Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

The end of coral reefs as we know them

News Feed
Friday, April 26, 2024

Paige Vickers/Vox Years ago, scientists made a devastating prediction about the ocean. Now it’s unfolding. More than five years ago, the world’s top climate scientists made a frightening prediction: If the planet warms by 1.5 degrees Celsius, relative to preindustrial times, 70 to 90 percent of coral reefs globally would die off. At 2°C, that number jumps to more than 99 percent. These researchers were essentially describing the global collapse of an entire ecosystem driven by climate change. Warm ocean water causes corals — large colonies of tiny animals — to “bleach,” meaning they lose a kind of beneficial algae that lives within their bodies. That algae gives coral its color and much of its food, so bleached corals are white and starving. Starved coral is more likely to die. In not so great news, the planet is now approaching that 1.5°C mark. In 2023, the hottest year ever measured, the average global temperature was 1.52°C above the preindustrial average, as my colleague Umair Irfan reported. That doesn’t mean Earth has officially blown past this important threshold — typically, scientists measure these sorts of averages over decades, not years — but it’s a sign that we’re getting close. David Gray/AFP via Getty Images Marine biologist Anne Hoggett swims above bleached and dead coral on the Great Barrier Reef in April 2024. David Gray/AFP via Getty Images Tourists snorkel above a section of the Great Barrier Reef full of bleached and dead coral on April 5, 2024. So, it’s no surprise that coral reefs are, indeed, collapsing. Earlier this month, the National Oceanic and Atmospheric Administration (NOAA) announced that the planet is experiencing its fourth global “bleaching” event on record. Since early 2023, an enormous amount of coral in the Pacific, Atlantic, and Indian oceans has turned ghostly white, including in places like the Great Barrier Reef and the Florida Keys. In some regions, a lot of the coral has already died. “What we are seeing now is essentially what scientists have been predicting was going to happen for more than 25 years,” Derek Manzello, a marine scientist at NOAA who leads the agency’s coral bleaching project, told Vox. The recent extreme ocean warming can’t solely be attributed to climate change, Manzello added; El Niño and even a volcanic eruption have supercharged temperatures. But coral reefs were collapsing well before the current bleaching crisis. A study published in 2021 estimated that coral “has declined by half” since the mid-20th century. In some places, like the Florida Keys, nearly 90 percent of the live corals have been lost. Past bleaching events are one source of destruction, as are other threats linked to climate change, including ocean acidification. The past and current state of corals raises an important but challenging question: If the planet continues to warm, is there a future for these iconic ecosystems? What’s become increasingly clear is that climate change doesn’t just deal a temporary blow to these animals — it will bring about the end of reefs as we know them. Will there be coral reefs 100 years from now? In the next few decades, a lot of coral will die — that’s pretty much a given. And to be clear, this reality is absolutely devastating. Regardless of whether snorkeling is your thing, reefs are essential to human well-being: Coral reefs dampen waves that hit the shore, support commercial fisheries, and drive coastal tourism around the world. They’re also home to an incredible diversity of life that inspires wonder. “I’m pretty sure that we will not see the large surface area of current reefs surviving into the future,” said Hans-Otto Pörtner, who was involved in the landmark 2018 report, led by the Intergovernmental Panel on Climate Change (IPCC), that predicted the downfall of tropical reefs at 1.5°C warming. “Every year is going to be worse.” NOAA A map of coral bleaching “alerts,” which indicate where the ocean is unusually warm and bleaching is likely to occur. Red areas have a risk of reef-wide bleaching; magenta and purple regions are at risk of coral death. But even as many corals die, reefs won’t exactly disappear. The 3D formation of a typical reef is made of hard corals that produce a skeleton-like structure. When the polyps die, they leave their skeletons behind. Animals that eat live coral, such as butterfly fish and certain marine snails, will likely vanish; plenty of other fish and crabs will stick around because they can hide among those skeletons. Algae will dominate on ailing reefs, as will “weedy” kinds of coral, like sea fans, that don’t typically build the reef’s structure. Simply put, dead reefs aren’t so much lifeless as they are home to a new community of less sensitive (and often more common) species. “Reefs in the future will look very different,” said Jean-Pierre Gattuso, a leading marine scientist who’s also involved with the IPCC. “Restoring coral reefs to what they were prior to mass bleaching events is impossible. That is a fact.” On the timescale of decades, even much of the reef rubble will fade away, as there will be no (or few) live corals to build new skeletons and plenty of forces to erode the ones that remain. Remarkably, about 30 percent of the carbon dioxide that we pump into the atmosphere is absorbed by the oceans. When all that CO2 reacts with water, it makes the ocean more acidic, hastening the erosion of coral skeletons and other biological structures made of calcium carbonate. Jennifer Adler for Vox Bleached staghorn coral in a nursery run by the Coral Restoration Foundation off the coast of the Florida Keys in September 2023. Buying time For decades now, hard-working and passionate scientists have been trying to reverse this downward trend — in large part, by “planting” pieces of coral on damaged reefs. This practice is similar to planting saplings in a logged forest. In reef restoration, many scientists and environmental advocates see hope and a future for coral reefs. But these efforts come with one major limitation: If the oceans continue to grow hotter, many of those planted corals will die too. Last fall, I dived a handful of reefs in the Florida Keys where thousands of pieces of elkhorn and staghorn — iconic, reef-building corals — had been planted. Nearly all of them were bleached, dead, or dying. “When are [we] going to stop pretending that coral reefs can be restored when sea temperatures continue to rise and spike at lethal levels?” Terry Hughes, one of the world’s leading coral reef ecologists, wrote on X. Ultimately, the only real solution is reducing carbon emissions. Period. Pretty much every marine scientist I’ve talked to agrees. “Without international cooperation to break our dependence on fossil fuels, coral bleaching events are only going to continue to increase in severity and frequency,” Manzello said. Echoing his concern, Pörtner said: “We really have no choice but to stop climate change.” Jennifer Adler for Vox A collection of bleached “planted” staghorn coral on a reef in Florida in September 2023. But in the meantime, other stuff can help. Planting pieces of coral can work if those corals are more tolerant to threats like extreme heat or disease. To that end, researchers are trying to breed more heat-resistant individuals or identify those that are naturally more tolerant to stress — not only heat, but disease. Even after extreme bleaching events, many corals survive, according to Jason Spadaro, a restoration expert at Florida’s Mote Marine Laboratory. (“Massive” corals, which look a bit like boulders, had high rates of survival following recent bleaching in Florida, Spadaro said.) Scientists also see an urgent need to curb other, non-climate related threats, like water pollution and intensive fishing. “To give corals the best possible chance, we need to reduce every other stressor impacting reefs that we can control,” Manzello told Vox. These efforts alone will not save reefs, but they’ll buy time, experts say, helping corals hold on until emissions fall. If those interventions work — and if countries step up their climate commitments — future generations will still get to experience at least some version of these majestic, life-sustaining ecosystems. This story appeared originally in Today, Explained, Vox’s flagship daily newsletter. Sign up here for future editions.

