Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

Groundwater pumping is causing land to sink at record rate in San Joaquin Valley

News Feed
Monday, November 25, 2024

For decades, a costly problem has been worsening beneath California’s San Joaquin Valley: the land has been sinking, driven by the chronic overpumping of groundwater.As agricultural wells have drained water from aquifers, underground clay layers have compacted and the ground surface has been sinking as much as 1 foot per year in some areas.New research now shows that large portions of the San Joaquin Valley have sunk at a record pace since 2006.“Never before has it been so rapid for such a long period of time,” said Matthew Lees, the study’s lead author.The study by Stanford University researchers is the first to quantify the full extent of land subsidence in the San Joaquin Valley, one of the world’s major farming regions, during the last two decades. The collapsing ground has damaged canals, wells and other infrastructure, requiring repairs that in some areas are now in the hundreds of millions of dollars.Under California’s groundwater law, local agencies are tasked with combating the problem as they work toward plans to limit pumping and address overdraft by 2040.Measurements from satellites have tracked changes in the ground surface during much of the last two decades, but there is a gap in the data from 2011 to 2015. The researchers used data from GPS stations to document the declines in the land during those years, which enabled them to detail subsidence for the entire period from 2006 to 2022.Much of the sinking has occurred in two large swaths of the valley, one around the community of El Nido and the other around the city of Corcoran. The research found that the declines averaged nearly an inch per year if spread across the entire San Joaquin Valley.“With these findings, we can look at the big picture of mitigating this record-breaking subsidence,” said Rosemary Knight, the study’s senior author and a professor of geophysics at Stanford’s Doerr School of Sustainability.The study, published in Nature Communications Earth & Environment, also presents ideas about how the sinking could be slowed or stopped through strategic recharging of aquifers.The findings underline California’s continuing struggle with a phenomenon that has been altering the landscape since the early 1900s, when wells and pumps began to proliferate in the valley.In a famous 1977 photo, Joseph Poland, a U.S. Geological Survey scientist, stood next to a telephone pole with signs reading 1925, 1955 and 1977, marking how the ground level had fallen nearly 30 feet in the area near Mendota.In a 1999 report, USGS researchers described the land subsidence in the San Joaquin Valley as “the single largest human alteration of the Earth’s surface topography.”The rates of decline slowed in the 1970s and ‘80s as newly built aqueducts brought river water to farmlands, and the sinking remained less pronounced into the early 2000s. That changed during the 2007-09 drought, which was followed by extreme droughts from 2012 to 2016 and from 2020 to 2022 — droughts that research shows have been significantly worsened by global warming.Knight and Lees said the decrease in water deliveries from canals during the droughts, combined with the prioritization of water for environmental purposes and changes in agriculture, have contributed to the sinking over the last two decades.They compared the total volume of valleywide subsidence since 2006 with measurements from 1944 to 1968 — a portion of the half-century illustrated in Poland’s photo — and found the post-2006 period has brought the same amount of sinking, but over a shorter time.“History has repeated itself,” Lees said. “We did it again, and we got there faster.”Lees, a research associate at the University of Manchester in the United Kingdom, worked on the study when he was a geophysics doctoral student at Stanford.The researchers said in addition to damaging aqueducts and other infrastructure, sinking land threatens to affect the route of the state’s high-speed rail, and also worsens floods hazards as the topography shifts.The problem is driven by groundwater overdraft, which occurs when the amount of water pumped out exceeds the amount of recharge. When clay layers in aquifers are drained and collapse, the loss of water-storing space is largely irreversible.According to the researchers, overdraft of the valley’s deep aquifers is causing much of the subsidence. These aquifers lie hundreds of feet underground, below shallow aquifers and clay layers, and they contain clay layers that are especially susceptible to compaction when water is extracted.Many wells have been drilled 1,000 feet deep or more to supply farms, and these wells are drawing water from aquifers where much of the subsidence is occurring. Workers drill a well on a farm near Terra Bella, Calif., in 2021. (Irfan Khan / Los Angeles Times) To slow or halt the sinking, the researchers say, it’s important to address the overdraft in the deep aquifers where clay layers are compressing. They say this could be done by reducing pumping from the aquifers or by recharging them using either natural pathways or wells that would allow for injecting water underground.