initiative cultivates collaborative research environments and provides research support to promote the discovery of new ideas and emphasize community building.“We have seen numerous new connections form and new research directions pursued by both individuals and groups based on conversations at these gatherings,” says Catherine Mader, program officer for the initiative.The Gordon and Betty Moore Foundation was established to create positive outcomes for future generations. In pursuit of that vision, it advances scientific discovery, environmental conservation, and the special character of the San Francisco Bay Area.

New England’s final coal plant shuts down years ahead of schedule

Even as the federal government attempts to prop up the waning coal industry, New England’s last coal-fired power plant has ceased operations three years ahead of its planned retirement date. The closure of the New Hampshire facility paves the way for its owner to press ahead with an initiative to transform the site…

Additionally, solar power production accelerated from 2010 on, lowering demand on the grid during the day and creating more evening peaks. Coal plants take longer to ramp up production than other sources, and are therefore less economical for these shorter bursts of demand, Dolan said. In recent years, Merrimack operated only a few weeks annually. In 2024, the plant generated just 0.22% of the region’s electricity. It wasn’t making enough money to justify continued operations, observers said. The closure ​“is emblematic of the transition that has been occurring in the generation fleet in New England for many years,” Dolan said. ​“The combination of all those factors has meant that coal facilities are no longer economic in this market.” Granite Shore Power, the plant’s owner, first announced its intention to shutter Merrimack in March 2024, following years of protests and legal wrangling by environmental advocates. The company pledged to cease coal-fired operations by 2028 to settle a lawsuit claiming that the facility was in violation of the federal Clean Water Act. The agreement included another commitment to shut down the company’s Schiller plant in Portsmouth, New Hampshire, by the end of 2025; this smaller plant can burn coal but hasn’t done so since 2020. At the time, the company outlined a proposal to repurpose the 400-acre Merrimack site, just outside Concord, for clean energy projects, taking advantage of existing electric infrastructure to connect a 120-megawatt combined solar and battery storage system to the grid. It is not yet clear whether changes in federal renewable energy policies will affect this vision. In a statement announcing the Merrimack closure, Granite Shore Power was less specific about its plans than it had been, saying, ​“We continue to consider all opportunities for redevelopment” of the site, but declining to follow up with more detail. Still, advocates are looking ahead with optimism. “This is progress — there’s no doubt the math is there,” Corkery said. ​“It is never over until it is over, but I am very hopeful.”

Fears of Massive Battery Fires Spark Local Opposition to Energy Storage Projects

Lithium-ion batteries are increasingly being used to store power for electrical grids, but some localities are concerned about fire risks

More and more, big arrays of lithium-ion batteries are being hooked up to electrical grids around the U.S. to store power that can be discharged in times of high demand.But as more energy storage is added, residents in some places are pushing back due to fears that the systems will go up in flames, as a massive facility in California did earlier this year.Proponents maintain that state-of-the-art battery energy storage systems are safe, but more localities are enacting moratoriums.“We’re not guinea pigs for anybody ... we are not going to experiment, we’re not going to take risk,” said Michael McGinty, the mayor of Island Park, New York, which passed a moratorium in July after a storage system was proposed near the village line.At least a few dozen localities around the United States have moved to temporarily block development of big battery systems in recent years.Long Island, where the power grid could get a boost in the next few years as offshore wind farms come online, has been a hotbed of activism, even drawing attention recently from the Trump administration. Opponents there got a boost in August when Environmental Protection Agency Administrator Lee Zeldin visited New York to complain that the state was rushing approvals of sites in order to meet “delusional” green power goals — a claim state officials deny.Battery energy storage systems that suck up cheap power during periods of low demand, then discharge it at a profit during periods of high demand, are considered critical with the rise of intermittent energy sources such as wind and solar.Known by the acronym BESS, the systems can make grids more reliable and have been credited with reducing blackouts. A large battery system might consist of rows of shipping containers in a fenced lot, with the containers holding hundreds of thousands of cells.China and the United States lead the world in rapidly adding battery storage energy systems. However, Saudi Arabia, South Africa, Australia, Netherlands, Chile, Canada and the U.K. have commissioned or started construction on large projects since 2024, too, according to research from BloombergNEF.In the U.S., California and Texas have been leaders in battery storage. But other states are moving quickly, often with privately developed systems. While the Trump administration has been unsupportive or even hostile to renewable energy, key tax credits for energy storage projects were maintained in the recently approved federal budget for qualified projects that begin construction in the next eight years.Developers added 4,908 megawatts of battery storage capacity in the second quarter of 2025, with Arizona, California and Texas accounting for about three-quarters of that new capacity, according to a report from American Clean Power Association, an industry group. That’s enough to power nearly 1.7 million households.New York has an ambitious goal to add 6,000 megawatts of energy storage by 2030, half of it large-scale systems.Opposition to the storage systems usually focuses on the possibility of thermal runaway, a chain reaction of uncontrolled heating that can lead to fire or an explosion. Opponents point to past fires and ask: What if that happens in my neighborhood?A battery storage system in Moss Landing, California caught fire in January, sending plumes of toxic smoke into the atmosphere and forcing the evacuation of about 1,500 people..Experts in the field say battery systems have become safer over the years. Ofodike Ezekoye, a combustion expert and professor of mechanical engineering at The University of Texas at Austin, notes that failures are relatively infrequent, but also that no engineered system is 100% foolproof.“This is a relatively immature technology that is maturing quickly, so I think that there are a lot of really thoughtful researchers and other stakeholders who are trying to improve the overall safety of these systems,” Ezekoye said.Battery storage proponents say a facility like Moss Landing, where batteries were stored indoors, would not be allowed in New York, which has adopted fire codes that require modular enclosure design with required minimum spacing to keep fires from spreading.People who live near proposed sites are not always assured.In Washington state, the city of Maple Valley approved a six-month moratorium in July as a way “to protect us until we know more,” said city manager Laura Philpot.Voters in Halstead, Kansas, which has a moratorium, will be asked this Election Day whether they want to prohibit larger battery storage systems inside the city limits, according to Mayor Dennis Travis. He hopes the city can one day host a safely designed storage system, and said local opponents wrongly fixate on the California fire.The number of localities passing moratoriums began rising in 2023 and 2024, mirroring trends in battery storage deployment, with a notable cluster in New York, according to a presentation last year by the Pacific Northwest National Laboratory.Winnie Sokolowski is among area residents against a proposed 250-megawatt lithium-ion storage system in the Town of Ulster, New York, contending it is too close to schools and homes.“They’re banking on nothing happening, but I don’t think you can place it where they’re proposing and assume nothing’s going to happen,” Sokolowski said. “It’s just too risky if it does.”The developer, Terra-Gen, said the design will keep a fire from spreading and that the system “poses no credible, scientific-based threat to neighbors, the public or the environment.”New York State Energy Research and Development Authority President Doreen Harris said she's confident the state has the right safety rules in place, and that scaling up the use of battery storage systems will “strengthen and modernize our grid.”She noted there also were local concerns in the early stages of siting solar farms, which have since proven their benefits.Associated Press writer Jennifer McDermott in Providence, Rhode Island, contributed to this report.Copyright 2025 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.Photos You Should See – Sept. 2025

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.