An illustration of scuba divers wearing wetsuits and yellow fins swimming over the sea floor, which is strewn with white coral and gravestones.
Paige Vickers/Vox

Years ago, scientists made a devastating prediction about the ocean. Now it’s unfolding.

More than five years ago, the world’s top climate scientists made a frightening prediction: If the planet warms by 1.5 degrees Celsius, relative to preindustrial times, 70 to 90 percent of coral reefs globally would die off. At 2°C, that number jumps to more than 99 percent.

These researchers were essentially describing the global collapse of an entire ecosystem driven by climate change. Warm ocean water causes corals — large colonies of tiny animals — to “bleach,” meaning they lose a kind of beneficial algae that lives within their bodies. That algae gives coral its color and much of its food, so bleached corals are white and starving. Starved coral is more likely to die.

In not so great news, the planet is now approaching that 1.5°C mark. In 2023, the hottest year ever measured, the average global temperature was 1.52°C above the preindustrial average, as my colleague Umair Irfan reported. That doesn’t mean Earth has officially blown past this important threshold — typically, scientists measure these sorts of averages over decades, not years — but it’s a sign that we’re getting close.

A person wearing a snorkel, black wet suit, and flippers, swims above a coral reef while filming with an underwater camera. David Gray/AFP via Getty Images
Marine biologist Anne Hoggett swims above bleached and dead coral on the Great Barrier Reef in April 2024.
A photo taken from above shows several figures in wet suits and fins swimming in clear blue water above a multi-colored ref with many white spots. David Gray/AFP via Getty Images
Tourists snorkel above a section of the Great Barrier Reef full of bleached and dead coral on April 5, 2024.