“We need to stop the overdraft of compacting aquifers,” Knight and Lees wrote, suggesting that efforts be strategically “targeted to the deeper parts of the aquifer system.”Directing water to the right places to replenish these deeper spaces requires detailed information about the valley’s geologic features, including natural pathways where water can quickly travel through permeable sand, gravel and cobbles to reach aquifers. In parts of the valley, these channels can take in flows near the base of the Sierra Nevada, miles from where the land is subsiding, and funnel water to where it will help slow the sinking.California recently mapped large portions of the valley’s aquifers to reveal their webs of hydraulic connections. Using a helicopter equipped with a ground-penetrating electromagnetic imaging system, scientists have scanned up to 1,000 feet underground to map optimal areas for recharging aquifers — including channels left by ancient rivers that lie hidden beneath alluvial fans in the valley.“If we’re going to continue pumping from the lower aquifer, we need to recharge in such a way that that recharge water reaches the lower aquifer,” Knight said. “You need to stop the overdraft in the part of the aquifer that’s causing the subsidence, and that’s the deeper part.”As part of California’s efforts to curb declines in groundwater levels, one partial solution that has been promoted by Gov. Gavin Newsom’s administration and local water agencies is managed aquifer recharge — projects to replenish groundwater that involve a range of methods, such as building infrastructure to capture runoff during wet periods and shunt water to basins where it percolates into the ground.Other methods include drilling injection wells that deliver water to aquifers or intentionally releasing floodwater on agricultural lands in areas where it can seep rapidly underground.The scientists analyzed how much water would be needed to recharge portions of aquifers that are driving the subsidence problems, and calculated it would be about 680,000 acre-feet per year on average, an amount comparable to state estimates of how much water is available for groundwater replenishment in an average year.From a practical standpoint, Lees said, it’s not feasible to dedicate all the water to addressing land subsidence.“There are a lot of other very important priorities, and there are logistical difficulties in getting that water into the compacting parts of the aquifer system,” he said. “We have to be strategic with what we do with this recharge. Where subsidence is causing the most harm, we’ve got to try and get it to those compacting aquifers.” A section of the Friant-Kern Canal that was damaged by subsidence undergoes repairs in 2022. (Brian van der Brug / Los Angeles Times) Targeting places where subsidence is causing costly problems, Knight said, will mean focusing on areas, for example, where collapsing ground is going to damage an aqueduct or wells that communities rely on for drinking water, or where shifting ground is worsening flood risks.“The study has made me optimistic,” Knight said. “I think it could be addressed if you strategically target the areas where you want to stop subsidence.”The findings add to a growing body of research being used by local water officials as they develop state-mandated plans for managing groundwater.Under California’s Sustainable Groundwater Management Act, adopted a decade ago, land subsidence is one of several undesirable effects that local agencies must take steps to avoid, along with “significant and unreasonable” lowering of groundwater levels and degraded water quality, among others.Another goal is preventing more household wells from drying up as water levels decline. According to state data, more than 5,000 wells have run dry in the last decade, and scientists warn that thousands more could be at risk unless stronger measures are put in place.The latest study helps inform California’s efforts to address subsidence and underscores the importance of considering the different effects pumping has in shallow aquifers and deep aquifers, said Graham Fogg, a hydrogeology emeritus professor at UC Davis who wasn’t involved in the research.More recharge of deep aquifers is needed and can be done effectively, Fogg said, but will have to be done in concert with reduced pumping.“Recharge will help solve a lot of it, probably not more than half of the problem,” Fogg said. “The other half is going to have to be pumping reductions, and that’s the painful part.”Researchers have projected that large portions of the Central Valley’s irrigated cropland will need to be permanently left dry to comply with the restrictions. Experts with the Public Policy Institute of California have estimated that by 2040, the necessary pumping cutbacks could mean fallowing more than 900,000 acres of farmland.On the positive side, valuable data to guide recharge efforts have emerged in recent years, including detailed information on the natural architecture of the aquifer system, Fogg said. During the last two decades, the record-breaking pace of subsidence has coincided with the drilling of thousands of new agricultural wells, and as parts of California have had some of the fastest-declining groundwater levels in the world.The water has been used to irrigate a wide variety of crops, including nuts, fruits, tomatoes, cotton and cattle-feed crops to supply dairies and feedlots. Growers have also planted vast orchards of almonds and pistachios.Fogg said the latest research is sobering because it shows that California is still grappling with significant undesirable effects of subsidence.“At this point, there should be no excuse for this kind of subsidence to occur in the next 10 years,” Fogg said.

Groundwater pumping has been causing the land to sink at a record pace in California's San Joaquin Valley. New research suggests ways of addressing the problem.

For decades, a costly problem has been worsening beneath California’s San Joaquin Valley: the land has been sinking, driven by the chronic overpumping of groundwater.

As agricultural wells have drained water from aquifers, underground clay layers have compacted and the ground surface has been sinking as much as 1 foot per year in some areas.

New research now shows that large portions of the San Joaquin Valley have sunk at a record pace since 2006.

“Never before has it been so rapid for such a long period of time,” said Matthew Lees, the study’s lead author.

The study by Stanford University researchers is the first to quantify the full extent of land subsidence in the San Joaquin Valley, one of the world’s major farming regions, during the last two decades. The collapsing ground has damaged canals, wells and other infrastructure, requiring repairs that in some areas are now in the hundreds of millions of dollars.

Under California’s groundwater law, local agencies are tasked with combating the problem as they work toward plans to limit pumping and address overdraft by 2040.

Measurements from satellites have tracked changes in the ground surface during much of the last two decades, but there is a gap in the data from 2011 to 2015. The researchers used data from GPS stations to document the declines in the land during those years, which enabled them to detail subsidence for the entire period from 2006 to 2022.

Much of the sinking has occurred in two large swaths of the valley, one around the community of El Nido and the other around the city of Corcoran. The research found that the declines averaged nearly an inch per year if spread across the entire San Joaquin Valley.

“With these findings, we can look at the big picture of mitigating this record-breaking subsidence,” said Rosemary Knight, the study’s senior author and a professor of geophysics at Stanford’s Doerr School of Sustainability.

The study, published in Nature Communications Earth & Environment, also presents ideas about how the sinking could be slowed or stopped through strategic recharging of aquifers.

The findings underline California’s continuing struggle with a phenomenon that has been altering the landscape since the early 1900s, when wells and pumps began to proliferate in the valley.

In a famous 1977 photo, Joseph Poland, a U.S. Geological Survey scientist, stood next to a telephone pole with signs reading 1925, 1955 and 1977, marking how the ground level had fallen nearly 30 feet in the area near Mendota.

In a 1999 report, USGS researchers described the land subsidence in the San Joaquin Valley as “the single largest human alteration of the Earth’s surface topography.”

The rates of decline slowed in the 1970s and ‘80s as newly built aqueducts brought river water to farmlands, and the sinking remained less pronounced into the early 2000s. That changed during the 2007-09 drought, which was followed by extreme droughts from 2012 to 2016 and from 2020 to 2022 — droughts that research shows have been significantly worsened by global warming.

Knight and Lees said the decrease in water deliveries from canals during the droughts, combined with the prioritization of water for environmental purposes and changes in agriculture, have contributed to the sinking over the last two decades.

They compared the total volume of valleywide subsidence since 2006 with measurements from 1944 to 1968 — a portion of the half-century illustrated in Poland’s photo — and found the post-2006 period has brought the same amount of sinking, but over a shorter time.

“History has repeated itself,” Lees said. “We did it again, and we got there faster.”

Lees, a research associate at the University of Manchester in the United Kingdom, worked on the study when he was a geophysics doctoral student at Stanford.

The researchers said in addition to damaging aqueducts and other infrastructure, sinking land threatens to affect the route of the state’s high-speed rail, and also worsens floods hazards as the topography shifts.

The problem is driven by groundwater overdraft, which occurs when the amount of water pumped out exceeds the amount of recharge. When clay layers in aquifers are drained and collapse, the loss of water-storing space is largely irreversible.

According to the researchers, overdraft of the valley’s deep aquifers is causing much of the subsidence. These aquifers lie hundreds of feet underground, below shallow aquifers and clay layers, and they contain clay layers that are especially susceptible to compaction when water is extracted.

Many wells have been drilled 1,000 feet deep or more to supply farms, and these wells are drawing water from aquifers where much of the subsidence is occurring.

Workers drill a well on a farm in the San Joaquin Valley in 2021.

Workers drill a well on a farm near Terra Bella, Calif., in 2021.

(Irfan Khan / Los Angeles Times)

To slow or halt the sinking, the researchers say, it’s important to address the overdraft in the deep aquifers where clay layers are compressing. They say this could be done by reducing pumping from the aquifers or by recharging them using either natural pathways or wells that would allow for injecting water underground.

“We need to stop the overdraft of compacting aquifers,” Knight and Lees wrote, suggesting that efforts be strategically “targeted to the deeper parts of the aquifer system.”

Directing water to the right places to replenish these deeper spaces requires detailed information about the valley’s geologic features, including natural pathways where water can quickly travel through permeable sand, gravel and cobbles to reach aquifers. In parts of the valley, these channels can take in flows near the base of the Sierra Nevada, miles from where the land is subsiding, and funnel water to where it will help slow the sinking.

California recently mapped large portions of the valley’s aquifers to reveal their webs of hydraulic connections. Using a helicopter equipped with a ground-penetrating electromagnetic imaging system, scientists have scanned up to 1,000 feet underground to map optimal areas for recharging aquifers — including channels left by ancient rivers that lie hidden beneath alluvial fans in the valley.

“If we’re going to continue pumping from the lower aquifer, we need to recharge in such a way that that recharge water reaches the lower aquifer,” Knight said. “You need to stop the overdraft in the part of the aquifer that’s causing the subsidence, and that’s the deeper part.”

As part of California’s efforts to curb declines in groundwater levels, one partial solution that has been promoted by Gov. Gavin Newsom’s administration and local water agencies is managed aquifer recharge — projects to replenish groundwater that involve a range of methods, such as building infrastructure to capture runoff during wet periods and shunt water to basins where it percolates into the ground.

Other methods include drilling injection wells that deliver water to aquifers or intentionally releasing floodwater on agricultural lands in areas where it can seep rapidly underground.

The scientists analyzed how much water would be needed to recharge portions of aquifers that are driving the subsidence problems, and calculated it would be about 680,000 acre-feet per year on average, an amount comparable to state estimates of how much water is available for groundwater replenishment in an average year.

From a practical standpoint, Lees said, it’s not feasible to dedicate all the water to addressing land subsidence.

“There are a lot of other very important priorities, and there are logistical difficulties in getting that water into the compacting parts of the aquifer system,” he said. “We have to be strategic with what we do with this recharge. Where subsidence is causing the most harm, we’ve got to try and get it to those compacting aquifers.”