So, it’s no surprise that coral reefs are, indeed, collapsing. Earlier this month, the National Oceanic and Atmospheric Administration (NOAA) announced that the planet is experiencing its fourth global “bleaching” event on record. Since early 2023, an enormous amount of coral in the Pacific, Atlantic, and Indian oceans has turned ghostly white, including in places like the Great Barrier Reef and the Florida Keys. In some regions, a lot of the coral has already died.

“What we are seeing now is essentially what scientists have been predicting was going to happen for more than 25 years,” Derek Manzello, a marine scientist at NOAA who leads the agency’s coral bleaching project, told Vox. The recent extreme ocean warming can’t solely be attributed to climate change, Manzello added; El Niño and even a volcanic eruption have supercharged temperatures.

But coral reefs were collapsing well before the current bleaching crisis. A study published in 2021 estimated that coral “has declined by half” since the mid-20th century. In some places, like the Florida Keys, nearly 90 percent of the live corals have been lost. Past bleaching events are one source of destruction, as are other threats linked to climate change, including ocean acidification.

The past and current state of corals raises an important but challenging question: If the planet continues to warm, is there a future for these iconic ecosystems?

What’s become increasingly clear is that climate change doesn’t just deal a temporary blow to these animals — it will bring about the end of reefs as we know them.

Will there be coral reefs 100 years from now?

In the next few decades, a lot of coral will die — that’s pretty much a given. And to be clear, this reality is absolutely devastating. Regardless of whether snorkeling is your thing, reefs are essential to human well-being: Coral reefs dampen waves that hit the shore, support commercial fisheries, and drive coastal tourism around the world. They’re also home to an incredible diversity of life that inspires wonder.

“I’m pretty sure that we will not see the large surface area of current reefs surviving into the future,” said Hans-Otto Pörtner, who was involved in the landmark 2018 report, led by the Intergovernmental Panel on Climate Change (IPCC), that predicted the downfall of tropical reefs at 1.5°C warming. “Every year is going to be worse.”

 NOAA
A map of coral bleaching “alerts,” which indicate where the ocean is unusually warm and bleaching is likely to occur. Red areas have a risk of reef-wide bleaching; magenta and purple regions are at risk of coral death.

But even as many corals die, reefs won’t exactly disappear. The 3D formation of a typical reef is made of hard corals that produce a skeleton-like structure. When the polyps die, they leave their skeletons behind. Animals that eat live coral, such as butterfly fish and certain marine snails, will likely vanish; plenty of other fish and crabs will stick around because they can hide among those skeletons. Algae will dominate on ailing reefs, as will “weedy” kinds of coral, like sea fans, that don’t typically build the reef’s structure.

Simply put, dead reefs aren’t so much lifeless as they are home to a new community of less sensitive (and often more common) species.

“Reefs in the future will look very different,” said Jean-Pierre Gattuso, a leading marine scientist who’s also involved with the IPCC. “Restoring coral reefs to what they were prior to mass bleaching events is impossible. That is a fact.”

On the timescale of decades, even much of the reef rubble will fade away, as there will be no (or few) live corals to build new skeletons and plenty of forces to erode the ones that remain. Remarkably, about 30 percent of the carbon dioxide that we pump into the atmosphere is absorbed by the oceans. When all that CO2 reacts with water, it makes the ocean more acidic, hastening the erosion of coral skeletons and other biological structures made of calcium carbonate.

A scuba diver swims through an underwater cluster of staghorn coral, which resemble floating trees with branches similar to antlers. Jennifer Adler for Vox
Bleached staghorn coral in a nursery run by the Coral Restoration Foundation off the coast of the Florida Keys in September 2023.

Buying time

For decades now, hard-working and passionate scientists have been trying to reverse this downward trend — in large part, by “planting” pieces of coral on damaged reefs. This practice is similar to planting saplings in a logged forest. In reef restoration, many scientists and environmental advocates see hope and a future for coral reefs.