A section of the Friant-Kern Canal that was damaged by subsidence undergoes repairs in 2022.

A section of the Friant-Kern Canal that was damaged by subsidence undergoes repairs in 2022.

(Brian van der Brug / Los Angeles Times)

Targeting places where subsidence is causing costly problems, Knight said, will mean focusing on areas, for example, where collapsing ground is going to damage an aqueduct or wells that communities rely on for drinking water, or where shifting ground is worsening flood risks.

“The study has made me optimistic,” Knight said. “I think it could be addressed if you strategically target the areas where you want to stop subsidence.”

The findings add to a growing body of research being used by local water officials as they develop state-mandated plans for managing groundwater.

Under California’s Sustainable Groundwater Management Act, adopted a decade ago, land subsidence is one of several undesirable effects that local agencies must take steps to avoid, along with “significant and unreasonable” lowering of groundwater levels and degraded water quality, among others.

Another goal is preventing more household wells from drying up as water levels decline. According to state data, more than 5,000 wells have run dry in the last decade, and scientists warn that thousands more could be at risk unless stronger measures are put in place.

The latest study helps inform California’s efforts to address subsidence and underscores the importance of considering the different effects pumping has in shallow aquifers and deep aquifers, said Graham Fogg, a hydrogeology emeritus professor at UC Davis who wasn’t involved in the research.

More recharge of deep aquifers is needed and can be done effectively, Fogg said, but will have to be done in concert with reduced pumping.

“Recharge will help solve a lot of it, probably not more than half of the problem,” Fogg said. “The other half is going to have to be pumping reductions, and that’s the painful part.”

Researchers have projected that large portions of the Central Valley’s irrigated cropland will need to be permanently left dry to comply with the restrictions. Experts with the Public Policy Institute of California have estimated that by 2040, the necessary pumping cutbacks could mean fallowing more than 900,000 acres of farmland.

On the positive side, valuable data to guide recharge efforts have emerged in recent years, including detailed information on the natural architecture of the aquifer system, Fogg said.

During the last two decades, the record-breaking pace of subsidence has coincided with the drilling of thousands of new agricultural wells, and as parts of California have had some of the fastest-declining groundwater levels in the world.

The water has been used to irrigate a wide variety of crops, including nuts, fruits, tomatoes, cotton and cattle-feed crops to supply dairies and feedlots. Growers have also planted vast orchards of almonds and pistachios.

Fogg said the latest research is sobering because it shows that California is still grappling with significant undesirable effects of subsidence.

“At this point, there should be no excuse for this kind of subsidence to occur in the next 10 years,” Fogg said.

Read the full story here.
Photos courtesy of

New Navy Report Gauges Training Disruption of Hawaii's Marine Mammals

Over the next seven years, the U.S. Navy estimates its ships will injure or kill just two whales in collisions as it tests and trains in Hawaiian waters