But these efforts come with one major limitation: If the oceans continue to grow hotter, many of those planted corals will die too. Last fall, I dived a handful of reefs in the Florida Keys where thousands of pieces of elkhorn and staghorn — iconic, reef-building corals — had been planted. Nearly all of them were bleached, dead, or dying.

“When are [we] going to stop pretending that coral reefs can be restored when sea temperatures continue to rise and spike at lethal levels?” Terry Hughes, one of the world’s leading coral reef ecologists, wrote on X.

Ultimately, the only real solution is reducing carbon emissions. Period. Pretty much every marine scientist I’ve talked to agrees. “Without international cooperation to break our dependence on fossil fuels, coral bleaching events are only going to continue to increase in severity and frequency,” Manzello said. Echoing his concern, Pörtner said: “We really have no choice but to stop climate change.”

From above, a group of bleached pieces of staghorn coral looks like a boneyard. Jennifer Adler for Vox
A collection of bleached “planted” staghorn coral on a reef in Florida in September 2023.

But in the meantime, other stuff can help.

Planting pieces of coral can work if those corals are more tolerant to threats like extreme heat or disease. To that end, researchers are trying to breed more heat-resistant individuals or identify those that are naturally more tolerant to stress — not only heat, but disease. Even after extreme bleaching events, many corals survive, according to Jason Spadaro, a restoration expert at Florida’s Mote Marine Laboratory. (“Massive” corals, which look a bit like boulders, had high rates of survival following recent bleaching in Florida, Spadaro said.)

Scientists also see an urgent need to curb other, non-climate related threats, like water pollution and intensive fishing. “To give corals the best possible chance, we need to reduce every other stressor impacting reefs that we can control,” Manzello told Vox.

These efforts alone will not save reefs, but they’ll buy time, experts say, helping corals hold on until emissions fall. If those interventions work — and if countries step up their climate commitments — future generations will still get to experience at least some version of these majestic, life-sustaining ecosystems.

This story appeared originally in Today, Explained, Vox’s flagship daily newsletter. Sign up here for future editions.

Read the full story here.
Photos courtesy of

Montana Judge Allows 2025-26 Wolf Hunting and Trapping Regulations to Stand While Lawsuit Proceeds

A Montana judge is allowing the wolf hunting and trapping regulations the Montana Fish and Wildlife Commission adopted earlier this year to stand, saying it's doubtful hunters and trappers will meet the record-high quota of 458 wolves this season

A Helena judge has allowed the wolf hunting and trapping regulations the Montana Fish and Wildlife Commission adopted earlier this year to stand, despite flagging “serious concerns” about the state’s ability to accurately estimate Montana’s wolf population.In a 43-page opinion, District Court Judge Christopher Abbott wrote that leaving the 2025-2026 hunting and trapping regulations in place while he considers an underlying lawsuit will not “push wolf populations to an unsustainable level.”In its lawsuit, first filed in 2022, WildEarth Guardians, Project Coyote, Footloose Montana and Gallatin Wildlife Association challenged four laws adopted by the 2021 Montana Legislature aimed at driving wolf numbers down. Earlier this year, the environmental groups added new claims to their lawsuit and asked the court to stop the 2025-2026 regulations from taking effect. The groups argued that a record-high wolf hunting and trapping quota of 458 wolves, paired with the potential for another 100 wolves to be killed for preying on livestock or otherwise getting into conflict with humans, would push the state’s wolf population “toward long-term decline and irreparable harm.” According to the state’s population estimates — figures that the environmental groups dispute — there are approximately 1,100 wolves across the state.In a Dec. 19 press release about the decision, Connie Poten with Footloose Montana described the ruling as a “severe setback,” but argued that the “resulting slaughter will only strengthen our ongoing case for the protection of this vital species.”“The fight for wolves is deep and broad, based in science, connection, humaneness and necessity. Wolves will not die in vain,” Poten said.Montana Fish, Wildlife and Parks declined to comment on the order, citing the ongoing litigation. Montana Sportsmen for Fish and Wildlife and the Outdoor Heritage Coalition, nonprofit groups that backed the state’s position in the litigation, could not be reached for comment on the order by publication time Monday afternoon.The order comes more than a month after a two-hour hearing on the request for an injunction, and about three weeks after the trapping season opened across the majority of the state. The trapping season is set to close no later than March 15, 2026.During the Nov. 14 hearing at the Lewis and Clark County courthouse, Alexander Scolavino argued on behalf of Montana Fish, Wildlife and Parks and the Montana Fish and Wildlife Commission that hunters, trappers and wildlife managers won’t come close to killing 558 wolves this season. Scolavino added that the highest number shot or trapped in a single season was 350 wolves in 2020 — well shy of the 458-wolf quota the commission, the governor-appointed board that sets hunting seasons for game species and furbearers, adopted in August.Abbott agreed with Scolavino’s argument, writing in his order that it’s unlikely that hunters and trappers will “achieve anything near the quota established by the commission.” To reinforce his claim, he noted that hunters and trappers have not killed 334 wolves — the quota commissioners adopted for the 2024-2025 season — in any of the past five seasons. “In short, nothing suggests that the 2025/2026 season is likely to push wolf populations to an unsustainable level or cause them irreparable injury,” he concluded.Abbott seemed to suggest that livestock-oriented conflicts are waning and that it’s unlikely that the state will authorize the killing of 100 “conflict” wolves. He noted that livestock depredations dropped from “a high of 233 in 2009 to 100 per year or less today.” On other issues — namely the Constitutional environmental rights asserted by the plaintiffs and the reliability of the state’s wolf population-estimation model — Abbott appeared to side with the plaintiffs. Those issues remain unresolved in the ongoing litigation before the court.Abbott wrote that the plaintiffs “are likely to show that a sustainable wolf population in Montana forms part of the ‘environmental life support system’ of the state.” The environmental groups had argued in their filings that the existing wolf-management framework “will deplete and degrade Montana’s wolf population,” running afoul of the state’s duty to “preserve the right to a clean and healthful environment.”In his order, Abbott incorporated material from the plaintiffs’ filings regarding the economic and ecological benefits of wolves, including “the suppression of overabundant elk, deer and coyote populations,” “restoring vegetation that aids water quality, songbirds and insect pollinators,” and “generating income and jobs” by contributing to the wildlife-watching economy anchored by Yellowstone National Park.Abbott also expressed “serious concerns” about the way the state estimates wolf numbers — a model that relies, among other things, on wolf sightings reported by elk hunters — but ultimately concluded that the court is currently “unequipped” to referee “the palace intrigues of academia” in the wildlife population-modeling arena. In the press release about the decision, the environmental groups described these pieces of Abbott’s order as “serious and valid questions” that the court must still address.Another lawsuit relating to the 2025-2026 wolf regulations is ongoing. On Sept. 30, Rep. Paul Fielder, R-Thompson Falls, and Sen. Shannon Maness, R-Dillon, joined an outfitter from Gallatin County and the Outdoor Heritage Coalition (which intervened in the environmental groups’ litigation) to push the state to loosen regulations by, for example, lengthening the trapping season and expanding the tools hunters or trappers can use to pursue and kill wolves. The plaintiffs in that lawsuit argue that liberalizing the hunting and trapping season would reaffirm the “opportunity to harvest wild fish and wild game animals enshrined in the Montana Constitution,” and bring the state into alignment with a 2021 law directing the commission to adopt regulations with an “intent to reduce the wolf population.”According to the state’s wolf management dashboard, 83 wolves have been shot or trapped as of Dec. 22. The department closed the two wolf management units closest to Yellowstone National Park to further hunting and trapping earlier this year after three wolves were killed in each of those units. This story was originally published by Montana Free Press and distributed through a partnership with The Associated Press.Copyright 2025 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.Photos You Should See – December 2025

Pink platypus spotted in Gippsland is cute – but don’t get too excited

Biologist says monotreme a Victorian fisher has nicknamed Pinky is ‘unusual but not exceptional’Follow our Australia news live blog for latest updatesGet our breaking news email, free app or daily news podcastCody Stylianou thought he saw a huge trout. But, skimming just below the surface, it was moving differently than a fish would.The creature surfaced and, amazed, the Victorian fisher reached for his phone. Swimming in front of him was a pink platypus. Continue reading...