Over the next seven years, the U.S. Navy estimates its ships will injure or kill just two whales in collisions as it tests and trains in Hawaiian waters, and it concluded those exercises won’t significantly harm local marine mammal populations, many of which are endangered.However, the Navy also estimates the readiness exercises, which include sonar testing and underwater explosions, will cause more than 3 million instances of disrupted behavior, hearing loss or injury to whale and dolphin species plus monk seals in Hawaii alone.That has local conservation groups worried that the Navy’s California-Training-and-Testing-EIS-OEIS/Final-EIS-OEIS/">detailed report on its latest multi-year training plan is downplaying the true impacts on vulnerable marine mammals that already face growing extinction threats in Pacific training areas off of Hawaii and California.“If whales are getting hammered by sonar and it’s during an important breeding or feeding season, it could ultimately affect their ability to have enough energy to feed their young or find food,” said Kylie Wager Cruz, a senior attorney with the environmental legal advocacy nonprofit Earthjustice. “There’s a major lack of consideration,” she added,” of how those types of behavioral impacts could ultimately have a greater impact beyond just vessel strikes.”The Navy, Cruz said, didn’t consider how its training exercises add to the harm caused by other factors, most notably collisions with major shipping vessels that kill dozens of endangered whales in the eastern Pacific each year. Environmental law requires the Navy to do that, she said, but “they’re only looking at their own take,” or harm.The Navy, in a statement earlier this month, said it “committed to the maximum level of mitigation measures” that it practically could to curb environmental damage while maintaining its military readiness in the years ahead. The plan also covers some Coast Guard operations.Federal fishery officials recently approved the plan, granting the Navy the necessary exemptions under the Marine Mammal Protection Act to proceed despite the harms. It’s at least the third time that the Navy has had to complete an environmental impact report and seek those exemptions to test and train off Hawaii and California.In a statement Monday, a U.S. Pacific Fleet spokesperson said the Navy and fishery officials did consider “reasonably foreseeable cumulative effects” — the Navy’s exercises plus unrelated harmful impacts — to the extent it was required to do so under federal environmental law.Fishery officials didn’t weigh those unrelated impacts, the statement said, in determining that the Navy’s activities would have a negligible impact on marine mammals and other animals.The report covers the impacts to some 39 marine mammal species, including eight that are endangered, plus a host of other birds, turtles and other species that inhabit those waters.The Navy says it will limit use of some of its most intense sonar equipment in designated “mitigation areas” around Hawaii island and Maui Nui to better protect humpback whales and other species from exposure. Specifically, it says it won’t use its more intense ship-mounted sonar in those areas during the whales’ Nov. 15 to April 15 breeding season, and it won’t use those systems there for more than 300 hours a year.However, outside of those mitigation zones the Navy report lists 11 additional areas that are biologically important to other marine mammals species, including spinner and bottle-nosed dolphins, false killer whales, short-finned pilot whales and dwarf sperm whales.Those biologically important areas encompass all the waters around the main Hawaiian islands, and based on the Navy’s report they won’t benefit from the same sonar limits. For the Hawaii bottle-nosed dolphins, the Navy estimates its acoustic and explosives exercises will disrupt that species’ feeding, breeding and other behaviors more than 310,000 times, plus muffle their hearing nearly 39,000 times and cause as many as three deaths. The report says the other species will see similar disruptions.In its statement Monday, U.S. Pacific Fleet said the Navy considered the extent to which marine mammals would be affected while still allowing crews to train effectively in setting those mitigation zones.Exactly how the Navy’s numbers compare to previous cycles are difficult to say, Wager Cruz and others said, because the ocean area and total years covered by each report have changed.Nonetheless, the instances in which its Pacific training might harm or kill a marine mammal appear to be climbing.In 2018, for instance, a press release from the nonprofit Center For Biological Diversity stated that the Navy’s Pacific training in Hawaii and Southern California would harm marine mammals an estimated 12.5 million times over a five-year period.This month, the center put out a similar release stating that the Navy’s training would harm marine mammals across Hawaii plus Northern and Southern California an estimated 35 million times over a seven-year period.“There’s large swaths of area that don’t get any mitigation,” Wager Cruz said. “I don’t think we’re asking for, like, everywhere is a prohibited area by any means, but I think that the military should take a harder look and see if they can do more.”The Navy should also consider slowing its vessels to 10 knots during training exercises to help avoid the collisions that often kill endangered whales off the California Coast, Cruz said. In its response, U.S. Pacific Fleet said the Navy “seriously considered” whether it could slow its ships down but concluded those suggestions were impracticable, largely due to the impacts on its mission.Hawaii-based Matson two years ago joined the other major companies who’ve pledged to slow their vessels to those speeds during whale season in the shipping lanes where dozens of endangered blue, fin and humpback whales are estimated to be killed each year.Those numbers have to be significantly reduced, researchers say, if the species are to make a comeback.“There are ways to minimize harm,” Center for Biological Diversity Hawaii and Pacific Islands Director Maxx Phillips added in a statement, “and protect our natural heritage and national security at the same time.”This story was originally published by Honolulu Civil Beat and distributed through a partnership with The Associated Press.Copyright 2025 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.Photos You Should See – December 2025

Hungary's 'Water Guardian' Farmers Fight Back Against Desertification

Southern Hungary landowner Oszkár Nagyapáti has been battling severe drought on his land

KISKUNMAJSA, Hungary (AP) — Oszkár Nagyapáti climbed to the bottom of a sandy pit on his land on the Great Hungarian Plain and dug into the soil with his hand, looking for a sign of groundwater that in recent years has been in accelerating retreat. “It’s much worse, and it’s getting worse year after year,” he said as cloudy liquid slowly seeped into the hole. ”Where did so much water go? It’s unbelievable.”Nagyapáti has watched with distress as the region in southern Hungary, once an important site for agriculture, has become increasingly parched and dry. Where a variety of crops and grasses once filled the fields, today there are wide cracks in the soil and growing sand dunes more reminiscent of the Sahara Desert than Central Europe. The region, known as the Homokhátság, has been described by some studies as semiarid — a distinction more common in parts of Africa, the American Southwest or Australian Outback — and is characterized by very little rain, dried-out wells and a water table plunging ever deeper underground. In a 2017 paper in European Countryside, a scientific journal, researchers cited “the combined effect of climatic changes, improper land use and inappropriate environmental management” as causes for the Homokhátság's aridification, a phenomenon the paper called unique in this part of the continent.Fields that in previous centuries would be regularly flooded by the Danube and Tisza Rivers have, through a combination of climate change-related droughts and poor water retention practices, become nearly unsuitable for crops and wildlife. Now a group of farmers and other volunteers, led by Nagyapáti, are trying to save the region and their lands from total desiccation using a resource for which Hungary is famous: thermal water. “I was thinking about what could be done, how could we bring the water back or somehow create water in the landscape," Nagyapáti told The Associated Press. "There was a point when I felt that enough is enough. We really have to put an end to this. And that's where we started our project to flood some areas to keep the water in the plain.”Along with the group of volunteer “water guardians,” Nagyapáti began negotiating with authorities and a local thermal spa last year, hoping to redirect the spa's overflow water — which would usually pour unused into a canal — onto their lands. The thermal water is drawn from very deep underground. Mimicking natural flooding According to the water guardians' plan, the water, cooled and purified, would be used to flood a 2½-hectare (6-acre) low-lying field — a way of mimicking the natural cycle of flooding that channelizing the rivers had ended.“When the flooding is complete and the water recedes, there will be 2½ hectares of water surface in this area," Nagyapáti said. "This will be quite a shocking sight in our dry region.”A 2024 study by Hungary’s Eötvös Loránd University showed that unusually dry layers of surface-level air in the region had prevented any arriving storm fronts from producing precipitation. Instead, the fronts would pass through without rain, and result in high winds that dried out the topsoil even further. Creation of a microclimate The water guardians hoped that by artificially flooding certain areas, they wouldn't only raise the groundwater level but also create a microclimate through surface evaporation that could increase humidity, reduce temperatures and dust and have a positive impact on nearby vegetation. Tamás Tóth, a meteorologist in Hungary, said that because of the potential impact such wetlands can have on the surrounding climate, water retention “is simply the key issue in the coming years and for generations to come, because climate change does not seem to stop.”"The atmosphere continues to warm up, and with it the distribution of precipitation, both seasonal and annual, has become very hectic, and is expected to become even more hectic in the future,” he said. Following another hot, dry summer this year, the water guardians blocked a series of sluices along a canal, and the repurposed water from the spa began slowly gathering in the low-lying field. After a couple of months, the field had nearly been filled. Standing beside the area in early December, Nagyapáti said that the shallow marsh that had formed "may seem very small to look at it, but it brings us immense happiness here in the desert.”He said the added water will have a “huge impact” within a roughly 4-kilometer (2½-mile) radius, "not only on the vegetation, but also on the water balance of the soil. We hope that the groundwater level will also rise.”Persistent droughts in the Great Hungarian Plain have threatened desertification, a process where vegetation recedes because of high heat and low rainfall. Weather-damaged crops have dealt significant blows to the country’s overall gross domestic product, prompting Prime Minister Viktor Orbán to announce this year the creation of a “drought task force” to deal with the problem.After the water guardians' first attempt to mitigate the growing problem in their area, they said they experienced noticeable improvements in the groundwater level, as well as an increase of flora and fauna near the flood site. The group, which has grown to more than 30 volunteers, would like to expand the project to include another flooded field, and hopes their efforts could inspire similar action by others to conserve the most precious resource. “This initiative can serve as an example for everyone, we need more and more efforts like this," Nagyapáti said. "We retained water from the spa, but retaining any kind of water, whether in a village or a town, is a tremendous opportunity for water replenishment.”The Associated Press’ climate and environmental coverage receives financial support from multiple private foundations. AP is solely responsible for all content. Find AP’s standards for working with philanthropies, a list of supporters and funded coverage areas at AP.org.Copyright 2025 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.Photos You Should See – December 2025

The Water Came From Nowhere': Settlements, Hotels and Farms Flooded in Kenya’s Rift Valley

Dickson Ngome's farm at Lake Naivasha in Kenya's Rift Valley has been submerged due to rising water levels