Cody Stylianou thought he saw a huge trout. But, skimming just below the surface, it was moving differently than a fish would.The creature surfaced and, amazed, the Victorian fisher reached for his phone. Swimming in front of him was a pink platypus.Stylianou regularly fishes in the Gippsland spot, which he is keeping secret to protect the rare animal. He thinks it could be the same one he saw years ago, just older and bigger.“The bill and feet are super obviously pink,” he says. “When he did go a bit further into sunlit areas, he was easy to follow underwater, which is how I got so many videos of him surfacing.”Stylianou had been on his first trout fishing trip of the season in September when he saw the platypus, which he has nicknamed “Pinky”. He watched it feed at the top of the tannin-stained river for about 15 minutes.Sign up: AU Breaking News email“I’ve seen other platypus in the same river system, just regular coloured ones,” he says. “Probably about five to eight of them over the years, from memory. Normally, they just pop up at the top of the water and then disappear once they see me.”After Stylinaou shared footage of the monotreme, commenters online speculated that it could have been a rare albino platypus. But the biologist Jeff Williams says it is just lighter in colour than what most would expect.“Platypus do vary a lot in colour,” the director of the Australian Platypus Conservancy says. “And this one’s at the extreme end of the light ones. It’s not one that we consider should be added to the list of albino and leucistic ones.”Just as humans have different coloured hair or skin pigment, platypus also come in different variations, Williams says. He said the platypus captured on video was “unusual but not exceptional”.“What I’ve seen and what every other leading platypus person has looked at, it says, is that it’s well within the sort of variation in colour that one would expect,” he says.“Let’s put it this way, it’s cute, but it’s not a breakthrough … We think this is just one of the extreme ends. Every so often, you will get a genetic anomaly that just throws up things, just as it does with some humans, who have more freckles and so on.“It’s somewhat unusual, but it’s nothing to get particularly excited about, we’re afraid.”Sniffer dogs are being trained to track down threatened platypus populations – videoThe platypus is listed as near-threatened on the International Union for Conservation of Nature. There has also been a decline in Victorian populations, making them more vulnerable, Williams says.“Platypus were in significant decline up until about the 1990s when all the impact of European settlement on our waterways was becoming apparent,” he says.“We messed up pretty much the flow of every river we’ve got. We cleared native vegetation along most of our waterways, and, not surprisingly, that put a lot of pressure on the platypus population.”Replanting programs along the waterways, and consideration of environmental impacts near rivers, have started to help the population come back.“We’ve still got a way to go, and we can’t be complacent,” Williams says.“But the good news at the moment is most of the survey work that’s being done around the place is suggesting numbers that are coming back, certainly the number of sightings in some places where there was concern.”

A “scientific sandbox” lets researchers explore the evolution of vision systems

The AI-powered tool could inform the design of better sensors and cameras for robots or autonomous vehicles.