NAIVASHA, Kenya (AP) — When Dickson Ngome first leased his farm at Lake Naivasha in Kenya’s Rift Valley in 2008, it was over 2 kilometers (1.2 miles) from shore. The farm was on 1.5 acres (0.6 hectares) of fertile land where he grew vegetables to sell at local markets.At the time, the lake was receding and people were worried that it might dry up altogether. But since 2011, the shore has crept ever closer. The rains started early this year, in September, and didn't let up for months.One morning in late October, Ngome and his family woke up to find their home and farm inside the lake. The lake levels had risen overnight and about a foot of water covered everything.“It seemed as if the lake was far from our homes,” Ngome’s wife, Rose Wafula, told The Associated Press. “And then one night we were shocked to find our houses flooded. The water came from nowhere.” Climate change caused increased rains, scientists say The couple and their four children have had to leave home and are camping out on the first floor of an abandoned school nearby.Some 5,000 people were displaced by the rise in Lake Naivasha’s levels this year. Some scientists attribute the higher levels to increased rains caused by climate change, although there may be other factors causing the lake’s steady rise over the past decade.The lake is a tourism hot spot and surrounded by farms, mostly growing flowers, which have gradually been disappearing into the water as the lake levels rise.Rising levels have not been isolated to Naivasha: Kenya’s Lake Baringo, Lake Nakuru and Lake Turkana — all in the Rift Valley — have been steadily rising for 15 years. “The lakes have risen almost beyond the highest level they have ever reached,” said Simon Onywere, who teaches environmental planning at Kenyatta University in Kenya’s capital Nairobi. Rising lake levels displaced tens of thousands A study in the Journal of Hydrology last year found that lake areas in East Africa increased by 71,822 square kilometers (27,730 square miles) between 2011 and 2023. That affects a lot of people: By 2021, more than 75,000 households had been displaced across the Rift Valley, according to a study commissioned that year by the Kenyan Environment Ministry and the United Nations Development Program.In Baringo, the submerged buildings that made headlines in 2020 and 2021 are still underwater.“In Lake Baringo, the water rose almost 14 meters,” Onywere said. “Everything went under, completely under. Buildings will never be seen again, like the Block Hotels of Lake Baringo.” Flower farms taking a beating Lake Naivasha has risen steadily too, “engulfing three quarters of some flower farms,” Onywere said.Horticulture is a major economic sector in Kenya, generating just over a billion U.S. dollars in revenue in 2024 and providing 40% of the volume of roses sold in the European Union, according to Kenya’s Ministry of Foreign Affairs.Significant research has gone into the reasons behind the rising lakes phenomenon: A 2021 study on the rise of Kenya’s Rift Valley lakes was coauthored by Kenyan meteorologist Richard Muita, who is now acting assistant director of the Kenya Meteorological Department.“There are researchers who come up with drivers that are geological, others with reasons like planetary factors,” Muita said. “The Kenya Meteorological Department found that the water level rises are associated with rainfall patterns and temperature changes. When the rains are plentiful, it aligns with the increase in the levels of the Rift Valley lake waters.”Sedimentation is also a factor. “From the research I have read, there’s a lot of sediment, especially from agricultural related activities, that flows into these lakes,” says Muita. ‘A mess’ made by the government years ago Naivasha’s official high water mark was demarcated at 1,892.8 meters (6,210 feet) above sea level by the Riparian Association in 1906, and is still used by surveyors today. That means this year’s flooding was still almost a meter (3 feet) below the high mark.It also means that the community of Kihoto on Lake Naivasha where the Ngomes lived lies on riparian land — land that falls below the high water mark, and can only be owned by the government.“It’s a mess established by the government … towards the late 1960s,” said Silas Wanjala, general manager of the Lake Naivasha Riparian Association, which was founded some 120 years ago and has been keeping meticulous records of the lake’s water levels since.Back then, a farmer was given a “temporary agricultural lease” on Kihoto, said Wanjala. When it later flooded and the farmer packed up and left, the farmworkers stayed on the land and later applied for subdivisions, which were approved. In the 60-odd years since, a whole settlement has grown on land that is officially not for lease or sale. This also isn’t the first time it’s been flooded, said Wanjala. It's just very rare that the water comes up this high. That’s little consolation for the people who have been displaced by this year’s floods and now cannot go home without risking confrontations with hippopotamuses.To support those people, the county is focusing its efforts on where the need is greatest.“We are tackling this as an emergency," says Joyce Ncece, chief officer for disaster management in Nakuru County, which oversees Lake Naivasha. “The county government has provided trucks to help families relocate. We have been helping to pay rent for those who lack the finances.”Scientists like Onywere and Muita are hoping for longer-term solutions. “Could we have predicted this so that we could have done better infrastructure in less risk-prone areas?” Onywere said.Muita wants to see a more concerted global effort to combat climate change, as well as local, nature-based solutions centered on Indigenous knowledge, such as “conservation agriculture, where there is very limited disturbance of the land,” to reduce sedimentation of the lakes.But all of this is of little help to Ngome and Wafula, who are still living at the school with their children. As the rest of the world looks forward to the holidays and new year, their future is uncertain. Lake Naivasha’s continuous rise over the past 15 years does not bode well: They have no idea when, or if, their farm will ever be back on dry land. The Associated Press receives financial support for global health and development coverage in Africa from the Gates Foundation. The AP is solely responsible for all content. Find AP’s standards for working with philanthropies, a list of supporters and funded coverage areas at AP.org.Copyright 2025 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.Photos You Should See – December 2025

A damaged King County levee awaited fixes for years. Then it failed

As an atmospheric river slammed into the Pacific Northwest, water burst through a damaged levee in Washington.