Why did humans evolve the eyes we have today?While scientists can’t go back in time to study the environmental pressures that shaped the evolution of the diverse vision systems that exist in nature, a new computational framework developed by MIT researchers allows them to explore this evolution in artificial intelligence agents.The framework they developed, in which embodied AI agents evolve eyes and learn to see over many generations, is like a “scientific sandbox” that allows researchers to recreate different evolutionary trees. The user does this by changing the structure of the world and the tasks AI agents complete, such as finding food or telling objects apart.This allows them to study why one animal may have evolved simple, light-sensitive patches as eyes, while another has complex, camera-type eyes.The researchers’ experiments with this framework showcase how tasks drove eye evolution in the agents. For instance, they found that navigation tasks often led to the evolution of compound eyes with many individual units, like the eyes of insects and crustaceans.On the other hand, if agents focused on object discrimination, they were more likely to evolve camera-type eyes with irises and retinas.This framework could enable scientists to probe “what-if” questions about vision systems that are difficult to study experimentally. It could also guide the design of novel sensors and cameras for robots, drones, and wearable devices that balance performance with real-world constraints like energy efficiency and manufacturability.“While we can never go back and figure out every detail of how evolution took place, in this work we’ve created an environment where we can, in a sense, recreate evolution and probe the environment in all these different ways. This method of doing science opens to the door to a lot of possibilities,” says Kushagra Tiwary, a graduate student at the MIT Media Lab and co-lead author of a paper on this research.He is joined on the paper by co-lead author and fellow graduate student Aaron Young; graduate student Tzofi Klinghoffer; former postdoc Akshat Dave, who is now an assistant professor at Stony Brook University; Tomaso Poggio, the Eugene McDermott Professor in the Department of Brain and Cognitive Sciences, an investigator in the McGovern Institute, and co-director of the Center for Brains, Minds, and Machines; co-senior authors Brian Cheung, a postdoc in the  Center for Brains, Minds, and Machines and an incoming assistant professor at the University of California San Francisco; and Ramesh Raskar, associate professor of media arts and sciences and leader of the Camera Culture Group at MIT; as well as others at Rice University and Lund University. The research appears today in Science Advances.Building a scientific sandboxThe paper began as a conversation among the researchers about discovering new vision systems that could be useful in different fields, like robotics. To test their “what-if” questions, the researchers decided to use AI to explore the many evolutionary possibilities.“What-if questions inspired me when I was growing up to study science. With AI, we have a unique opportunity to create these embodied agents that allow us to ask the kinds of questions that would usually be impossible to answer,” Tiwary says.To build this evolutionary sandbox, the researchers took all the elements of a camera, like the sensors, lenses, apertures, and processors, and converted them into parameters that an embodied AI agent could learn.They used those building blocks as the starting point for an algorithmic learning mechanism an agent would use as it evolved eyes over time.“We couldn’t simulate the entire universe atom-by-atom. It was challenging to determine which ingredients we needed, which ingredients we didn’t need, and how to allocate resources over those different elements,” Cheung says.In their framework, this evolutionary algorithm can choose which elements to evolve based on the constraints of the environment and the task of the agent.Each environment has a single task, such as navigation, food identification, or prey tracking, designed to mimic real visual tasks animals must overcome to survive. The agents start with a single photoreceptor that looks out at the world and an associated neural network model that processes visual information.Then, over each agent’s lifetime, it is trained using reinforcement learning, a trial-and-error technique where the agent is rewarded for accomplishing the goal of its task. The environment also incorporates constraints, like a certain number of pixels for an agent’s visual sensors.“These constraints drive the design process, the same way we have physical constraints in our world, like the physics of light, that have driven the design of our own eyes,” Tiwary says.Over many generations, agents evolve different elements of vision systems that maximize rewards.Their framework uses a genetic encoding mechanism to computationally mimic evolution, where individual genes mutate to control an agent’s development.For instance, morphological genes capture how the agent views the environment and control eye placement; optical genes determine how the eye interacts with light and dictate the number of photoreceptors; and neural genes control the learning capacity of the agents.Testing hypothesesWhen the researchers set up experiments in this framework, they found that tasks had a major influence on the vision systems the agents evolved.For instance, agents that were focused on navigation tasks developed eyes designed to maximize spatial awareness through low-resolution sensing, while agents tasked with detecting objects developed eyes focused more on frontal acuity, rather than peripheral vision.Another experiment indicated that a bigger brain isn’t always better when it comes to processing visual information. Only so much visual information can go into the system at a time, based on physical constraints like the number of photoreceptors in the eyes.“At some point a bigger brain doesn’t help the agents at all, and in nature that would be a waste of resources,” Cheung says.In the future, the researchers want to use this simulator to explore the best vision systems for specific applications, which could help scientists develop task-specific sensors and cameras. They also want to integrate LLMs into their framework to make it easier for users to ask “what-if” questions and study additional possibilities.“There’s a real benefit that comes from asking questions in a more imaginative way. I hope this inspires others to create larger frameworks, where instead of focusing on narrow questions that cover a specific area, they are looking to answer questions with a much wider scope,” Cheung says.This work was supported, in part, by the Center for Brains, Minds, and Machines and the Defense Advanced Research Projects Agency (DARPA) Mathematics for the Discovery of Algorithms and Architectures (DIAL) program.

Common household rat poisons found to pose unacceptable risk to wildlife as animal advocates push for ban

Environmentalists say proposed temporary suspension of second-generation anticoagulant rodenticides ‘doesn’t go far enough’Follow our Australia news live blog for latest updatesGet our breaking news email, free app or daily news podcastCommonly available rat poisons pose unacceptable risks to native wildlife, according to a government review that has stopped short of recommending a blanket ban on the products, to the consternation of animal advocates.The long-awaited review of first- and second-generation anticoagulant rodenticides – FGARs and SGARs – has recommended the cancellation of some products, but a large array of waxes, pellets and blocks could continue to be sold to consumers subject to stricter labelling and conditions of use. Continue reading...

Commonly available rat poisons pose unacceptable risks to native wildlife, according to a government review that has stopped short of recommending a blanket ban on the products, to the consternation of animal advocates.The long-awaited review of first- and second-generation anticoagulant rodenticides – FGARs and SGARs – has recommended the cancellation of some products, but a large array of waxes, pellets and blocks could continue to be sold to consumers subject to stricter labelling and conditions of use.Baits containing anticoagulant rodenticides are widely available in supermarkets and garden stores such as Bunnings, Coles and Woolworths.The baits have come under scrutiny because they have been found in dead native animals such as tawny frogmouths, powerful owls and quolls that had eaten poisoned rats and mice.The second-generation products are more toxic and are banned from public sale in the United States and parts of Canada and highly restricted in the European Union.Commercially available rat poisons have been found in dead native animals. Photograph: Fabio De Paola/The GuardianConsumers can identify SGARs in Australia by checking whether they contain one of the following active ingredients: brodifacoum, bromadiolone, difethialone, difenacoum and flocoumafen. There are three FGAR active ingredients registered for use in Australia: warfarin, coumatetralyl and diphacinone.The Australian Pesticides and Veterinary Medicines Authority (APVMA), in response to the review which was published Tuesday, has proposed a temporary suspension of SGARs while public consultation about the recommendations is under way. If the suspension goes ahead the APVMA said the affected products could still be used, but only in accordance with the proposed stricter conditions.“If suspended, the importation or manufacture of SGARs would be illegal. They could only be sold if they meet the new strict conditions around pack size and use,” a spokesperson said.Holly Parsons, of BirdLife Australia, said the review “doesn’t go far enough and crucially, fails to address secondary poisoning that is killing owls and birds of prey” such as when, for example, a native bird ate a poisoned rat.“Despite overwhelming evidence provided in support of the complete removal of SGARs from public sale, we’re yet to see proposed restrictions that come close to achieving this,” Parsons said.She said consumers should be able to “walk into stores under the assumption that the products available to them aren’t going to inadvertently kill native animals” but the APVMA has put “the responsibility on to the consumer with an expectation that labels are fully read and followed – and we know that won’t be the case”.The review also recommended cancelling the registration of anticoagulant rodenticides baits that come in powder and liquid form or which do not contain dyes or bittering agents, finding they do not meet safety criteria.But it found other baits sold as waxes, pellets and blocks could continue to be sold to consumers with some changes to labelling and conditions of use.Sign up: AU Breaking News emailThe APVMA found that under “current instructions” it could not be satisfied that these types of products would not have unintended, harmful effects on non-target animals, including native wildlife, nor that they would not pose undue safety risks to people who handled them including vulnerable people such as children.But it found the conditions of product registration and other “relevant particulars” could be varied in such a way as to allow the authority “to be satisfied that products will meet the safety criteria”.Some of the proposed new instructions would include limiting mice baits to indoor use only when in tamper-resistant bait stations; placing outdoor rat baits in tamper-proof stations within two metres of outside a building; changes to pack sizes; and tighter directions for the clean-up and disposal of carcasses and uneaten baits.The recommendations are subject to three months of public consultation before the authority makes a final decision.John White is an associate professor of wildlife and conservation biology at Deakin University. In 2023 he worked with a team of researchers that studied rat poison in dead tawny frogmouths and owls, who found 95% of frogmouths had rodenticides in their livers and 68% of frogmouths tested had liver rodenticide levels consistent with causing death or significant toxicological impacts.He said the authority’s proposed changes failed to properly tackle the problem that SGARS, from an environmental perspective, were “just too toxic”.White said even if the authority tightened the conditions of use and labelling rules there was no guarantee that consumers would follow new instructions. “We should be completely banning these things, not tinkering at the edges,” he said.A spokesperson for Woolworths said the supermarket would await the APVMA’s final recommendations “to inform a responsible approach to these products, together with the suppliers of them”.They said the chain stocked “a small range of second-generation anticoagulant rodenticides for customers who might have a problem with rats or mice in their home, workplace, and especially in rural areas where it’s important for customers to have access to these products” while also selling “a number of alternative options”.Bunnings and Coles declined to comment.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.