As rainfall inundated the Pacific Northwest this month, swelling the region’s rivers to record levels, the Desimone levee seemed destined to fail.Severe flooding in 2020 had damaged the 2.2-mile earthen barrier near Tukwila. Muddy waters from the Green River bubbled up on the opposite side and seeped into nearby properties. A King County report months later described the levee’s weakened state as the “most important issue” on the river’s lower reach.The years that followed were filled with red tape and bureaucratic infighting among the agencies most responsible for the region’s levee system: King County, its flood control district and the U.S. Army Corps of Engineers. All the while, cities in the flood plain clamored for help, and the Desimone awaited repair.Construction was set to begin this summer, but the Corps pulled out of the work in January, revoking promised federal funding and setting the project back years, according to interviews and public records obtained by The Seattle Times.Reagan Dunn, chair of the district’s advisory committee and a Metropolitan King County Council member, described a pattern of “tension” between the flood control district and the Corps.This month’s back-to-back atmospheric rivers pushed the levee system like never before. The Desimone was the first of two to fail.Earlier in the series of storms, water had once again begun to seep through Desimone’s earthen barrier, which shields a mostly commercial and industrial hub in Tukwila. On Monday, the river tore its way through, sparking a widespread evacuation. Officials feared the ensuing flash flood might be deadly. Workers plugged the hole quickly. Knowing the levee’s risk, they had already been watching the site for days. No injuries were reported in the breach.The patchwork nature of repairs at Desimone, and levees like it, illuminates the growing challenge of protecting Western Washington communities from flooding worsened by climate change.For generations, Washington has relied on levees as a simple solution to a complex problem, said Alan Hamlet, a former Seattle resident and scientist who now works as an associate professor of civil and environmental engineering at the University of Notre Dame. Explosive growth behind them has combined with an overarching desire to spend the minimum required for flood protection, he said. That often means deferring costlier long-term maintenance, mitigation and upgrades of these emergency barriers in favor of more pressing needs. This has resulted in higher risks for the very communities the levees were designed to protect.The state, and much of the country, stands at the nexus of that growth behind the walls of inadequate infrastructure to keep natural disasters at bay, Hamlet said.“Put all those things together and you have a hidden crisis that is going to begin to express itself more and more frequently,” Hamlet said.The 18-year-old King County Flood Control District shuffles its priority levees based on disrepair that changes with the weather. The district has started to plan for the long term, but in its earliest years, it focused on inexpensive and easy fixes in high-risk areas, Dunn said.“In other words, low-hanging fruit,” he said.Flooding in Washington state 2025Bureaucratic tangleThe Desimone levee has been damaged and repaired multiple times over the past six decades. Most recently, years of disagreements among agencies dragged out Desimone’s renovation.The flood control district asked the Corps to step in not long after the 2020 flood. High waters in the Green River then had not only left water seeping through the levee in at least three places, but also bubbling up from underneath.Federal officials agreed to spearhead a plan to repair the levee and cover 80% of the cost. It proposed estimates up to $16.6 million for a project focused solely on restoring the levee to its preflood condition, records show.Such is frequently the case for levee systems nationwide, Hamlet said. Restoring them to their original condition is typically less expensive and complicated. Expanding them or exploring other options takes more time, money and political will.But the flood district wanted more for Desimone: a design that would fix the damage and relieve water pressure further by setting the levee back, restoring some of the river’s natural bank. It was projected to cost the district about $30 million.The district’s plan would take longer and cost more but reduce long-term risks, said Michelle Clark, the district’s director. “We want to do a bigger project so that we’re not coming back to do more repairs.”The flood control district handles planning, but the project hinged on King County finding land along the river for the new work, records show. But it fell short.These types of repairs are more complicated than they might seem, Hamlet said. Strengthen a levee in one place, and you’ll send floodwaters careening into another. Set a levee back from the river, or remove one to restore a flood plain, and first you have to clear out any homes or businesses already there. These structures aren’t the only way to hold back floodwaters, but in many places, they’re the system that’s already there.A failed dealThe Corps worked in fits and starts, at one point in 2022 halting its involvement due to staffing challenges. Even when the county made headway securing land, the Corps said it had used the wrong language in the agreements. At the same time, the county accused the Corps of clerical errors that dragged out the planning process, according to county records.The county — officials for which said they were unable to immediately comment, citing the ongoing flood emergency — was confident it could secure the land, just not on schedule, according to a county brief from April. It proposed breaking ground in 2026 instead.Citing the county’s “inability” to provide the needed land along the highly developed and industrial area, the Corps backed out of the agreement in a January letter.“We have been pushing them since 2020,” Clark said. “And it’s frustrating.”The Corps “worked diligently with King County” but couldn’t move forward without land for construction, the agency wrote in an email to The Times. Levee rehabilitation can be “complex,” it added. “The federal process, sponsor timelines and real estate actions do not always align well, but we are committed to finding a solution when possible,” the agency wrote.Abandoned by the Corps, the county and its partner cities faced their biggest setback, Clark said.Everybody blamed each other as the flood season approached.Concerns heightened after the Corps pulled its support. In July, city leaders from Tukwila, Kent and Renton asked the flood district to more immediately prioritize the levee repair project.Tukwila officials declined to comment, and Kent and Renton officials did not respond to a request for comment by publication time.As the fall rains approached — and without significant improvements on the levee — officials from Tukwila, Kent, King County and the Corps of Engineers spoke in late October to review the contingency plan in case the structure failed, according to Tukwila city records. They walked the levee bank to flag logistical challenges and clarified roles and responsibilities in case of an emergency.The Corps passed along its nearly complete project design for the Desimone levee, according to its January letter to the district. But without the federal government to offset the cost, the county’s grand plan was too pricey. The district has years of research and $25 million set aside for the levee repairs, but it might not be enough, Clark said; it needs to prepare options before it can move forward with a plan.The King County Flood Control District is now, in many ways, exactly where it was in 2020: waiting for the water to recede, preparing to assess the damage and on the verge of once again planning how to fix the Desimone.--Conrad Swanson and Lulu Ramadan© 2025 The Seattle Times. Visit www.seattletimes.com. Distributed by Tribune Content Agency, LLC.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.